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Recursive Models and
the Divisibility Poset

JAMES H. SCHMERL

Abstract In contrast to Tennenbaum’s theorem asserting that there are no
nonstandard models of Peano Arithmetic in which either addition or multipli-
cation is recursive, the result here is that there is a nonstandard model of Peano
Arithmetic having a recursive divisibility poset and a recursive divisibility lat-
tice.

According to the well-known theorem of Tennenbaum [17], there are no recursive
nonstandard models of Peano Arithmetic. Usual proofs of this theorem yield the
following refinement. IfM = (M,+,×,0,1,≤) is a nonstandard model ofPA,
then neither its additive semigroup(M,+) nor its multiplicative semigroup(M,×)

is a recursive structure. This suggests considering other reducts of models ofPA
such as the divisibility poset(M, |), where we understandx|y to mean thatx is a
divisor of y. It will be proved here (see Corollary14) that, in contrast to Tennen-
baum’s theorem, there do exist nonstandard modelsM of PA whose divisibility poset
(M, |) is recursive. There even exist nonstandard modelsM of PA whose divisibility
lattice(M,∧,∨) is recursive, where we understandx ∧ y andx ∨ y to be, respectively,
the greatest common divisor and the least common multiple ofx andy. These exam-
ples give a positive answer to the second part of Problem 9 in Jensen-Ehrenfeucht [7].

All theories considered here are for finite languages with no function symbols.
If a theory does not appear to be of this sort, make the appropriate modification so
that it is. Several first-order theories will be considered here, but we will mainly be
concerned with theoryDP = Th(ω, |), where(ω, |) is the divisibility poset of the
standard modelN = (ω,+,×,0,1,≤), and the theoryDL = Th(ω,∧,∨), where
(ω,∧,∨) is the divisibility lattice of the standard model. Cegielski [1], [2] has shown
thatDP is finitely axiomatizable, and, therefore,DL also is.

Let T be an arbitrary theory. ThenT is rich if, for somen < ω, there is a re-
cursive sequence〈ϕi(x̄) : i < ω〉 of n-ary formulas such that for any disjoint, finite
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subsetsI, J ⊆ ω, the sentence

∃x̄ [
∧

i∈I

ϕi(x̄) ∧
∧

j∈J

¬ϕ j(x̄)]

is a consequence ofT . If, in addition, all the formulasϕi(x̄) are existential formulas,
thenT is existentially rich.

The properties of being rich and existentially rich are important in the study of
reducts ofPA. (See Kaye [8].) The two prototypical examples of existentially rich
theories are Presburger Arithmetic and Skolem Arithmetic. Recall that Presburger
Arithmetic is the theoryPr = Th(ω,+) and that Skolem Arithmetic is the theory
Sk = Th(ω,×). Tosee thatPr is existentially rich, consider the sequence of 1-ary for-
mulas, theith one in the sequence being∃y(pi y = x), wherepi is theith prime. Sim-
ilarly for Sk, let theith formula be∃y(ypi = x). The existential richness of these the-
ories provides an approach to proving Tennenbaum’s Theorem. Had Tennenbaum’s
proof been published, the following theorem would probably have been implicit in it.
As it is, this theorem seems to be a result from the folklore.

Theorem 1 If T is existentially rich, then T does not have any recursive, recur-
sively saturated models.

Proof: Let M be a recursive, recursively saturated model ofT , and letϕi(x̄) be the
i th formula witnessing the existential richness ofT . Let A andB be recursively in-
separable r.e. sets. By recursive saturation, there areā, b̄ in M such that for alli < ω,
M |= ϕi(ā) if i ∈ A, M |= ϕi(b̄) if i ∈ B, and M |= ϕi(ā) ←→ ¬ϕi(b̄). By the re-
cursiveness ofM, the setsX = {i < ω : M |= ϕi(ā)} andY = {i < ω : M |= ϕi(b̄)}
are recursively enumerable. But thenX andY , being complements of each other, are
recursive. This contradicts the recursive inseparability ofA andB. �
The properties ofPr andSk needed to deduce Tennenbaum’s Theorem from Theo-
rem1 are contained in the following lemma. This lemma is a consequence, not just
of the quantifier-elimination forPr andSk, but also of the facts that, in each case,
the quantifier-elimination is provable inPA. This property ofPr follows easily from
the original proof of Presburger [14]. For Sk it was proved by Nadel [12] (also see
Cegielski [3] and Chatzidakis [4]) who recognized that Skolem’s [16] original proof
of quantifier elimination forSk did not yield that every multiplicative reduct is a
model ofSk.

Lemma 2 Let M be a nonstandard model of PA. Then its additive semigroup
(M,+) is a recursively saturated model of Pr and its multiplicative semigroup
(M,×) is a recursively saturated model of Sk.

Corollary 3 (Tennenbaum’s Theorem) If M is a nonstandard model of PA, then
neither (M,+) nor (M,×) is a recursive structure.

Wecan get both theDP andDL analogs of Lemma2 as a corollary of just theSk part
of that lemma.

Corollary 4 If M is a nonstandard model of PA, then its divisibility poset (M, |)
is a recursively saturated model of DP and its divisibility lattice (M,∧,∨) is a re-
cursively saturated model of DL .
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Proof: It suffices to observe that|,∧, and∨ are all definable in(M,×). �

The following was noted in Lemma 4.1 of [7].

Proposition 5 Both of the theories DP and DL are rich.

Proof: Weintroduce some formal definitions (one for each positive integern): x is
thenth power of a prime if and only if the set of predecessors ofx, includingx itself,
is linearly ordered by| and has exactlyn + 1 elements. Let〈ϕi(x) : i < ω〉 be the
sequence of 1-ary formulas in whichϕi(x) asserts: there isy such thaty|x and y is
the (i + 1)th power of a prime, but there is noz which is the(i + 2)th power of a
prime and for whichy|z|x. This shows thatDP is rich. The theoriesDP andDL are
interdefinable, soDL is also rich. �

The richness of reducts ofPA has consequences about countable, recursively satu-
rated models ofPA. For example, the richness ofDP andDL implies the following:
if M = (M,+,×,0,1,≤) andN = (N,+,×,0,1,≤) are elementarily equivalent,
countable, recursively saturated models ofPA, and(M, |) ∼= (N, |) or (M,∧,∨) ∼=
(N,∧,∨), thenM ∼= N .

The formulas appearing in the proof of Proposition5 are not existential; in fact,
they seem to be∃3. Thus, if M is a nonstandard model ofPA such that(M, |) is
recursive, then eachX ∈ SSy(M ) is �3. In particular, there is no nonstandard model
M of True Arithmetic for which(M, |) is recursive.

Do the theoriesDP andDL have the stronger property of being existentially
rich? This question is answered in Proposition9 and, from another point of view,
in Corollary14.

Let K be a class of finiteL-structures. We say thatK is hereditary if whenever
M ∈ K and N is embeddable inM, then N ∈ K. If K is hereditary, then itsbarrier
bar (K) is the class (of isomorphism types) ofL-structuresM such thatM �∈ K but
every proper substructure ofM is in K. Then we say thatK is ∀-finite if whenever
L is a hereditary subclass ofK, thenbar (L) is finite. There is an alternate approach
to defining∀-finiteness using well-quasi-ordered theory. The hereditary classK is
∀-finite if and only if, wheneverM0, M1, M2, . . . is a sequence of structures inK,
then there arej < i < ω such thatM j is embeddable inMi. If, for eachn < ω, the
class of structures(M, ā), whereM ∈ K andā is ann-tuple fromM, is∀-finite, then
K is strongly ∀-finite. For anyL-theoryT , let Sub(T ) be the collection of all finite
substructures of models ofT . Then, Ershov [5] definesT to be∀-finite or strongly
∀-finite just in caseSub(T ) is ∀-finite or strongly∀-finite.

Ershov proved that every r.e., strongly∀-finite theory has a recursive model. The
principal application of this is to the theory of trees, which is strongly∀-finite as a con-
sequence of Kruskal’s theorem [10]. Thus, every r.e. theory of trees has a recursive
model. Ershov’s theorem improved an earlier result of Peretyat’kin [13] that every
r.e. extension of the theory of linear order has a recursive model. For related results
and improvements, see Lerman and Schmerl [11], Schmerl [15], and Knight [9]. The
following proposition shows that Ershov’s theorem cannot be applied to either of the
theoriesDP or DL.

Proposition 6 Neither of the theories DP and DL is ∀-finite.
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Proof: Notice that every finite poset is embeddable in the standard divisibility poset
(ω, |). Let (Pn,<) be the poset wherePn = {a0, a1, . . . , an+2, b0, b1, . . . , bn+2} and
x < y if and only if for somei < n +3, x = ai andy ∈ {bi, bi+1} (wherebn+3 is under-
stood to beb0). The posetPn is known as an(n + 3)-crown. Let K be the hereditary
class of all finite posets not embedding any one of the(n + 3)-crowns. Clearly, if
j < i < ω, thenPj is not embeddable inPi. Thus,bar (K) isnot finite, soK and also
DP are not∀-finite. Since| is definable in a divisibility lattice by a quantifier-free
formula, we also get thatDL is not∀-finite. �

Proposition7 implies that every strongly∀-finite theoryT fails to be existentially rich;
actually, the conclusion says thatT fails to have a property which is even weaker than
its being existentially rich. Applying Proposition7 to the theory of trees yields that
this theory has no completions which are existentially rich. However, this theory does
have decidable completions which are rich. Of course, Proposition7 is of no use in
showing thatDP or DL fails to be existentially rich.

Wesay that the theoryT is existentially order-rich if, for somen < ω, there is a
recursive sequence〈ϕi(x̄) : i < ω〉 of existentialn-ary formulas such that each of the
sentences

∃x̄ [ϕi(x̄) ∧
∧

j<i

¬ϕ j(x̄)]

is a consequence ofT . Clearly, every existentially rich theory is existentially order-
rich. There are theories which are existentially order-rich but not existentially rich:
the theory of the countable graph whose components are precisely then-cycles (one
for eachn ≥ 3) is a complete and decidable example.

Proposition 7 If T is strongly ∀-finite, then T is not existentially order-rich.

Proof: Wewill prove the contrapositive, so assume thatT is existentially order-rich,
and letϕi(x) be theith existential formula in the sequence witnessing thatT is exis-
tentially order-rich. For eachi, let (Bi, ai) be such thatBi is a model ofT , Bi |= ϕi(ai)

and for all j < i, Bi |= ¬ϕ j(ai). Let Mi be a finite substructure ofBi such thatai is in
Mi andMi |= ϕi(ai). Notice that for j < i, Mi |= ¬ϕ j(ai) sinceϕ j(x) is existential.
Let K be the smallest hereditary class containing each(Mi, ai). It easily follows from
the finiteness ofbar (K) that there arej < i < ω such that(M j, a j) is embeddable in
(Mi, ai). But then (Mi, ai) |= ¬ϕ j(ai) since(M j, a j) is a model of that sentence.
This is a contradiction. Thus,T is not strongly∀-finite. �

We next define a certain type of poset. For 1≤ n < ω, let [n] be n = {0,1,2, . . . ,

n − 1}, considered as a linearly ordered set with the usual ordering≤ on it. We will
consider product posets(B,≤) = ([n0] × [n1] ×· · ·× [nd],≤). Werefer to any poset
which is isomorphic to such a(B,≤) as abox. A subsetE ⊆ B is a line if for some
j ≤ d there isa ∈ B such thatE = {x ∈ B : if j �= i ≤ d, thenxi = ai}. An abstract
characterization of lines can be given: if(B,≤) is a box andE ⊆ B, thenE is a line if
and only ifE is a maximal linearly ordered subset ofB of the form{x ∈ B : a ≤ x ≤ b}.
An embedding of one box into another which preserves lines is abox-embedding. An
important point to observe is that if we view boxes as distributive lattices, then box-
embeddings are also lattice embeddings.

Every model ofDP has lots of subboxes. IfM |= DP andA ⊆ M is finite, then
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there is a boxB such thatA ⊆ B ⊆ M. There is more that can be said. IfM |= DL
andA ⊆ M is finite, then there is a sublatticeB ⊆ M such thatA ⊆ B andB is a box.

LetBn be the set of structures(B,≤, a), where(B,≤) is a box anda is ann-tuple
from B. The following is a result from well-quasi-ordered theory.

Lemma 8 Let n < ω. If B0, B1, B2, . . . is a sequence from Bn, then there are j <

i < ω and a box-embedding of B j into Bi.

Proof: The lemma can be rephrased in terms ofwqo. Recall that a structure (A,≤)
is aquasi order if ≤ is a transitive, reflexive (but not necessarily anti-symmetric) bi-
nary relation onA. A quasi order(A,≤) is a well-quasi-order (wqo) if whenever
a0, a1, a2, . . . is a sequence fromA, there arej < i < ω such thata j ≤ ai. The lemma
asserts that for eachn, the setBn is a wqo under box-embeddability.

If A andB are wqos, then their productA × B is a wqo. More subtle is the fun-
damental theorem of Higman [6]. If A is a quasi order, then the setA<ω of finite
sequences fromA can be considered as a quasi order with the following definition.
Let a, b ∈ A<ω where the length ofa is m and the length ofb is n. Thena ≤ b if
and only if there is an injectionf : m → n such that for eachi < m, ai ≤ b f (i). Then
Higman’s theorem asserts: ifA is a wqo, then so isA<ω.

An easy application of Higman’s theorem yields thatω<ω is wqo. Each sequence
in ω<ω can be identified with a box, and this shows thatB0 is wqo. Next we want
to show thatBn is wqo. Consider ann-augmented box(B, a0, a1, . . . , an−1) in Bn.
With each pairi, j < n associate the subboxSij = {x ∈ B : a j ≤ x ≤ ai}, and with
eachi < n associateTi = {x ∈ B : x ≤ ai} andUi = {x ∈ B : x ≥ ai}. Then associate
with (B, a0, a1, . . . , an−1) the(n + 1)2-tuple〈B, 〈Sij : i, j < n〉, 〈〈Ti,Ui〉 : i < n〉〉 ∈
B (n+1)2

0 . SinceB (n+1)2

0 is wqo, it easily follows thatBn also is. This proves the lemma.
�

The following proposition answers our earlier question by showing thatDP andDL
are not existentially rich. An apparently stronger result will be given in Theorem10.

Proposition 9 The theories DP and DL are not existentially order-rich.

Proof: It suffices to prove thatDL is not existentially order-rich, since| is defin-
able from (either one of)∧ and∨ by a quantifier-free formula. Suppose thatDL is
existentially order-rich, and letϕi(x) be theith existential formula in the sequence
witnessing thatDL is existentially order-rich. For eachi, let (Mi, ai) be such thatMi

is a model ofDL, Mi |= ϕi(ai), and for all j < i, Mi |= ¬ϕ j(ai). EachMi has a fi-
nite sublatticeBi such thatBi is a box,ai is a tuple fromBi, andBi |= ϕi(ai). Notice
that if j < i < ω, then Bi |= ¬ϕ j(ai). By Lemma8, there arej < i < ω such that
(B j, a j) is box-embeddable in(Bi, ai), and thus, as lattices,(B j, a j) is embeddable
in (Bi, ai). Sinceϕ j(x) is existential andB j |= ϕ j(a j), it follows that Bi |= ϕ j(ai),
which is a contradiction. �

As noted previously, Ershov’s theorem does not help in showing thatDP andDL have
recursive models, although their standard models are recursive. The proof of the fol-
lowing theorem owes much to Ershov’s proof.
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Theorem 10 Each of the theories DP and DL has a recursive, recursively satu-
rated model.

Proof: It suffices to show thatDL has a recursive, recursively saturated model, so
we will just consider that case. LetL be the language ofDL. Letc0, c1, c2, . . . be new,
distinct constant symbols, and then letL n = L ∪ {c0, c1, . . . cn−1} for eachn < ω and
Lω = L ∪ {c0, c1, c2, . . .}. We will construct a completionD of DL in the language
Lω which will be the elementary diagram of a recursively saturated model ofDL.
Even thoughD may turn out not to be recursive, the set of atomic sentences inD will
be recursive.

Fix a recursive sequenceσ0, σ1, σ2, . . . of the sentences inDL. If n < ω and� is
a set of formulas, we say that� is n-consistent if no contradiction can be derived from
� in n or fewer steps. We can easily construct a doubly-indexed recursive sequence
〈γi j(x) : i, j < ω〉 of 1-aryLω-formulas such that

1. eachγi j(x) is anL i-formula;
2. if n < ω and�(x) is a nonempty recursive set ofL n-formulas, then there is

somei < ω such that�(x) = {γi j(x) : j < ω}.
For d < ω, asetC is anL d-diagram if the following hold.

1. The setC consists ofL d-sentences each one of which is either an atomic sen-
tence or the negation of an atomic sentence.

2. If α is an atomicL d-sentence, thenα ∈ C iff ¬α �∈ C.
3. Fori, j < d, the sentenceci = c j is in C iff i = j.

For eachL d-diagramC, there is a uniqueL-structure on the set{0,1,2, . . . , d − 1}
whose diagram isC, and we denote this structure byM(C).

Wewill say that the 5-tupleP = 〈n, d, I, f, C 〉 is apromise if the following hold.

1. I ⊆ n ≤ d < ω and f : I → d.
2. C is anL d-diagram andM(C) is a box.
3. C ∪ T is consistent.
4. {σ0, σ1, σ2, . . . , σn−1} ∪ C ∪ {γi j(c f (i)) : i ∈ I and j < n} is n-consistent.
5. If r < n andr �∈ I, then{σ0, σ1, σ2, . . . , σn−1} ∪ C ∪ {γi j(c f (i)) : i ∈ I, i < r

and j < n} ∪ {γr j(x) : j < n} is notn-consistent.

Notice that there is an effective procedure for determining, being givenn, d, I, f, C,
whether or not〈n, d, I, f, C 〉 is a promise. A promise is really just an encoded de-
scription of a set ofLω-sentences. IfP = 〈n, d, I, f, C 〉 is a promise, then let

�(P) = {σ0, σ1, σ2, . . . , σn−1} ∪ C ∪ {γi j(c f (i)) : i ∈ I and j < n}

be the set of sentences it encodes. The definition of a promise requires that�(P) be
n-consistent.

We will say that the promiseP = 〈n, d, I, f, C 〉 is an n-promise of ranged.
For anyn, d, there are only finitely manyn-promises of ranged. It is obvious that
〈0,0,∅,∅,∅〉 is a 0-promise .

Now suppose thatn < m < ω. If Pn = 〈n, e, In, fn, Cn〉 is ann-promise and
Pm = 〈m, d, Im, fm, Cm〉 is anm-promise, thenPm is anextension of Pn if Cn ⊆ Cm.
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Consequently, ifPn has rangee and its extensionPm has ranged, thene ≤ d. Ev-
ery n-promise has an extension which is anm-promise. This is a consequence of the
following claim.

Claim 11 For each n-promise Pn = 〈n, e, In, fn, Cn〉, there is an (n + 1)-promise
Pn+1 = 〈n + 1, d, In+1, fn+1, Cn+1〉 which is an extension of Pn.

To see this claim, consider somen-promisePn = 〈n, e, In, fn, Cn〉. Wewill construct
an(n + 1)-promisePn+1 = 〈n + 1, d, In+1, fn+1, Cn+1〉 which is an extensionPn.

We will construct In+1 and fn+1 : In+1 → ω recursively; that is, giveni ≤ n
and knowingIn+1 ∩ i and fn+1( j) for j ∈ In+1 ∩ i, wewill determine whether or not
i ∈ In+1 and, if i ∈ In+1, the value of fn+1(i). At the same time, we will construct a
sequencee ≤ d0 ≤ d1 ≤ d2 ≤ · · · ≤ dn < ω and a sequenceD0, D1, D2, . . . , Dn of
diagrams, where eachDi is anL di -diagram of a box andCn ⊆ D0 ⊆ D1 ⊆ D2 ⊆ · · · ⊆
Dn. First we consideri = 0. There are two alternatives: either there existsd ≥ e and
anL d-diagramD such that the following hold:

1. D ⊇ Cn andM(D) is a box;

2. D ∪ T is consistent;

3. {σ0, σ1, σ2, . . . , σn} ∪ D ∪ {γ0 j(x) : j ≤ n} is not(n + 1)-consistent;

or there are no suchd and D. If there are such ad and D, then they can be found
effectively, and we letd0 = d and D0 = D, and then decree that 0�∈ In+1. And if
there are no suchd andD, then we decree that 0∈ In+1, and we effectively getd0 ≥
e, fn+1(0) < d0 and anL d0-diagramD0 such thatD0 ⊇ Cn, D0 ∪ T is consistent,
M(D0) is a box, and{σ0, σ1, σ2, . . . , σn} ∪ D0 ∪ {γ0 j(c fn+1(0)) : j ≤ n} is (n + 1)-
consistent.

For 0< i ≤ n, proceed in a very similar way. Again, there are two alternatives:
either there ared ≥ di−1 and anL d-diagramD such that the following hold:

1. D ⊇ Di−1 andM(D) is a box;

2. D ∪ T is consistent;

3. {σ0, σ1, σ2, . . . , σn} ∪ D ∪ {γr j(c fn+1(r)) : r ∈ In+1, r < i and j < n} ∪ {γi j(x) :
j ≤ n} is not(n + 1)-consistent;

or there are no suchd and D. If there are such ad and D, then they can be found
effectively, and we letdi = d and Di = D, and decree thati �∈ In+1. And if there
are no suchd andD, then we decree thati ∈ In+1, and we effectively getdi > di−1,
fn+1(i) < di and anL di -diagramDi such thatDi ⊇ Di−1, Di ∪ T is consistent,M(Di)

is a box, and{σ0, σ1, σ2, . . . , σn} ∪ Di ∪ {γr j(c fn+1(r)) : r ∈ In+1 ∩ (i + 1) and j < n}
is (n + 1)-consistent.

Wehave constructedIn+1 and fn+1. Let Cn+1 = Dn andd = dn. The construc-
tion guarantees thatPn+1 = 〈n + 1, d, In+1, fn+1, Cn+1〉 is an(n + 1)-promise which
extendsCn. This proves Claim11.

If Pn = 〈n, e, In, fn, Cn〉 is ann-promise andPm = 〈m, d, Im, fm, Cm〉 is anm-
promise extendingPn, then we say thatPm is ak-extension of Pn if k = max{r ≤ n :
In ∩ r = Im ∩ r and fn|(In ∩ r) = fm|(Im ∩ r)}. The following claim is easily proved.
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Claim 12 Given n and e, we can effectively find d such that whenever P is an n-
promise of range e which has a k-extension which is an (n + 1)-promise, then it has
one with range at most d.

Putting Claims11and12together, we can obtain a recursive sequenceP0, P1, P2, . . .

such that the following hold for eachn < ω.

1. Pn is ann-promise.
2. There isk ≤ n such thatPn+1 is ak-extension ofPn and for nok′ > k is there

an(n + 1)-promise which is ak′-extension ofPn.

Having obtained this sequence of promises, letk0, k1, k2, . . . be the sequence defined
as follows:kn is the leastk < ω such that for somem > n, Pm is ak-extension ofPn.
Clearly,k0 ≤ k1 ≤ k2 ≤ · · · . The crux of the proof is the following claim.

Claim 13 The sequence k0, k1, k2, . . . is unbounded.

To prove the claim, assume it is false so that there arem, s < ω such thatki = m
if and only if i ≥ s. Then there is a subsequenceki0, ki1, ki2, . . . such thats = i0 <

i1 < i2 < · · · and that wheneverj < r < ω, then Pkir
is anm-extension ofPki j

. Let
{ j0, j1, . . . , jn−1} = Is ∩ m, where j0 < j1 < · · · < jn−1 < m, andlet ā be then-
tuple 〈c fs( j0), c fs( j1), . . . , c fs( jn−1)〉. For eachj < ω let M j = M(Cki j

) and leta j =
fki j

(m). By Lemma8, there arej < r < ω such that(M j, ā, a j) is box-embeddable
(and thus, also embeddable as lattices) in(Mr, ā, ar). Identifying (M j, ā, a j) with its
image under this embedding, we see that there is ak > m such that(Mr, ā, ar) is a
k-extension of(M j, ā, a j). This contradiction proves Claim13.

Now let D be the set ofLω-sentencesσ such that for all sufficiently largen,
σ ∈ �(Pn). Clearly, D ⊇ T andD is consistent.

Weshow thatD is complete. Letσ be anLω-sentence. Then there isi < ω such
thatσ = γi j(x) for all j < ω. (Of course, the free variablex does not actually occur in
γi j(x).) Then, ifσ �∈ D, it must be thatD ∪ {σ} is inconsistent. Similarly, if¬σ �∈ D,
it must be thatD ∪ {¬σ} is inconsistent. Therefore, asD is consistent, eitherσ ∈ D
or ¬σ ∈ D.

In a similar way, we show thatD is a Henkin theory; that is, if∃xϕ(x) ∈ D, then
for somek, ϕ(ck) ∈ D. Assume∃xϕ(x) ∈ D and thati < ω is such thatϕ(x) = γi j(x)

for all j < ω. It is clear thati ∈ In for all sufficiently largen. Then letk = fm(i),
wherem is sufficiently large. This shows thatD is the complete diagram for some
modelM of T . The diagram ofM is

⋃{Cn : n < ω}, soM is recursive. The argument
showing thatM is recursively saturated is just like the one showing thatD is a Henkin
theory. Consider some recursive set�(x) of L n-formulas. There isi < ω such that
�(x) = {γi j(x) : j < ω}. If �(x) is consistent withD, theni ∈ In for all sufficiently
largen. Then, for sufficiently largem, �(c fm(i)) ⊆ D, so�(x) is realized inM. This
completes the proof of Theorem 10. �

Corollary 14 There is a nonstandard (even recursively saturated) model M of PA
whose divisibility poset (M, |) and divisibility lattice (M,∧,∨) are recursive.

Proof: Let (M,∧,∨) be a recursive, recursively saturated model ofDL. Since it is
countable,(M,∧,∨) is resplendent, so it can be expanded to a recursively saturated
modelM of PA. �
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élémentaire de la multiplication des entiers naturels,” pp. 90–110 inModel Theory and
Arithmetic, vol. 890, Lecture Notes in Mathematics, edited by C. Berline, K. McAloon,
and J.-P. Ressayre, Springer-Verlag, Berlin, 1981.Zbl 0496.03018 MR 83h:03049 1

[5] Ershov, J., “Skolem functions and constructive models,”Algebra and Logic, vol. 12
(1973), pp. 368–73.Zbl 0294.02017 1

[6] Higman, G., “Ordering by divisibility in abstract algebra,”Proceedings of the London
Mathematical Society, vol. 2 (1952), pp. 326–36.MR 14,238e 1

[7] Jensen, D., and A. Ehrenfeucht, “Some problems in elementary arithmetic,”Funda-
menta Mathematicae, vol. 92 (1976), pp. 223–45.MR 54:7244 1, 1

[8] Kaye, R.,Models of Peano Arithmetic, Oxford Logic Guides, Oxford University Press,
Oxford, 1991.Zbl 0744.03037 MR 92k:03034 1

[9] Knight, J. F., “Nonarithmeticalℵ0-categorical theories with recursive models,”The
Journal of Symbolic Logic, vol. 59 (1994), pp. 106–12.Zbl 0804.03021 MR 95a:03045
1

[10] Kruskal, J. B., “Well-quasi-ordering, the tree theorem, and Vázsonyi’s conjecture,”
Transactions of the American Mathematical Society, vol. 95 (1960), pp. 210–25.
Zbl 0158.27002 MR 22:2566 1

[11] Lerman, M., and J. H. Schmerl, “Theories with recursive models,”The Journal of Sym-
bolic Logic, vol. 44 (1979), pp. 59–76.Zbl 0423.03038 MR 81g:03036 1

[12] Nadel, M. E., “The completeness of Peano multiplication,”Israel Journal of Mathemat-
ics, vol. 39 (1981), pp. 225–33.Zbl 0472.03023 MR 83f:03059 1

[13] Peretyat’kin, M. G., “Every recursively enumerable extension of a theory of linear order
has a constructible model,”Algebra and Logic, vol. 12 (1973), pp. 120–24.MR 54:7243
1
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