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Recursive Models and
the Divisibility Poset

JAMES H. SCHMERL

Abstract In contrast to Tennenbaum’s theorem asserting that there are no
nonstandard models of Peano Arithmetic in which either addition or multipli-
cation is recursive, the result here is that there is a nonstandard model of Peano
Arithmetic having a recursive divisibility poset and a recursive divisibility lat-
tice.

According to the well-known theorem of Tennenballd][ there are no recursive
nonstandard models of Peano Arithmetic. Usual proofs of this theorem yield the
following refinement. IfM = (M, +, x, 0, 1, <) is a nonstandard model &A,
then neither its additive semigroyM, +) nor its multiplicative semigroupM, x)
is a recursive structure. This suggests considering other reducts of modéis of
such as the divisibility posetM, |), where we understankly to mean thai is a
divisor of y. It will be proved here (see Corollafi) that, in contrast to Tennen-
baum’s theorem, there do exist nonstandard magietsf PA whose divisibility poset
(M, |) is recursive. There even exist nonstandard mo@€isf PA whose divisibility
lattice(M, A, V) is recursive, where we understaxd y andx v yto be, respectively,
the greatest common divisor and the least common multipkeaofdy. These exam-
ples give a positive answer to the second part of Problem 9 in Jensen-Ehrerfgucht [
All theories considered here are for finite languages with no function symbols.
If a theory does not appear to be of this sort, make the appropriate modification so
that it is. Several first-order theories will be considered here, but we will mainly be
concerned with theorPP = Th(w, |), where(w, |) is the divisibility poset of the
standard modeN = (w, +, %, 0, 1, <), and the theonyDL = Th(w, A, V), where
(w, A, V) isthe divisibility lattice of the standard model. Cegiel§Hj [[2] has shown
thatDP is finitely axiomatizable, and, therefof@L also is.
Let T be an arbitrary theory. Then is rich if, for somen < o, there is a re-
cursive sequencey; (X) : i < w) of n-ary formulas such that for any disjoint, finite
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subsetd, J C w, the sentence

I[N\ i A\ =i (0]

iel jed

is a consequence af. If, in addition, all the formulag); (X) are existential formulas,
thenT is existentially rich.

The properties of being rich and existentially rich are important in the study of
reducts ofPA. (See Kayel[f].) The two prototypical examples of existentially rich
theories are Presburger Arithmetic and Skolem Arithmetic. Recall that Presburger
Arithmetic is the theornPr = Th(w, +) and that Skolem Arithmetic is the theory
Sk =Th(w, x). Tosee thaPr is existentially rich, consider the sequence of 1-ary for-
mulas, theth one in the sequence beigg(p;y = x), wherep; is theith prime. Sim-
ilarly for Sk, let theith formula bedy(yP = x). The existential richness of these the-
ories provides an approach to proving Tennenbaum’s Theorem. Had Tennenbaum’s
proof been published, the following theorem would probably have been implicitin it.
As itis, this theorem seems to be a result from the folklore.

Theorem1 If T isexistentially rich, then T does not have any recursive, recur-
sively saturated models.

Proof: Let M be a recursive, recursively saturated model odnd lety; (X) be the
ith formula witnessing the existential richnesslofLet A and B be recursively in-
separable r.e. sets. By recursive saturation, thera, &rim M such that for all < w,
MEg@ifie AMEgb)ifieB, andM = ¢ (8) < —g¢i(b). By the re-
cursiveness oM, the setsX = {i < w: M = ¢i(@)} andY = {i < v : M = ¢;(b)}
are recursively enumerable. But th&randY, being complements of each other, are
recursive. This contradicts the recursive inseparabilibha@ind B. O

The properties oPr andSk needed to deduce Tennenbaum’s Theorem from Theo-
rem[Llare contained in the following lemma. This lemma is a consequence, not just
of the quantifier-elimination foPr and Sk, but also of the facts that, in each case,
the quantifier-elimination is provable PA. This property ofPr follows easily from

the original proof of Presburgdif]. For Sk it was proved by Nade[lZ] (also see
Cegielski[B] and Chatzidakid4]) who recognized that Skolem&§] original proof

of quantifier elimination forSk did not yield that every multiplicative reduct is a
model ofSk.

Lemma2 Let M be a nonstandard model of PA. Then its additive semigroup
(M, +) is a recursively saturated model of Pr and its multiplicative semigroup
(M, x) isarecursively saturated model of Sk.

Corollary 3 (Tennenbaum’s Theorem) If M is a nonstandard model of PA, then
neither (M, +) nor (M, x) isa recursive structure.

We can get both th®P andDL analogs of Lemmialas a corollary of just th8k part
of that lemma.

Corollary 4 If M isa nonstandard model of PA, then its divisibility poset (M, |)
isarecursively saturated model of DP and its divisibility lattice (M, A, V) isare-
cursively saturated model of DL .
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Proof: It suffices to observe thatA, andv are all definable ifM, x). O
The following was noted in Lemma 4.1 df]]
Proposition 5 Both of the theories DP and DL arerich.

Proof: Weintroduce some formal definitions (one for each positive inteyex is
thenth power of a prime if and only if the set of predecessors, @ficluding x itself,
is linearly ordered by and has exactly + 1 elements. Letg;i(X) ;i < w) be the
sequence of 1-ary formulas in whigh(x) asserts: there ig such thaty|x andy is
the (i + 1)th power of a prime, but there is rowhich is the(i 4+ 2)th power of a
prime and for whichy|z|x. This shows thaDP is rich. The theorie®P andDL are
interdefinable, s®L is also rich. O

The richness of reducts &A has consequences about countable, recursively satu-
rated models oPA. For example, the richness BP andDL implies the following:

if M =(M,+, x,0,1,<)andN = (N, +, x, 0, 1, <) are elementarily equivalent,
countable, recursively saturated model$af and (M, |) = (N, |) or (M, A, V) =

(N, A, V), thenM = 9.

The formulas appearing in the proof of Proposifidare not existential; in fact,
they seem to b&s. Thus, if M is a nonstandard model &A such that(M, |) is
recursive, then eack € SSY M) is As. In particular, there is no nonstandard model
M of True Arithmetic for which(M, |) is recursive.

Do the theoriedDP andDL have the stronger property of being existentially
rich? This question is answered in Proposifidand, from another point of view,
in Corollary[l4]

LetK be a class of finiteL-structures. We say thé&t is hereditary if whenever
M e K andN is embeddable itM, thenN € K. If K is hereditary, then itbarrier
bar (K) isthe class (of isomorphism types) afstructuresM such thatM ¢ K but
every proper substructure ™ is in K. Then we say thaK is V-finite if whenever
L is a hereditary subclass Kf, thenbar (L) isfinite. There is an alternate approach
to definingVv-finiteness using well-quasi-ordered theory. The hereditary ass
v-finite if and only if, wheneveMg, M1, My, ... is a sequence of structureskn
then there arg¢ < i < » such thatM; is embeddable iM;. If, for eachn < w, the
class of structureéM, a), whereM € K anda is ann-tuple fromM, is V-finite, then
K is strongly V-finite. For any L-theory T, let Sub(T) be the collection of all finite
substructures of models af Then, Ershovif] definesT to beV-finite or strongly
V-finite just in caseub(T) is V-finite or stronglyv-finite.

Ershov proved that everyr.e., stronghfinite theory has a recursive model. The
principal application of this is to the theory of trees, which is stroivgfinite as a con-
sequence of Kruskal's theorefi]. Thus, every r.e. theory of trees has a recursive
model. Ershov’s theorem improved an earlier result of Peretya{kihthat every
r.e. extension of the theory of linear order has a recursive model. For related results
and improvements, see Lerman and Schriigil Schmerl[[5], and KnightB]. The
following proposition shows that Ershov’s theorem cannot be applied to either of the
theoriesDP or DL.

Proposition 6 Neither of the theories DP and DL is V-finite.
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Proof: Notice that every finite poset is embeddable in the standard divisibility poset
(w, ]). Let (P, <) be the poset wherg, = {ag, a3, . . ., 812, bo, b1, ..., bny2} @and

x < yifand only if for somé < n+ 3, x =g andy € {b;, bj, 1} (whereb,, 3is under-
stood to beyg). The poser, is known as arfn + 3)-crown. Let K be the hereditary
class of all finite posets not embedding any one of(the- 3)-crowns. Clearly, if

j <1< w,thenP;is not embeddable if. Thus,bar (K) isnot finite, soK and also

DP are notv-finite. Since| is definable in a divisibility lattice by a quantifier-free
formula, we also get thddL is notV-finite. O

PropositiofiZimplies that every strongly-finite theoryT fails to be existentially rich;
actually, the conclusion says thifails to have a property which is even weaker than
its being existentially rich. Applying Propositiédto the theory of trees yields that
this theory has no completions which are existentially rich. However, this theory does
have decidable completions which are rich. Of course, Propo&iisf no use in
showing thaDP or DL fails to be existentially rich.

We say that the theor¥ is existentially order-rich if, for somen < w, thereis a
recursive sequende;(X) : i < w) of existentialn-ary formulas such that each of the
sentences

3% [gi (%) A\~ (%]
j<i
is a consequence df. Clearly, every existentially rich theory is existentially order-
rich. There are theories which are existentially order-rich but not existentially rich:
the theory of the countable graph whose components are preciselyciiites (one
for eachn > 3) is a complete and decidable example.

Proposition 7 If T isstrongly V-finite, then T is not existentially order-rich.

Proof: Wewill prove the contrapositive, so assume tias existentially order-rich,
and letg; (x) be theith existential formula in the sequence witnessing tha exis-
tentially order-rich. For eadhlet (B;, a;) be such thaB; is a model ofT, B; = ¢ (&)
andforallj <i, B = —¢j(a). Let M; be a finite substructure &; such thag; is in
M; andM; = ¢i(a;). Notice that forj < i, Mj = —¢j(&) sincegj(x) is existential.
LetK be the smallest hereditary class containing édh a;). It easily follows from
the finiteness olbar (K) that there arg < i < w such thai(Mj, a;) is embeddable in
(Mi, ). Butthen(M;, &) = —¢j(a) since(Mj, aj) is a model of that sentence.
This is a contradiction. Thug, is not stronglyv-finite. O

We next define a certain type of poset. FogIn < w, let[n]ben=1{0,1,2,...,
n— 1}, considered as a linearly ordered set with the usual ordetiog it. We will
consider product posef8, <) = ([ng] x [n1] x --- x [Nng], <). Werefer to any poset
which is isomorphic to such éB, <) as abox. A subsetE C Bis alineif for some
j <dthereisae Bsuchthatt = {xe B: if j #i <d, thenx; = a}. Anabstract
characterization of lines can be given(B, <) isabox ancE C B, thenEis aline if
and only ifE is a maximal linearly ordered subset®bf the form{x e B:a < x < b}.
An embedding of one box into another which preserves linebig-&mbedding. An
important point to observe is that if we view boxes as distributive lattices, then box-
embeddings are also lattice embeddings.

Every model oDP has lots of subboxes. M = DP andA C M is finite, then
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there is a boxB such thatA € B € M. There is more that can be said.Nf = DL
andA C M is finite, then there is a sublatti@&< M such thatA C BandB is a box.

Let B, be the set of structuré®, <, a), where(B, <) isabox andiis ann-tuple
from B. The following is a result from well-quasi-ordered theory.

Lemma8 Letn < w. If By, By, By, ... isa sequence from B,, thenthereare j <
I < w and a box-embedding of B; into B;.

Proof: The lemma can be rephrased in termsvgb. Recall that a structureX, <)

is aquasi order if < is a transitive, reflexive (but not necessarily anti-symmetric) bi-
nary relation onA. A quasi order(A, <) is awell-quasi-order (wqo) if whenever
ag, ai, a, ... iIsasequence from, there argl < i < w suchthag; < g.. The lemma
asserts that for eaah the setB, is a wgqo under box-embeddability.

If AandB are wqos, then their produét x Bis a wgo. More subtle is the fun-
damental theorem of Higmafg]} If A is a quasi order, then the sAt of finite
sequences frond\ can be considered as a quasi order with the following definition.
Leta, b € A< where the length o& is m and the length ob is n. Thena < b if
and only if there is an injectiori : m — nsuch that for each< m, a; < b¢,. Then
Higman's theorem asserts: A is a wqo, then so ig\<“.

An easy application of Higman’s theorem yields that’ is wqo. Each sequence
in »=® can be identified with a box, and this shows ti#gtis wqo. Next we want
to show thatB, is wqo. Consider am-augmented boxB, ag, a, ..., an_1) in B,.
With each paii, j < n associate the subbd; = {x € B: a; < X < &}, and with
eachi < nassociatd; = {x€ B: x < g} andU; = {x € B: x> a;}. Then associate
with (B, ag, a1, . .., an_1) the (n+ 1)%-tuple (B, (§j:1,J<n), ((Ti,Ujp) :i<n))
2735”“)2. Since’]ﬂc()”’“l)2 iswqo, it easily follows that, alsois. This proves the lemma.

O

The following proposition answers our earlier question by showingfraandDL
are not existentially rich. An apparently stronger result will be given in Thefi@m

Proposition 9  Thetheories DP and DL are not existentially order-rich.

Proof: It suffices to prove thaDL is not existentially order-rich, sindeis defin-
able from (either one of\ andv by a quantifier-free formula. Suppose tiidt is
existentially order-rich, and leg; (x) be theith existential formula in the sequence
witnessing thabDL is existentially order-rich. For eadhlet (M;, &) be such thalv;

is a model ofDL, M; = ¢i(&), and for allj < i, Mj = —¢j(&). EachM; has a fi-
nite sublatticeB; such thatB; is a box,a; is a tuple fromB;, andB; = ¢j(a;). Notice
that if j <i < w, thenBj = —¢;(a). By Lemmdg] there arej < i < o such that
(Bj, aj) is box-embeddable i0B;, a), and thus, as lattice$Bj, a;) is embeddable
in (Bj, &). Sinceyp;(X) is existential and; = ¢;(a;), it follows thatB; = ¢j (&),
which is a contradiction. O

As noted previously, Ershov’s theorem does not help in showindRa&ndDL have
recursive models, although their standard models are recursive. The proof of the fol-
lowing theorem owes much to Ershov’s proof.
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Theorem 10  Each of the theories DP and DL has a recursive, recursively satu-
rated model.

Proof: It suffices to show thaDL has a recursive, recursively saturated model, so
we will just consider that case. Létbe the language &JL. Letcy, c1, Cy, ... be new,
distinct constant symbols, and thenlgt= L U{cg, 1, ... Cn_1} foreachn < w and
L, = LU{cy, Cy, C, ...}. Wewill construct a completioD of DL in the language
L,, which will be the elementary diagram of a recursively saturated modBLof
Even thoughD may turn out not to be recursive, the set of atomic sentendesitl
be recursive.

Fix a recursive sequeneg, o1, oo, ... of the sentences DL. If n < w andX is
a et of formulas, we say thal is n-consistent if no contradiction can be derived from
¥ in nor fewer steps. We can easily construct a doubly-indexed recursive sequence
(vij(¥) 11, ] < w) of L-ary L,-formulas such that

1. eachy;j(x) is anL;j-formula;
2. if n < w andT'(x) is a nonempty recursive set df,-formulas, then there is
somei < w such thaf"(x) = {y;;(X) : ] < w}.
Ford < w, asetC is an Ly-diagram if the following hold.

1. The seCC consists of£4-sentences each one of which is either an atomic sen-
tence or the negation of an atomic sentence.

2. If o is an atomicLy-sentence, thea € Ciff —a & C.
3. Fori, j < d,the sentence; =cjisinCiff i = |.
For eachLy-diagramC, there is a uniquel-structure on the s€¢0, 1,2, ...,d — 1}

whose diagram i€, and we denote this structure b(C).
Wewill say that the 5-tupld® = (n, d, I, f, C) is apromiseif the following hold.

l.lcn<d<wandf:I|—d.

2. Cis anLg4-diagram andM (C) is a box.

3. CUT is consistent.

4. {00, 01,02, ...,0n-1} UCU {yij(Ct(jy) - i €  and] < n} is n-consistent.

5. Ifr < nandr ¢ I, then{og, 01,02, ..., 0n-1} UCU {pj(Csiy) i el i<r

andj < njU {yj(X) : ] < n} is notn-consistent.

Notice that there is an effective procedure for determining, being givdnl, f, C,
whether or notn, d, I, f,C) is a promise. A promise is really just an encoded de-
scription of a set ofZ,-sentences. IP = (n, d, I, f, C) is a promise, then let

X(P) ={00,01,02,...,0n_1} UCU{yij(Ct)) i e l andj < n}

be the set of sentences it encodes. The definition of a promise requiréx tabe
n-consistent.

We will say that the promisé® = (n,d, I, f, C) is ann-promise of rangel.
For anyn, d, there are only finitely mangp-promises of range. It is obvious that
(0,0, @, @, @) is a O-promise .

Now suppose that < m < w. If P, = (n, e, Iy, fy, Cy) is ann-promise and
Pn=(m,d, Iy, fm, Cyn) is anm-promise, therPy, is anextension of B, if C,, C Cy,.
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Consequently, if?, has rangee and its extensiorPy, has ranged, thene < d. Ev-
ery n-promise has an extension which isafpromise. This is a consequence of the
following claim.

Claim 11  For each n-promise P, = (n, e, Iy, fh, Cyn), thereisan (n+ 1)-promise
Pui1=(n+1,d, lny1, fri1, Crp1) Whichisan extension of P,.

To see this claim, consider somegromiseP, = (n, g, I, f,,, C,). Wewill construct
an(n+ 1)-promisePy; 1 = (n+1,d, In1, frar1, Cor1) Which is an extensio®,.

We will constructl,; and foy1 @ In 1 — o recursively; that is, givemn < n
and knowingln. 1 Ni and fr 1(j) for j € 1.1 Ni, wewill determine whether or not
i € lny1 and, ifi € Inyq, the value off,,1(i). At the same time, we will construct a
sequence <dy<d; <d; <--- <dp < wand asequencBg, Dy, Do, ..., D, of
diagrams, where eadd is anLg -diagramofaboxan@, E Do € D1 S Dy C--- C
D,. First we consider = 0. There are two alternatives: either there existse and
an Ly-diagramD such that the following hold:

1. D> C,andM(D) is a box;
2. DUT is consistent;
3. {00,01,02,...,0n} U DU {yj(X) : ] <n}isnot(n+ 1)-consistent;

or there are no suctt and D. If there are such d and D, then they can be found
effectively, and we letly = d and Dy = D, and then decree thatd® I,,1. And if
there are no suctiand D, then we decree that® I, 1, and we effectively gedly >
e, frr1(0) < dg and anLy,-diagramDg such thatDg © C,, Do U T is consistent,
M(Do) is a box, andoo, 01, 02, ..., on} U Do U {y0j(Ct,,,0) : ] = N}is (n+1)-
consistent.

For 0< i < n, proceed in a very similar way. Again, there are two alternatives:
either there are > d;_; and anL4-diagramD such that the following hold:

1. D2 Dj_; andM(D) is a box;
2. DUT is consistent;

3. {00,01,02, ..., 00} UDU{pj(Ct,, (1) T € Iny1, I <iandj < njU{yj(x):
j < n}is not(n+ 1)-consistent;

or there are no sucth and D. If there are such d and D, then they can be found
effectively, and we let = d and D; = D, and decree thdt¢ I, 1. And if there
are no suchd and D, then we decree thate 1,1, and we effectively ged; > d;_1,
fnr1(i) < di and anLg -diagrambD; such thaD; © D;_1, D U T is consistentM (D;)
is abox, andoyg, 01, 02, ..., on} U DU {p4j(Ct,. ;1)) i T € InpaN (i +1) andj < n}
is (n+ 1)-consistent.

We have constructet},; and f,, ;. LetC,,1 = D, andd = dy. The construc-
tion guarantees th&®,,, = (n+1,d, Ih11, frr1, Chy1) isan(n+ 1)-promise which
extendsC,. This proves Clairi ]

If Ph,=(n,e Iy, fn, Cy) is ann-promise andPy = (M, d, Iy, fm, Cr) is anm-
promise extendindp,, then we say thaPy, is ak-extension of P, if k= maxr <n:
Innr=InNnrandfy|(laNr) = ful(InNr)}. The following claim is easily proved.

n+1
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Claim 12 Given n and e, we can effectively find d such that whenever P isan n-
promise of range e which has a k-extension which isan (n + 1)-promise, then it has
one with range at most d.

Putting Claim§L1land12together, we can obtain a recursive sequeRcd;, P, ...
such that the following hold for each< w.

1. P, is ann-promise.
2. There ik < nsuch thatP,; is ak-extension ofP,, and for nok’ > k is there
an(n+ 1)-promise which is &’-extension ofP,.

Having obtained this sequence of promiseskdeks, ko, . .. be the sequence defined
as follows:k, is the leask < w such that for somen > n, Py, is ak-extension ofP,.
Clearly, kg < k; < ko < ---. The crux of the proof is the following claim.

Claim 13  The sequence ko, k1, ka, . .. is unbounded.

To prove the claim, assume it is false so that theremare < » such that = m
if and only ifi > s. Then there is a subsequerigg ki,, ki,, ... such thats = iy <
i1 < iz < ---and that whenevefy < r < o, thenP is anm-extension oﬂDkij. Let
{jos J1s+-» Jne1} = lsn'm, wherejg < j1 < -+ < ja_1 < M, andlet & be then-
tuple (Ct,(jy)» Cto(jq)s - - - » Ct(jna))- FOreachj < wlet Mj = M(Chj) and leta; =
fi, (m). By Lemmd8] there arej < r < w such that(Mj, 4, aj) is box-embeddable
(and thus, also embeddable as latticeg\h, &, a). Identifying (Mj, &, a;) with its
image under this embedding, we see that therekis-am such that(M;, &, &) is a
k-extension of(Mj, &, a;). This contradiction proves Clailig]

Now let D be the set of£,-sentences such that for all sufficiently large,
o € X(Py). Clearly,D 2 T andD is consistent.

We show thatD is complete. Let be ant,,-sentence. Then thereiisc w such
thato = y;j(x) forall j < w. (Of course, the free variabledoes not actually occur in
¥ij(X).) Then, ifo ¢ D, it must be thaD U {o} is inconsistent. Similarly, if-o ¢ D,
it must be thatD U {—o} is inconsistent. Therefore, &is consistent, either € D
or—-o € D.

In a similar way, we show thdD is a Henkin theory; that is, #x¢(x) € D, then
for somek, p(cy) € D. Assumedxp(x) € D and that < wis such thap(x) = yij(X)
forall j < w. Itisclear that € I, for all sufficiently largen. Then letk = fy(i),
wherem is sufficiently large. This shows th& is the complete diagram for some
modelM of T. The diagram oM is | J{C, : h < w}, SOM is recursive. The argument
showing thaiM is recursively saturated is just like the one showing that a Henkin
theory. Consider some recursive §&k) of L,-formulas. There i$ < w such that
I'(X) = {yij(¥) : ] < o}. If I'(x) is consistent wittD, theni e I, for all sufficiently
largen. Then, for sufficiently largen, I'(Cy,,iy) € D, soI'(x) is realized inM. This
completes the proof of Theorem 10. O

Corollary 14 Thereisa nonstandard (even recursively saturated) model A of PA
whose divisibility poset (M, |) and divisibility lattice (M, A, V) are recursive.

Proof: Let (M, A, V) be arecursive, recursively saturated modddbf Since it is
countable(M, A, V) is resplendent, so it can be expanded to a recursively saturated
model M of PA. O
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