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A Model of R̂2
3 inside

a Subexponential Time Resource

EUGENIO CHINCHILLA

Abstract Using nonstandard methods we construct a model of an induction
scheme called̂R2

3 inside a “resource” of the form{M(a) : M is a Turing ma-
chine of code≤ r, andM(a) is calculated in less than 2||a||r steps}, where|x|
means the length of the binary expansion ofx anda, r are nonstandard param-
eters in a model ofS1

3. As aconsequence we obtain a model theoretic proof of
a witnessing theorem for this theory by functions computable in time 2|n|O(1)

, a
result first obtained by Buss, Krajı́ček, and Takeuti using proof theory.

1 Introduction In [2], Buss defined bounded arithmetic theoryS2 and fragments
S i

2. In an extended arithmetical language he defined a hierarchy of formulas�b
i

corresponding to�p
i , that is, predicates in theith level of the polynomial time hi-

erarchy. For example,�b
1 formulas define NP predicates. TheoryS i

2 is axioma-
tized by a finite set of open axioms for the symbols of the language plus a spe-
cial schema oflength-induction for �b

i formulas. ThusS1
2 ⊂ S2

2 ⊂ . . . and S2 =⋃
S i

2. It is stated that the�b
i+1-recursive functionsS i+1

2 can define are exactly
those computable in polynomial time by a Turing machine using an oracle from
the class�p

i . It is then not a surprise if many important problems in complexity
theory are closely related with the study of this hierarchy of theories. The main
open question in bounded arithmetic is about the finite axiomatizability ofS2 (or
of theory I�0, S2 being a conservative extension ofI�0 + �1 introduced in [11]
by Wilkie and Paris). This is the same as whether or not the inclusionsS i

2 ⊂ S i+1
2

are strict, as eachS i
2 is finitely axiomatizable (see [2]). Krajı́ček, Pudĺak, and

Takeuti showed in [8] that if S2 is finitely axiomatizable then the polynomial hier-
archy PH collapses. Buss [3] and, independently, Zambella [12], strengthened this
by showing thatS2 is finitely axiomatizable if and only if it proves the collapse of
PH. Most of this work has been done by using proof theoretical methods. Good
introductory references for these topics are Buss [2], Hájek and Pudĺak [6], and
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Krajı́ček [7]. We present here a model theoretic construction for bounded arithmetic
theory R̂2

3, from which we derive a witnessing theorem for this theory by functions

computable in time 2|n|O(1)

, aresult first obtained by Buss, Krajı́ček, and Takeuti [5].

2 Basic notions and results Weuse Buss’s notations (see [2]), working in the ex-
tended arithmetical languageL3 = {0,1,+, · ,<, �x/2�, |x|,#2,#3}, where|x| is the
length of the binary expansion ofx, x#2y means 2|x|.|y| andx#3y stands for 2|x|#2|y|.
Most of Buss’s results in [2] were stated for theories in languageL2 without the #3
symbol (readsmash 3). But, as he pointed out, they readily generalize to languages
Li including a function symbol #i with the same rate of growing as functionωi−1 of
[11] (x#i y = 2|x|#i−1|y|), provided we substitute polynomial time by the correspond-
ing Si-time (also called #i-time in some texts). In particular, to languageL3 corre-

sponds 2|n|O(1)

-time, toL4 is 22||n||O(1)

-time, and so on. Quantifiers of the formQx ≤ t,
wheret is a term, are called bounded quantifiers. Those of the formQx ≤ |t| are
called sharply bounded quantifiers. Formulas with only sharply bounded quantifiers
are called sharply bounded formulas. This class is noted�b

0, �b
0, or �b

0. For i ≥ 0,
�b

i+1 is the smallest class of formulas containing�b
i , �b

i , and negations of�b
i+1, and

closed by∧, ∨, sharply bounded quantifiers, and∃x ≤ t. Classes�b
i are defined anal-

ogously. A formula is said to bestrict �b
1 if it has the form∃y ≤ t[�b

0]. More gener-
ally, a formula isstrict �b

i if it has the form∃y ≤ t[strict �b
i−1]. We denote bŷ�b

i the
class ofstrict �b

i formulas. The clasŝ�b
i is defined analogously. IfT is any theory

andi ≥ 1, we say that� is �b
i (T ) if T 	 (� ≡ �1) ∧ (� ≡ �2) for some�1 ∈ �b

i
and�2 ∈ �b

i . By α(x)-IND up to y we denote the formula

[α(0) ∧ ∀x < y(α(x) =⇒ α(x + 1))] =⇒ α(y)

and if� is a class of formulas andm ∈ IN, �-L(m)IND denote the schemaα(x)-IND
up to |y|m for α in �, where|y|m = |(|y|m−1)| and|y|0 = y. In this article we are con-
cerned withm = 1,2 so wewrite LIND, LLIND and ||y|| for L(1)IND, L (2)IND and
|y|2. BASIC3 is a finite set of open axioms for the symbols ofL3 andS i

3 is the the-
ory BASIC3 + �b

i -LIND (originally it is defined by another induction schema called
PIND, but these two axiomatizations are equivalent; see Buss and Ignjatović [4]). R i

3

is the theory BASIC3 + �b
i -LLIND. By Ŝ i

3, R̂ i
3 we denote the corresponding theories

for strict formulas. We shall suppose that included in our language are some other
useful primitives. These are known to be definable fromL3 with a little amount of
induction, and its inclusion does not increase the strength of theories containingS1

3,
for example. In particular we suppose inL3 the Cantor pairing function〈x, y〉 and its
projections〈z〉1, 〈z〉2, aswell as a binary functiony = (c)x for y is the xth element in
the sequence coded by c. In general, we will be able to code sequences of logarithmic
length. By�b

i -replacement we denote the schema

∀x ≤ |a|∃y ≤ b�(x, y) =⇒ ∃c∀x ≤ |a|�(x, (c)x)

for � ∈ �b
i . In fact c can be bounded by a term ofL3, so the conclusion is also�b

i
and, moreover, implies trivially the premise. Hence, this schema allows us topush
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inside sharply bounded quantifiers in�b
i formulas. This, together with the possibility

to merge two consecutive quantifiers of the same type into a single one using coding,
permits us to put�b

i formulas in the strict form. AŝS i
3 	 �b

i -replacement, we have
that Ŝ i

3 ≡ S i
3. On the other hand, we have thatR i

3 	 �b
i -replacement (see Allen [1]),

but it is not known if this holds for̂R i
3. Nevertheless, we can derive in̂R i

3 the�̂b
i−1-

LIND axioms, thus proving that̂R i
3 	 S i−1

3 . Wenote byS3 the class of total functions

computable in time 2|n|O(1)

. For an integera we putS3(a) := { f (a) : f ∈ S3} and we
say that anL3-structureK is S3-closed ifS3(a) ⊂ K for everya ∈ K. LetC(e, T, x, y)

meany is calculated from x in time T by {e}, the Turing machine coded by e. Later
we will see that this is definable inS1

3. The aim of this article is to prove the following
theorem.

Theorem 2.1 Let M be a countable nonstandard model of S1
3. Let a, r ∈ M\IN and

suppose that M |= ∃y(y = 22||a||r
). Let R = {y : M |= ∃e ≤ r C(e,2||a||r , a, y)}. There

is an L3-substructure K∗ of M such that

1. a ∈ K∗;
2. K∗ is S3-closed, and so K∗ <�b

0
M;

3. K∗ ⊂ R;
4. K∗ |= R̂2

3 .

As a consequence we get two known corollaries. Their proofs are classic; we give it
for the sake of completeness.

Corollary 2.2 Let ϕ(x, y) be a �b
1-formula and suppose that

R̂2
3 	 ∀x ∃y ϕ(x, y) .

Then for some f ∈ S3, S1
3 	 ∀x ϕ(x, f (x)).

Corollary 2.3 The theory R̂2
3 is ∀�b

1-conservative over S1
3.

Proof of Corollary 2.2: As explained above we can supposeϕ ∈ �̂b
1. Then, using

coding to merge two consecutive existential quantifiers into a single one, we can as-
sume thatϕ is �b

0. Let a be a new constant symbol and letT be the theory

S1
3 ∪ {∀y(C(e,2||a||k , a, y) =⇒ ¬ϕ(a, y)) : e, k ∈ IN}.

We claim thatT is inconsistent. Suppose the contrary and letT ′ = T ∪ {∀y(C(e,
2||a||k , a, y) =⇒ y < d) : e, k ∈ IN}, whered is another new constant symbol. Clearly
T ′ is also consistent. LetM be a countable model for it. Asd is a bound forS3(a),
M must be nonstandard. We have for everyr0 ∈ IN

M |= ∀k ≤ r0∀e ≤ k∀y(C(e,2||a||k , a, y) =⇒ ¬ϕ(a, y)).

In particular,

M |= ∀k ≤ r0∀e ≤ k∀y ≤ d(C(e,2||a||k , a, y) =⇒ ¬ϕ(a, y)).

As we will see later, this last formula is equivalent to a�b
1 one inS1

3, andS1
3 	 �b

1-
LIND. So by overspill it must be valid for somer0 ∈ M\IN. If a is interpreted by some
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standard integer thenS3(a) = IN and thus, asM |= T , wewould have for everyy ∈ IN
M |= ¬ϕ(a, y). By elementarity this formula holds in IN, hence IN|= ∀y¬ϕ(a, y).
As IN is obviously a model of̂R2

3, this contradicts the hypothesis of the theorem. So

let us supposea ∈ M\IN and let r ≤ r0 such thatM |= ∃y < d (y = 22||a||r
) (see

Lemma3.13). Then we have

M |= ∀e ≤ r∀y ≤ d(C(e,2||a||r , a, y) =⇒ ¬ϕ(a, y)).

By definition of R we havey < 22||a||r
< d for everyy ∈ R, and so the last equation

reads
M |= ∀y ∈ R ¬ϕ(a, y).

By Theorem2.1there is anL3-structureK∗ ⊂ M such that

1. a ∈ K∗;
2. K∗ is S3-closed;
3. K∗ ⊂ R;
4. K∗ |= R̂2

3 .

By (1), (2), and (3) we haveK∗ |= ∀y¬ϕ(a, y), andby (4) K∗ |= ∀x ∃y ϕ(x, y). Thus
we get a contradiction and the claim is proved. AsT is inconsistent, by compactness
there is somen, e0, . . . , en, k0, . . . , kn ∈ IN such that

S1
3 	

n∨

i=0

∃y(C(ei,2||a||ki
, a, y) ∧ ϕ(a, y)).

By the theorem on constants

S1
3 	 ∀x

n∨

i=1

∃y(C(ei,2||x||ki
, x, y) ∧ ϕ(x, y)).

Let f (x) be the result of the following search: fori = 0 to n we run{ei} on inputx
with clock 2||x||ki looking for an outputy satisfyingϕ(x, y). Clearly f ∈ S and by the
last equationS1

3 	 ∀xϕ(x, f (x)). Hence the corollary is proved. �
Corollary2.3follows immediately.

Remark 2.4 Buss, Kraj́ıček, and Takeuti [5] have shown a result stronger than this
corollary: the theoryR2

3 is ∀�b
2-conservative overS1

3.

Remark 2.5 The proof of Buss’s main theorem in [2], and those of Buss, Krajı́ček,
and Takeuti in [5], uses proof theory methods. On the other side, Wilkie (in an un-
published manuscript) gave a proof of Buss’s theorem in a model theoretic way, from
which Pudĺak gave a version in [6]. Another model theoretic proof is given by Zam-
bella in [12].

Remark 2.6 Theorem2.1 can be generalized as follows: ifM |= S i
3, i > 1, we

can consider a larger resourceR by giving the Turing machines access to oracles in
the ith level of theS3-time hierarchy. Then we can contruct a�b

i−1-elementaryL3-
substructureK∗ of M which is a model ofR̂ i+1

3 . The corresponding witnessing and
conservation corollaries follow similarly as2.2and2.3.
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Remark 2.7 To drop thestrict in Theorem2.1it would suffice to carry out the con-
struction with formulas of the form∀x ≤ |u|∃y ≤ t∀z ≤ s ψ, ψ ∈ �b

0, instead of sim-
ply �̂b

2 formulas. The theory obtained in this way would prove�b
2-replacement. But

the inclusion of an extra quantifier, even a sharply bounded one, poses some prob-
lems. A solution for these could throw some light on how to treat the�b

3 case without
the use of oracles. Note parenthetically that we cannot use oracles if we want subex-
ponential time witnessing theorems, and this makes it nontrivial to construct models
for �b

i induction axioms inside the corresponding resources.

Remark 2.8 Our proof is inspired by Wilkie’s, but in addition it shows the possi-
bility to use a nonstandard initial segment of Turing machine programs at the same
time as an initial segment of computing times. We hope that this possibility will help
to pass from�b

2 to �b
i formulas in the construction and the result of this article. In

such a case, by extending the corollary one could obtain a proof of some recent re-
sults of Pollett [10], namely, that theorŷTi,i

i+1 hasSi+1-time witnessing functions for

�b
1 formulas. HereT̂ i,i

i+1 is essentially the theory in the languageLi+1, including the

#i+1 function symbol, with�̂b
i -L(i)IND axioms, andSi+1-time is the subexponential

time corresponding toLi+1 (S2-time is polynomial time,S3-time is 2|n|O(1)

-time, etc.).

Remark 2.9 These results yield a hierarchy of theoriesT̂ i,i
i+1 such that if T̂ i,i

i+1
proves that a setX is NTIME(Si+1) ∩ co-NTIME(Si+1), then actually
X ∈ DTIME(Si+1). Thus they are possible analogs of the P=NP ∩ co-NP problem,
hence their interest: in view of the difficulty of P=NP ∩ co-NP it is important to
have analogous problems which we can settle. In addition, a further study of the
proof and model theory of̂Ti,i

i+1 may yield lower bounds about the function which

to a proof inT̂ i,i
i+1 that X is NTIME(Si+1) ∩ co-NTIME(Si+1) associates an algorithm

in DTIME(Si+1) decidingX. Such lower bounds would shed precious light on NP
∩ co-NP. The reinforcement of model theory introduced here for the study ofT̂ i,i

i+1
should not be superfluous for such ambitious aims.

3 Proof of Theorem 2.1 In Section3.1we briefly explain how the proof goes. Sec-
tion3.2presents some tools needed to work with Turing machines. Next we introduce
the notions of sparse sequences and resources in3.3, and finally we present construc-
tion of modelK∗ in Section3.4.

3.1 Sketch of the proof Fix an enumeration of axiomsθ-IND up to ||d|| with pa-
rameters inM andθ running over�̂b

2 formulas. We constructK∗ as the union of an in-
creasing chain(Kn)n<ω. Let K0 = S3(a) = { f (a) : f ∈ S3} and letθ1-IND up to l1 be
the first axiom in the enumeration having its parameters inK0. We wantK1 ⊃L3 K0,
K1 S3-closed and satisfying

¬θ1(0) ∨ ∃ j < l1[θ1( j) ∧ ¬θ1( j + 1)] ∨ θ1(l1)

whereθ1( j) ≡ ∃y ≤ t∀z ≤ s ψ( j, y, z). We can supposer < ||a|| andr = 2|r|−1. Let
(Tj) j≤l1+2 be a decreasing sequence such that 2||a||r � T0 � T1 � · · · � Tl1+2 � 1

(whereA � B meansA > B.2||a||O(1)

) and such that theTj’s are easy to calculate from
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a andr (for example,Tj = 2||a||r−( j+1)||a||r/2
). For j = 0, . . . , l1 + 2 let R j(x) = { y :

C(e, Tj, x, y) f or some e ≤ r}. K1 will be generated by an elementa1 obtained by
running on inputa the next programP (which depends on a code for|r|).

1. Computer = 2|r|−1.
2. Compute the parameters ofθ1-IND up to l1 andT0 from the inputa.
3. Put j := 0 , y−1 := 0.
4. ComputeTj+1.
5. Look for y j ∈ R j(〈 j, a, y j−1〉), y j ≤ t, such that for everyz ∈ R j+1(〈 j +

1, a, y j〉) such thatz ≤ s, M |= ψ( j, y j, z).
6. If there is no suchy j, stop the machine with outputa1 = 〈 j, a, y j−1〉.
7. If y j is found andj < l1, then put j := j + 1 and go to 4.
8. If yl1 is found, stop the machine with outputa1 = 〈l1 + 1, a, yl1〉.

Let a1 = 〈J1 + 1, a, yJ1〉 and suppose, for example, 0≤ J1 < l1. Then we have

1. for everyz ∈ RJ1+1(a1) such thatz ≤ s, M |= ψ(J1, yJ1, z);
2. for everyy ∈ RJ1+1(a1) such thaty ≤ t, there is somez ∈ RJ1+2(〈J1 +2, a, y〉)

such thatz ≤ s andM |= ¬ψ(J1 + 1, y, z).

So, in order to haveK1 |= θ1(J1) ∧ ¬θ1(J1 + 1), we chooseK1 contained in
RJ1+1(a1) and allowing computations in timeTJ1+2 :

K1 = { {e}(a1) < 22||a||O(1)

calculated in time < O(1).r2.TJ1+2, e < |r|O(1)} .

It is easy to see thatK0 ⊂L3 K1 and K1 is S3-closed. To prove thatK1 ⊂ R we
use the fact thatP can be coded by somep < |r|O(1) and calculatesa1 in less than
r2.T0 steps. Consider nowθ2-IND up to l2, the next axiom in the enumeration hav-
ing its parameters inK1. We wantK2 ⊃L3 K1 satisfying this axiom while preserv-
ing θ1(J1) ∧ ¬θ1(J1 + 1). The new axiom will be satisfied by letting the construc-
tion of K2 imitate that ofK1, replacinga, θ1, l1 by a1, θ2, l2, and the sequenceTi by
another sequenceT ′

i . As explained above,θ1(J1) ∧ ¬θ1(J1 + 1) will be preserved
if K2 ⊂ RJ1+1(a1) and K2 allows computations in timeTJ1+2. In other words, the
maximal computation timesT ′

i are chosen betweenTJ1+1 and TJ1+2 (for example,
T ′

j = TJ1+1/2( j+1)||a||r/4
if Tj = 2||a||r−( j+1)||a||r/2

). In this wayTJ1+1 � T ′
0 � T ′

1 �
· · · � T ′

l2+2 � TJ1+2. Let P′ be a program similar toP, running on inputa1, with
θ2-IND up to l2 andT ′

i in place ofθ1-IND up to l1 andTi. Let a2 = 〈J2 + 1, a1, yJ2〉
be its output andK2 = { {e}(a2) < 22||a||O(1)

calculated in time< O(1).r2.T ′
J2+2, e <

|r|O(1)}. Then we prove as above thatK1 ⊂L3 K2, K2 is S3-closed,K2 ⊂ R and
K2 |= θ1-IND up to l1 ∧ θ2-IND up to l2. In this way we getK3, K4, . . . and putting
K∗ = ⋃

n<ω Kn we have the desired model. �

3.2 Definability of Turing machine computations We call S3 the set of total func-
tions computable in time 2|n|O(1)

in the standard structure IN. For a predicateX we say
that X ∈ S3 if its characteristic function belongs toS3. Note that (the intended inter-
pretation in IN of) function symbols ofL3 are inS3. In particular�b

0 predicates are

decidable in time 2|n|O(1)

, therefore,S3-closed substructures are�b
0-elementary. This

will be used thoroughly.�b
i predicates correspond exactly to predicates in theith
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level of the 2|n|O(1)

-time hierarchy. We present here some known facts saying roughly
that in any model ofS1

3 these functions are definable and have the expected proper-
ties, and this will also hold for some nonstandard functions whenM �= IN. Proofs
are omitted since they are tedious and contain no new ideas. For a reference see [2]
and [6]. In order to formalize computations we consider deterministick-tapes Turing
machines, for a fixedk ∈ IN, and a natural coding of its programs and computations.
If e is an index for a Turing machine, that is, a code for its program, we note by{e}
both the machine itself and the function it computes. Bye ∈ S3 we mean{e} ∈ S3

ande ∈ IN.

Lemma 3.1 For every standard Turing machine M there is a �b
1(S1

3) formula
CompM(c, x) expressing that c is the code of a computation of M on input x.

In S1
3 we can code sequences of logarithmic length and there are termstk(x) standing

for 22||x||k
. In consequence we get

Lemma 3.2 Every predicate in S3 is �b
1 definable in S1

3.

Lemma 3.3 For every standard Turing machine M

S1
3 	 ∀v∀x∃!c(CompM(c, x) ∧ lh(c) = |v|)

where lh(c) is the length of the computation coded by c.

If M |= S1
3 andlog(M) := {|y| : y ∈ M}, this lemma will allow us to define compu-

tations in timeT providedT ∈ log(M). In particular, as 2||a||k ∈ log(M) for every
k ∈ IN, wehave

Lemma 3.4 Every function in S3 is provably �b
1 (total) in S1

3.

Remark 3.5 By Buss’s theorem (the version forS1
3) every function provably�b

1 in
S1

3 is in S3 (see [2]). As a consequence every�b
1(S1

3) predicate is decidable in time

2|n|O(1)

.

Now using Lemma3.4we can define a restricted version of a universal Turing ma-
chine which will nevertheless be able to simulate all functions inS3.

Lemma 3.6 There is a �b
1(S1

3) formula U(e, v, x, y) expressing that e is the code
of a (probably nonstandard) Turing machine and {e} calculates y from x in less than
|v| steps.

Lemma 3.7 There is a �b
1(S1

3) formula exp(x, y, z) expressing that xy = z.

Weshall assume some properties of this definition. In particularS1
3 	 y = tk(x) ⇐⇒

y = 22||a||k
, for everyk ∈ IN. Moreover, we assume that for every termt(x̄) in L3,

if ϕ(x̄, y) is the�b
1 definition of the corresponding function inS3, then S1

3 	 y =
t(x̄) ⇐⇒ ϕ(x̄, y).

Definition 3.8 C(e, T, x, y) is the∃�b
1 formula∃v(|v| = T ∧ U(e, v, x, y)). It

means that the Turing machine{e} running on inputx stops with outputy beforeT
steps.
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Lemma 3.9 There is k0 ∈ IN such that

1. S1
3 	 ∀e, e′ ∃e′′ < (e.e′)k0 ∀x ({e}(〈e′, x〉) = {e′′}(x));

2. S1
3 	 ∀e, e′ ∃e′′ < (e.e′)k0 ∀T, T ′, x, y, z, d

(T, T ′, T + T ′ < |d| ∧ C(e, T, x, y) ∧ C(e′, T ′, y, z) =⇒ C(e′′, T + T ′, x, z)).

Remark 3.10 Condition 1 will help us to estimate the code of a Turing machine.
For example, suppose thatX is a multiplicative closed cut in a model ofS1

3 andM a
Turing machine. IfM can be viewed as a standard program with some extra inputs
p1, . . . , pn ∈ X, n ∈ IN, then by (1)M can be coded by somep ∈ X.

Remark 3.11 By condition 2, ife, e′ ∈ X are Turing machine codes, then the com-
posite function{e} ◦ {e′}, if defined, has a codee′′ ∈ X.

3.3 Sparse sequences, resources, and basic structures

Notation 3.12 Let M be a nonstandard model ofS1
3 and F a function from IN to

M. Weput

1. A > F(O(1)) iff A > F(n) for everyn ∈ IN;
2. F(O(1)) > B iff F(n) > B for somen ∈ IN.

Even in a nonstandard model we keepO(1) running over standard constants.

Lemma 3.13 Let M be a nonstandard model of S1
3 and let a, d ∈ M\IN such that

S3(a) is bounded by d. There is some r ∈ M\IN such that following properties hold
in M:

1. ∃y < d (y = 22||a||r
).

2. r is a power of 2, and so r = 2|r|−1.
3. r < ||a||.

Moreover, r can be chosen smaller than any given r0 ∈ M\IN.

Proof: Weknow that for everyk ∈ IN, tk(a) ∈ S3(a) andtk(a) = 22||a||k
in M. Thus

we have for everyr1 ∈ IN, M |= ∀k ≤ |r1|(∃y < d y = 22||a||k
). This formula is�b

1
in M and so by overspill it is true for somer1 ∈ M\IN. Now let r2 ∈ M\IN such that
r2 < |r1| andr2 < ||a||, and putr = 2|r2|−1. Then we haver ∈ M\IN, r is a power of
2, as|r2| = |r|, and finallyr ≤ r2 < ||a||. �

Remark 3.14 In fact we have provedM |= ∀x ≤ r ∃y < d (y = 22||a||x
).

Remark 3.15 By (1) of Lemma3.13we have [0,2||a||r ] ⊂ log(M) and then, by
Lemma3.3, computations in timeT ≤ 2||a||r are definable inM.

Remark 3.16 We wantr to be computable from some Turing machine of code<

|r|O(1). That is why we impose condition 2 (see (3) of Lemma3.22).

Remark 3.17 We want also 2||a||r ∈ S3(〈a, r〉). For thisr < ||a||O(1) would suf-
fice, we putr < ||a|| for simplicity. In this way 2||a||r is calculated from〈a, r〉 by the
function〈x, y〉 �−→ 2||x||min(y,||x||)

which is clearly inS3.
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Definition 3.18 Let M be a model ofS1
3, A, B, l, α ∈ M, (Tj) j≤l asequence inM

andF a function from IN toM. SupposeA > B.

1. The sequence(Tj) j≤l is between A andB if (Tj) j≤l is decreasing and
A > (Tj) j≤l > B.

2. The sequence(Tj) j≤l betweenA andB is generated by α if for somee ∈ S3

(a) T0 = {e}(〈α, A〉);
(b) Tj+1 = {e}(〈α, Tj〉), j < l.

3. The sequence(Tj) j≤l betweenA andB is F(O(1))-sparse if

(a) A > F(O(1)).T0;

(b) Tj > F(O(1)).Tj+1, j < l;

(c) Tl > F(O(1)).B.

Lemma 3.19 Let M, a, r be as in Lemma 3.13. Let A, B, α ∈ M and suppose that
2||a||r ≥ A > B, a ∈ S3(α), (Tj) j≤l is a sequence between A and B generated by α,

and l < 2||a||O(1)

. Then for some e ∈ S3 we have Tj = {e}(〈 j, α, A〉), j ≤ l.

Proof: Let e′ ∈ S3 such thatT0 = {e′}(〈α, A〉) andTj+1 = {e′}(〈α, Tj〉), j < l. Let

k ∈ IN such thatl < 2||a||k and consider the standard Turing machine which on input
〈 j, α, A〉 calculatesa from α, then 2||a||k (k is coded in its program); next it compares
j and 2||a||k and if j < 2||a||k it computes{e′}( j+1)

(〈α, A〉). It runs in time 2|n|O(1)

as
e′ ∈ S3 and we iterate this function at most 2||a||k times (note that 2||a||k < 2||α||O(1)

as
a ∈ S3(α)). Finally, we have that it calculatesTj when j ≤ l. This can be proved by
induction onl asl ∈ log(M) and the condition considered is�b

1. �

Lemma 3.20 Let M, a, r be as in Lemma 3.13. Let A, B, l ∈ M and suppose that
2||a||r ≥ A > 2||a||O(1)

.B and l < ||a||O(1). There is a 2||a||O(1)

-sparse sequence (Tj) j≤l

between A and B generated by 〈a, ρ〉 for some ρ ∈ M\IN. Moreover, ρ can be chosen
smaller than any given nonstandard integer in M.

Proof: Wehave for everyk ∈ IN, M |= ∃y ≤ a(y = 2||a||k ∧ A > y.B). By overspill
this formula is true for someρ ∈ M\IN, and we can choose it as small as we want.
Takeρ < ||a|| and consider the function

f (x, y, z) = msp(x, ||y||min(�z/2�,||y||))

wheremsp(u, v) stands for�u/2v� whenv ≤ |u| (msp is for most significant part;
see [2]). Then clearly f ∈ S3 and so isg defined byg(u, x) = f (x, 〈u〉1, 〈u〉2). Put

T0 = g(〈a, ρ〉, A) and Tj+1 = g(〈a, ρ〉, Tj), for j < l.

Then we haveT0 = �A/2||a||�ρ/2�� and for j < l, Tj+1 = �Tj/2||a||�ρ/2��. It is then clear

than(Tj) j≤l is 2||a||O(1)

-sparse, betweenA andB and generated by〈a, ρ〉. �

Definition 3.21 Let M be a model ofS1
3 and leta, r, T, c ∈ M.

1. We useR(r ,T , c) to denote the subset{y ∈ M : ∃e ≤ r C(e, T, c, y)}. We call
these definable setsresources.
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2. The basicL3-structures we will consider are of the form

{y ∈ M : ∃k ∈ IN ∃e < |r|k (y < 22||a||k ∧ C(e, k.T, c, y))}

Wewrite K (a, r ,T , c) as an abbreviation for the expression above.

Lemma 3.22 Let M, a, r be as in Lemma 3.13. Let c, T ∈ M satisfy 2||a||r >

O(1).T and let K = K(a, r, T, c). Then K has the following closure property.

1. If y ∈ K and T ′ < O(1).T, then K(a, r, T ′, y) ⊂ K.

Moreover, if T > 2||a||O(1)

then

2. K is S3-closed;
3. [0, |r|O(1)[ ∪ {r} ⊂ K.

Proof: (1) Let T ′ < O(1).T , k ∈ K, e < |r|k, such thatC(e, k.T, c, y). If z ∈
K(a, r, T ′, y) then for somek′ ∈ IN, z < 22||a||k′

andC(e′, k′.T ′, y, z) for somee′ <

|r|k′
. We have thatk.T + k′.T ′ < O(1).T < 2||a||r , hence by (2) of Lemma3.9there

is somek′′ ∈ IN, k′′ sufficiently large and somee′′ < |r|k′′
such thatC(e′′, k′′.T, c, z),

that is,z ∈ K. (2) If T > 2||a||O(1)

andz ∈ S3(y) for somey ∈ K, then sincey < 22||a||O(1)

we have thatz < 22||a||O(1)

andC(e, T ′, y, z) for somee ∈ IN andT ′ < 2||a||O(1)

< T .
Hencez ∈ K andK is S3-closed. (3) Ifp ≤ |r|O(1) there is somee ≤ |r|O(1) such that
∀x({e}(x) = p) andC(e, |p|, x, p) ({e} is just a Turing machine that writesp regard-
less of the input; its program can be coded by somee < |p|O(1)). As |p| < 2||a||O(1)

<

T we have thatp ∈ K. In particular|r| ∈ K. Now, r can be calculated from|r| easily
by a standard Turing machine inS3 becauser = 2|r|−1. Hence, by (2),r ∈ K. �

Remark 3.23 Wewill consider only structuresK(a, r, T, c) with T > 2||a||O(1)

. By
Lemma3.9(2) we are guaranteed these structures will naturally beL3-substructures
of M and moreover, they will be�b

0-elementary. In particular theBASIC3 axioms
will hold.

Remark 3.24 In connection with Lemma3.20, condition 3 will be useful to gen-
erate 2||a||O(1)

-sparse sequences, anysmall nonstandard integer being available inK.

Lemma 3.25 Let M, a, r be as in Lemma 3.13. Let c, c′, T2, T, Tc′ ∈ M and let
K = K(a, r, T2, c), K ′ = K(a, r, T ′, c′). Suppose that

1. c ∈ K ′;
2. 2||a||r > O(1).T ′;
3. T ′ ≥ T2.

Then K ⊂ K ′.

Proof: Let z ∈ K. Thenz < 22||a||O(1)

andC(e, k.T2, c, z) for somek ∈ IN ande <

|r|k. But k.T2 < O(1).T ′ < 2||a||r andc ∈ K ′, hence, by Lemma3.22, z ∈ K ′. �

Lemma 3.26 Let M, a, r be as in Lemma 3.13. Let c, c′, T1, T ′, Tc′ ∈ M and let
K ′ = K(a, r, T ′, c′). Suppose that
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1. C(p, Tc′ , c, c′) for some p < |r|O(1);

2. 2||a||r ≥ T1 > Tc′ + O(1).T ′.

Then K ′ ⊂ R(r, T1, c).

Proof: Let y ∈ K ′ and letk ∈ IN, e < |r|k such thatC(e, k.T ′, c′, y). We have
that C(p, Tc′ , c, c′) for somep < |r|O(1) and Tc′ + k.T ′ < T1 ≤ 2||a||r . By (2) of
Lemma3.9 there is somee′ < |r|O(1) < r such thatC(e′, T1, c, y) , hence y ∈
R(r, T1, c). �

3.4 Constructing a model of R̂2
3 Let M, a, r be as in Lemma3.13. Let R denote

the resourceR(r,2||a||r , a). Wecall it the main resource. The aim of this section is to
construct inside it a modelK∗ of R̂2

3 containinga. This model will be constructed as
the union of an increasing chain(Kn)n∈IN, eachKn satisfying a new instance of̂�b

2-
LLIND while preserving those satisfied previously. First we prove the key lemma
which will help us to pass fromKn to Kn+1.

Lemma 3.27 Let M, a, r be as in Lemma 3.13. Let c, T1, T2 ∈ M\IN and K =
K(a, r, T2, c). Let b0, . . . , bm ∈ K, l ∈ log(log(K)), ψ( j, y, z, b̄) a �b

0 formula with
parameters b̄ and let θ( j, b̄) be the formula ∃y ≤ t ∀z ≤ s ψ( j, y, z, b̄), where t =
t( j, b̄), s = s( j, y, b̄) are L3-terms (parameters b̄ will frequently be omitted). Suppose
that

(a) a ∈ K and c ∈ K(a, r, Tc, a) for some Tc such that 2||a||r > O(1).Tc;

(b) T1 ∈ K and 2||a||r ≥ T1 > T2 > 2||a||O(1)

;

(c) (Tj) j≤l+2 is a ||a||O(1)-sparse sequence between T1 and T2 generated by
〈a, ρ〉 for some ρ ∈ K.

Then there are integers p, q, c′, Y ∈ M , J ∈ M ∪ {−1}, and an L3-structure K ′ sat-
isfying

1. p < |r|O(1) and C(p, r2.T ′
0, c, c′);

2. c′ = 〈J + 1, c, Y〉, −1 ≤ J ≤ l and Y ≤ t(J);

3. If J �= −1 then ∀z ∈ R(r, T ′
J+1, c′), z ≤ s(J, Y ) =⇒ ψ(J, Y, z);

4. q < |r|O(1) and ∀y∃z ≤ s(J + 1, y) C(q, r2.T ′
J+2, 〈c′, y〉, z);

5. If J �= l then ∀y ∈ R(r, T ′
J+1, c′), y ≤ t(J + 1) ∧ z = {q}(〈c′, y〉) =⇒ z ≤

s(J + 1, y) ∧ ¬ψ(J + 1, y, z);

6. K ′ = K(a, r, r2.T ′
J+2, c′);

7. K ′ is S3-closed;

8. K ⊂ K ′ ⊂ R;

9. K ′ ⊂ R(r, T1, c);

10. If x ∈ K ′, K(a, r, r2.T2, x) ⊂ K ′;
11. K ′ |= BASIC3 + θ( j)-IND up to l.

Proof: First note thatr ∈ K by Lemma3.22 and integersa, b̄, l, T1, ρ are in K
by hypothesis. Hence we can obtain them all fromc in time O(1).T2 by means of
some (possibly) nonstandard Turing machine of code< |r|O(1), and these integers
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are bounded by 22
||a||O(1)

. The integerp will be the index of the Turing machineP
that is working as follows on inputc.

1. Computer, a, b̄, l, T1, ρ from c.

2. ComputeT ′
0 from a, ρ, T1.

3. Put j := 0 , y−1 := 0.

4. ComputeT ′
j+1 from a, ρ, T ′

j.

5. Look for y j ∈ R(r, T ′
j, 〈 j, c, y j−1〉) such that

y j ≤ t and∀z ∈ R(r, T ′
j+1, 〈 j + 1, c, y j〉), z ≤ s =⇒ ψ( j, y j, z).

(Searching inR(r, T, x) is done by simulating no more thanT steps in the computa-
tion of {e}(x), if e is the code of a Turing machine and this for all values ofe from 0
to r. Verification of a condition for everyz ∈ R(r, T, x) is done in a similar way.)

6. If there is no suchy j, stop the machine with outputP(c) = 〈 j, c, y j−1〉.
7. If y j is found andj < l, then put j := j + 1 and go to 4.

8. If yl is found, stop the machine with outputP(c) = 〈l + 1, c, yl〉.
Let 〈J + 1, c, Y〉 be the output, that is,Y = yJ , and let us name it c′. Then (2)
and (3) follow easily from the definition ofP, once the existence of the computa-
tion is established. As explained above, to execute the first line the machine needs a
standard number of programs of code< |r|O(1) (namely, 6+ m programs, as̄b =
b0, . . . , bm). By (c) a unique standard function inS3 suffices to obtainT ′

0 from
a, ρ, T1 and T ′

j+1 from a, ρ, T ′
j. Having r, T ′

j, j, c, y j−1 we generate the elements
of R(r, T ′

j, 〈 j, c, y j−1〉) by means of a standard program. Computation of the val-

ues of termst, s and evaluation of�b
0 formulas is also done by standard programs

in S3. Thus P can be viewed as a standard Turing machine running onc with a
standard number of extra inputs bounded by|r|O(1). By (1) of Lemma3.9 we con-
clude thatP can be coded by somep < |r|O(1). For the running time we have that
r, a, b0, . . . , bm, l, T1, ρ, are calculated in timeO(1).r2.T2 from c. As T1, ρ ∈ K

we haveT1, ρ < 22||a||O(1)

and thenT ′
j < T1 < 22||a||O(1)

for every j ≤ l + 2. By (c),
T ′

0 ∈ S3(〈a, ρ, T1〉) and T ′
j+1 ∈ S3(〈a, ρ, T ′

j〉) for j ≤ l + 1, henceT ′
j is obtained

in time 2||a||O(1)

for every j. It is known that simulatingT ′
j steps of the computa-

tion of {e} can be done in timeO(1).|e|.T ′
j by an universal program (see Papadim-

itriou [9], for example). Ase ≤ r we can bound it by|r|2.T ′
j. We calculate the val-

ues of termst( j, b̄), s( j, y, b̄) in time 2||a||O(1)

, as they correspond to functions inS3

and its arguments are all bounded by 22||a||O(1)

. Deciding if y j ≤ t is done in time

O(1).|t|, thus less than 2||a||O(1)

sincet < 22||a||O(1)

. The same is valid forz ≤ s. Eval-
uation ofψ( j, y j, z, b̄) wheny j ≤ t andz ≤ s takes time 2||a||O(1)

becauseψ is�b
0 and

j, t, s, b0, . . . , bm < 22||a||O(1)

. Thus, we have thatc′ is calculated in timeT less than

O(1).T2 + 2||a||O(1) +
l∑

j=0

[2||a||O(1) + r(|r|2.T ′
j + 2||a||O(1) + r(|r|2.T ′

j+1 + 2||a||O(1)

))] .
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Remembering thatT ′
j > T2 > 2||a||O(1)

we get that

T <

l∑

j=0

r[|r|2.T ′
j + r(|r|2 + 1)T ′

j+1].

But r(|r|2 + 1).T ′
j+1 < T ′

j sincer < ||a|| and(T ′
j ) j≤l+2 is ||a||O(1)-sparse, thus

T < r(|r|2 + 1).

l∑

j=0

T ′
j < r(|r|2 + 1)(T ′

0 + l.T ′
1) .

Now, l.T ′
1 < T ′

0 becausel < ||a||O(1) and(T ′
j ) j≤l+2 is ||a||O(1)-sparse. So we con-

clude thatc′ is calculated in time

T < 2r(|r|2 + 1).T ′
0 < r2.T ′

0.

Finally note thatr2.T ′
0 ∈ log(M) sincer2.T ′

0 < T1 ≤ 2||a||r and 2||a||r ∈ log(M)

by Lemma3.13. Therefore we have∃w(|w| = r2.T ′
0 ∧ U(p,w, c, c′)), that is,

C(p, r2.T ′
0, c, c′) and (1) is proved.

The required integerq will be the index of the Turing machineQ working as
follows on input〈c′, y〉.

1. ComputeJ + 2, c from c′.
2. Computer, a, b0, . . . , bm, T1, ρ from c.
3. Computet = t(J + 1, b̄) from J + 2, b0, . . . , bm.
4. ComputeT ′

J+2 from J + 2, a, ρ, T1.

5. If y ≤ t, computes = s(J + 1, y, b̄) and look forz ∈ R(r, T ′
J+2, 〈J + 2, c, y〉)

such thatz ≤ s ∧ ¬ψ(J + 1, y, z). Else, stop the machine with output 0.
6. If such az is found, stop the machine with outputz. Else, stop it with output 0.

As c′ = 〈J + 1, c, Y〉 we can obtainJ + 2 and c from c′ by means of two stan-
dard functions inS3. Integersr, a, b0, . . . , bm, T1, l can be calculated fromc using
a standard number of functions of code< |r|O(1) since they belong toK as we ex-
plained above. The values of termst, s are calculated by standard functions inS3. By
Lemma3.19and hypothesis (c),T ′

J+2 is obtained fromJ + 2, a, ρ, T1 by means of a
standard function inS3. The computations of line 5 require only a standard program,
analogously for line 5 of programP. In the same way as we did forP, we conclude
that Q can be coded by someq < |r|O(1).

For its running time first note thatc < 22||a||O(1)

sincec ∈ K(a, r, Tc, a) by hy-

pothesis (a). We have alsot, l < 22||a||O(1)

, hence Y < t < 22||a||O(1)

and J + 1 ≤
l + 1 < 22||a||O(1)

. Thus we get thatc′ = 〈J + 1, c, Y〉 < 22||a||O(1)

. As J + 2, c ∈
S3(c′), computations on line 1 are done in time 2||a||O(1)

. Integers in line 2 are in
K, hence they are calculated in timeO(1).T2 from c. The value oft is calcu-
lated in time 2||a||O(1)

as for programP. We obtainT ′
J+2 in time 2||a||O(1)

asT ′
J+2 ∈

S3(〈J + 2, a, ρ, T1〉) and J + 2, a, ρ, T1 < 22||a||O(1)

. Deciding if y ≤ t takes time
2||a||O(1)

and when this inequality holds the value ofs is calculated in time 2||a||O(1)

sincey ≤ t < 22||a||O(1)

and the other arguments ofs are also bounded by 22||a||O(1)

.



320 EUGENIO CHINCHILLA

Searching forz in R(r, T ′
J+2, 〈J + 2, c, y〉) verifying the condition in line 5 is done in

time less thanr(|r|2.T ′
J+2 + 2||a||O(1)

). Thus,Q(〈c′, y〉) is calculated in time less than

2||a||O(1) + O(1).T2 + r(|r|2.T ′
J+2 +2||a||O(1)

). SinceT ′
J+2 > T2 > 2||a||O(1)

, wecan con-
clude thatQ(〈c′, y〉) is calculated in time less thanr2.T ′

J+2. Thus if z = Q(〈c′, y〉)
thenC(q, r2.T ′

J+2, 〈c′, y〉, z) and it is clear thatz ≤ s(J + 1, y) in all cases. This
shows (4).

To see (5) supposeJ < l. As c′ = 〈J + 1, c, Y〉 andY = yJ , J < l means that
the programP did not find theyJ+1 it looked for. In other words this says that∀y ∈
R(r, T ′

J+1, 〈J + 1, c, Y〉) such thaty ≤ t(J + 1), there is somez ∈ R(r, T ′
J+2, 〈J +

2, c, Y〉) satisfyingz ≤ s(J + 1, y) ∧ ¬ψ(J + 1, y, z). Then, the programQ will
eventually find thisz and so (5) holds.

Now let K ′ = K(a, r, r2.T ′
J+2, c′). We haveO(1).r2.T ′

J+2 > r2.T2 > 2||a||O(1)

,
so (7) and (10) follow from Lemma3.22. By (2), c ∈ S3(c′), and by (7)S3(c′) ⊂ K ′,
soc′ ∈ K ′. Also 2||a||r > O(1).T1 > O(1).r2.T ′

J+2 since(Tj) j≤l+2 is ||a||O(1)-sparse
andr < ||a||, and clearlyr2.T ′

J+2 > T2 because(Tj) j≤l+2 is betweenT1 andT2. We
can then apply Lemma3.25to conclude thatK ⊂ K ′.

Now we use Lemma3.26to prove (9) andK ′ ⊂ R. We haveC(p, r2.T ′
0, c, c′)

and p < |r|O(1) by (1), and 2||a||r ≥ T1 > O(1).r2.T ′
0 > r2.T ′

0 + O(1).r2.T ′
J+2, thus

by Lemma3.26 K ′ ⊂ R(r, T1, c) and (9) is proved. By (a) there is somek ∈ IN and
e < |r|k such thatC(e, k.Tc, a, c). By (1),C(p, r2.T ′

0, c, c′) andp < |r|O(1). Then by
(2) of Lemma3.9 there is somee′ < |r|O(1) such thatC(e′, k.Tc + r2.T ′

0, a, c′). We
have 2||a||r > k.Tc + T1 since 2||a||r > O(1).Tc and 2||a||r > O(1).T1 by hypothesis. As
indicated aboveT1 > r2.T ′

0 + O(1).r2.T ′
J+2, thus we get that 2||a||r > k.Tc + r2.T ′

0 +
O(1).r2.T ′

J+2 which implies by Lemma3.26thatK ′ ⊂ R(r,2||a||r , a), that is,K ′ ⊂ R
and (8) is proved. By (7)K ′ ≺�b

0
M and soK ′ |= BASIC3. Now we use the previous

points to get two easy consequences implying (11). Remember that−1 ≤ J ≤ l.

Fact 3.28 If 0 ≤ J ≤ l then K ′ |= θ(J).

Proof: First note that J, Y ∈ S3(c′) ⊂ K ′ by (2) and (7), and alsoK ′ ⊂
R(r, T ′

J+1, c′), since K ′ = K(a, r, r2.T ′
J+2, c′) and T ′

J+1 > r2.T ′
J+2. Let z ∈ K ′,

z ≤ s(J, Y ). Thenz ∈ R(r, T ′
j+1, c′) and by (3)M |= ψ(J, Y, z). We just noted that

K ′ ≺�b
0

M, soK ′ |= ψ(J, Y, z) and thusK ′ |= ∃y ≤ t(J)∀z ≤ s(J, y)ψ(J, y, z), that
is, K ′ |= θ(J). �

Fact 3.29 If −1 ≤ J ≤ l − 1 then K ′ |= ¬θ(J + 1).

Proof: Let y ∈ K ′, y ≤ t(J + 1) and let z = {q}(〈c′, y〉)). We have y ∈
R(r, T ′

J+1, c′), so by (5) M |= z ≤ s(J + 1, y) ∧ ¬ψ(J + 1, y, z). By Lemma3.22
and (4),z ∈ K ′, so by elementarity,K ′ |= z ≤ s(J + 1, y)∧¬ψ(J + 1, y, z). We have
provedK ′ |= ∀y ≤ t(J +1)∃z ≤ s(J +1, y)¬ψ(J +1, y, z), that is,K ′ |= ¬θ(J +1).

�
From Facts3.28and3.29we obtainK ′ |= ¬θ(0) ∨ ∃ j < l[θ( j) ∧ ¬θ( j + 1)] ∨ θ(l),
that is,K ′ |= θ( j)-IND up to l . �
Now we are ready to construct the chain(Kn)n∈IN. Starting from someK0 (for prac-
tical reasons chosen different from the one used in the sketch of the proof), we induc-
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tively defineKn for n ≥ 1, using the procedure of extension exhibited in Lemma3.27.
This is the content of the next lemma. First we define some useful notations for the
rest of the section.

Notation 3.30 WhenM, a, r as in Lemma3.13are fixed, we writeA � B for A >

2||a||O(1)

.B . If sequences(Ti
j ) j≤li , i = 0,1, . . . are defined, we noteRi

j (x ) the resource

R(r, Ti
j, x). By (b̄)i we denote a set of parametersbi

0, . . . , bi
mi

.

Lemma 3.31 Let M, a, r be as in Lemma 3.13. Let T0
1 , T0

2 ∈ M such that T0
1 ∈

S3(〈a, r〉) and 2||a||r ≥ T0
1 � T0

2 � 1. Let K0 = K(a, r, T0
2 , a), J0 = 0, a0 = a. Let

n ∈ IN, n ≥ 1 and suppose we have n L3-structures K0, . . . , Kn−1 , a �̂b
2 formula

θn( j) ≡ ∃y ≤ tn ∀z ≤ sn ψn( j, y, z), ψn( j, y, z) ∈ �b
0, with parameters (b̄)n ∈ Kn−1,

and some integer ln ∈ log(log(Kn−1)). If n = 1 we have just K0, θ1 and l1. If n > 1
suppose we have also for each 1 ≤ i < n:

(a) integers (b̄)i, ρi ∈ Ki−1, li ∈ log(log(Ki−1));
(b) a �̂b

2 formula θi( j) ≡ ∃y ≤ ti ∀z ≤ si ψi( j, y, z) with parameters(b̄)i,ψi( j, y, z)
∈ �b

0;
(c) integers pi, qi, ai, Yi ∈ M, Ji ∈ M ∪ {−1};
(d) a 2||a||O(1)

-sparse sequence (Ti
j ) j≤li+2 between Ti−1

Ji−1+1 and Ti−1
Ji−1+2 generated by

〈a, ρi〉;
satisfying (1) – (8) below.

1. pi < |r|O(1) and C(pi, r2.Ti
0, ai−1, ai).

2. ai = 〈Ji + 1, ai−1, Yi〉, −1 ≤ Ji ≤ li and Yi ≤ ti(Ji).
3. If Ji �= −1 then ∀z ∈ Ri

Ji+1(ai), z ≤ si(Ji, Yi) =⇒ ψi(Ji, Yi, z).

4. qi < |r|O(1) and ∀y∃z ≤ si(Ji + 1, y)C(qi, r2.Ti
Ji+2, 〈ai, y〉, z).

5. If Ji �= li then ∀y ∈ Ri
Ji+1(ai), y ≤ ti(Ji +1)∧ z = {qi}(〈ai, y〉) =⇒ z ≤ si(Ji +

1, y) ∧ ¬ψi(Ji + 1, y, z).
6. Ki = K(a, r, r2.Ti

Ji+2, ai).
7. Ki is S3-closed.
8. Ki−1 ⊂ Ki ⊂ R.

Then there is a 2||a||O(1)

-sparse sequence (Tn
j ) j≤ln+2 between Tn−1

Jn−1+1 and Tn−1
Jn−1+2 gen-

erated by 〈a, ρn〉 for some ρn ∈ Kn−1, integers pn, qn, an, Yn ∈ M, Jn ∈ M ∪ {−1},
and an L3-structure Kn such that (1) – (8) hold for i = n and

9. Kn ⊂ Ri
Ji+1(ai) , for i = 0, . . . , n;

10. If y ∈ Kn then {qi}(〈ai, y〉) ∈ Kn , for i = 1, . . . , n;
11. Kn |= BASIC3 + θi( j)-IND up to li, for i = 1, . . . , n.

Proof: Let n ≥ 1. By hypothesisTn−1
Jn−1+1 � Tn−1

Jn−1+2 and fromln ∈ log(log(Kn)) it

follows thatln < ||a||O(1). By recurrence onn we have that 2||a||r ≥ Tn−1
Jn−1+1. Thus

by Lemma3.20there is a 2||a||O(1)

-sparse sequence(Tn
j ) j≤ln+2 betweenTn−1

Jn−1+1 and

Tn−1
Jn−1+2 generated by〈a, ρn〉 for some smallρn. As Tn−1

Jn−1+2 � 1 is easily proved by
recurrence onn, we can use Lemma3.22to argue thatρn can be chosen inKn−1. We
want to apply Lemma3.27for K = Kn−1. So let us first check its hypotheses (a), (b),
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and (c). Ifn = 1 thenKn−1 = K0 = K(a, r, T0
2 , a) and thus hypothesis (a) is trivially

verified (c = a). We have 2||a||r ≥ T0
1 � T0

2 � 1 and hence by Lemma3.22 K0 is
S3-closed andr ∈ K0. ThusT0

1 ∈ S3(〈a, r〉) ⊂ K0 and so, condition (b) is verified
for T1 = T0

1 andT2 = T0
2 . As the sequence(T1

j ) j≤l1+2 is obviously||a||O(1)-sparse,

andρ1 ∈ K0, we have (c) forT ′
j = T1

j , l = l1 andρ = ρ1. If n > 1 we check the

hypotheses of Lemma3.27for c = an−1, T1 = Tn−1
Jn−1+1, T2 = r2.Tn−1

Jn−1+2, K = Kn−1,

b̄ = (b̄)n, l = ln, θ = θn andT ′
j = Tn

j for j ≤ ln + 2. First, we have(b̄)n ∈ Kn−1 and
ln ∈ log(log(Kn−1)) by hypothesis.

Now we verify (a), (b), and (c):

(a) Fromai = 〈Ji + 1, ai−1, Yi〉 it follows that ai−1 ∈ S3(ai), i = 1, . . . , n − 1.

It follows also, by recurrence oni, thatai, Ji, Yi < 22||a||O(1)

. In particular this
impliesai ∈ Ki for everyi < n. Composing functions inS3 we get thata = a0 ∈
S3(an−1), and by (7)S3(an−1) ⊂ Kn−1. Thereforea ∈ Kn−1 . Now, we have
thatan−1 = {pn−1}(an−2), . . . , a1 = {p1}(a0) andpi < |r|O(1), i = 1, . . . , n −
1. By (2) of Lemma3.9 there is somee < |r|O(1) such thatC(e, T, a0, an−1)

for T = ∑n−1
i=1 r2.Ti

0. But
∑n−1

i=1 r2.Ti
0 < (n − 1).r2.T1

0 � T0
1 � 2||a||r . Hence

2||a||r > O(1).T andan−1 ∈ K(a, r, T, a).

(b) We prove by recurrence onn that Tn−1
Jn−1+1 ∈ Kn−1. For n = 1 it was stated

above. SupposeTn−2
Jn−2+1 ∈ Kn−2. By (8) Tn−2

Jn−2+1 is in Kn−1 also, as well as

ρn−1, an−1 and, consequently,Jn−1 + 1. By Lemma3.19Tn−1
Jn−1+1 ∈ S3(〈Jn−1+

1, a, ρn−1, Tn−2
Jn−2+1〉), henceTn−1

Jn−1+1 ∈ Kn−1 asKn−1 is S3-closed. The rest fol-

lows from 2||a||r ≥ Tn−1
Jn−1+1 � Tn−1

Jn−1+2 � 1 which was remarked at the begin-
ning of the proof.

(c) The sequence(Tn
j ) j≤ln+2 is obviously||a||O(1)-sparse and is betweenTn−1

Jn−1+1

andr2.Tn−1
Jn−1+2 sincer < ||a||.

Applying now Lemma3.27we getpn, qn, an, Yn ∈ M, Jn ∈ M ∪ {−1} and an
L3-structureKn satisfying already(1) – (8). Let us see (9) – (11).

(9) Fori = n it is clear by definition (6) ofKn and the fact thatTn
Jn+1> O(1).r2.Tn

Jn+2.
Consider the casei < n. We have thatan can be calculated fromai by compos-
ing successively{pi+1}, . . . , {pn}, and the total computing time is bounded by
r2.(Ti+1

0 +· · ·+ Tn
0 ) < (n − i).r2.Ti+1

0 � Ti
Ji+1. By (2) of Lemma3.9we have

C(e, T, ai, an) for somee < |r|O(1) andT � Ti
Ji+1. SinceT + O(1).Tn

Jn+2 <

Ti
Ji+1 < 2||a||r , we can apply Lemma3.26to conclude thatKn ⊂ Ri

Ji+1(ai).

(10) Let 1≤ i ≤ n and y ∈ Kn. Clearly ai ∈ Kn and then so is〈ai, y〉 sinceKn

is S3-closed. If z = {qi}(〈ai, y〉) then by (4), z ≤ si(Ji + 1, y) and

C(qi, r2.Ti
Ji+2, 〈ai, y〉,z). If y ≤ ti(Ji + 1) thensi(Ji + 1, y) < 22||a||O(1)

, and
when y > ti(Ji + 1) then z = 0 by definition of {qi}. In all cases we have

z < 22||a||O(1)

. But r2.Ti
Ji+2 < O(1).r2.Tn

Jn+2, sinceTi
Ji+2 ≤ Tn

Jn+2 wheni ≤ n,
so we can apply Lemma3.22to conclude thatz ∈ Kn.

(11) This fact is a direct consequence of (3), (5), (8), (9), and (10). Surprisingly,
it will not be used later and this is because our extensions preserve only�b

0
formulas. We will rather imitate its proof for a bigger model of the form

⋃
Kn
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in the proof of Theorem2.1below. This is the reason we do not prove it here.
�

Proof of Theorem 2.1: Arguing as in the proof of Lemma3.13, there isr0 ∈ M\IN,

r0 ≤ r (and thus 22
||a||r0

exists also), such thatr0 = 2|r0|−1 and r0 < ||a||. As
R(a, r0,2||a||r0 ) ⊂ R, it suffices to prove the theorem forr0. So we can assume
r = 2|r|−1 andr < ||a|| without losing generality. LetT0

1 = 2||a||r and letT0
2 be such

that T0
1 � T0

2 � 1 (any 2||a||ρ with r > ρ > O(1), for example). As we remarked
after Lemma3.13, we have 2||a||r ∈ S3(〈a, r〉). Let K0 = K(a, r, T0

2 , a). Fix an enu-
meration with infinite repetitions of pairs(θ( j, b̄), ||d||) whereθ is a�̂b

2 formula and
b̄, d are parameters inM. Consider the first pair in the enumeration with parameters
in K0 and name it(θ1( j, (b̄)1), l1). Thenθ1( j) ≡ ∃y ≤ t1∀z ≤ s1ψ1( j, y, z), with ψ1

a�b
0 formula with parameters(b̄)1, and we are in the casen = 1 of the hypothesis of

Lemma3.31. This gives usK1. Suppose we have just obtainedKn from Kn−1 using
this lemma and let(θn+1( j, (b̄)n+1), ln+1) be the first pair in the enumeration after
(θn, ln) having its parameters inKn. Lemma3.31says thatKn satisfies also (1) – (8),
thus we are again verifying its hypothesis and therefore we obtainKn+1. In this way
we get an increasing chain ofL3-structures(Kn)n∈IN. At each step a neŵ�b

2-LLIND
axiom is satisfied while the preceding ones are preserved. But the chain is only�b

0-
elementary and hence preservation of these axioms under the union of the chain is not
guaranteed since they are�b

3-formulas. Rather, this preservation is a consequence of
the specific way the models are built. In other words, we have not yet proved that
K∗ := ⋃

n∈IN Kn is a model of�̂b
2-LLIND . Instead, (a), (b), and (c) are inmediately

verified and thusK∗ ≺�b
0

M. Let θ( j) be a�̂b
2 formula with parameters̄b ∈ K∗ and

let l ∈ log(log(K∗)). Suppose that(θ( j), l) was considered when constructingKn,
that is,θ( j) ≡ θn( j) is the formula∃y ≤ tn ∀z ≤ sn ψn( j, y, z), b̄ = (b̄)n, l = ln, with
(b̄)n ∈ Kn−1, ln ∈ log(log(Kn−1)). Note thatan ∈ K∗ and hence by (b)Jn andYn

are also inK∗. Note too thatK∗ ⊂ Rn
Jn+1(an) by (9) of Lemma3.31. Remember that

−1 ≤ Jn ≤ ln.

Fact 3.32 If 0 ≤ Jn ≤ ln then K∗ |= θn(Jn).

Proof: Let z ∈ K∗ such thatz ≤ sn(Jn, Yn). As we just remarked,z ∈ Rn
Jn+1(an)

so by (5) of Lemma3.31 M |= ψn(Jn, Yn, z), and by (2)Yn ≤ tn(Jn). By �b
0-

elementarityK∗ |= ψn(Jn, Yn, z). We have provedK∗ |= ∃y ≤ tn ∀z ≤ snψn(Jn, y, z),
that is,K∗ |= θn(Jn). �

Fact 3.33 If −1 ≤ Jn ≤ ln − 1 then K∗ |= ¬θn(Jn + 1).

Proof: Let y ∈ K∗ such thaty ≤ tn(Jn) and letm ≥ n such thaty ∈ Km. We
havean ∈ Kn ⊂ Km, so by (10) of Lemma3.31{qn}(〈an, y〉) ∈ Km. By (9) Km ⊆
Rn

Jn+1(an), hencey ∈ Rn
Jn+1(an) and by (5), if z = {qn}(〈an, y〉) then M |= z ≤

sn(Jn, y)∧¬ψn(Jn +1, y, z). Therefore we have thatz ∈ K∗ and by�b
0-elementarity

K∗ |= z ≤ sn(Jn, y) ∧ ¬ψn(Jn + 1, y, z). Thus K∗ |= ∀y ≤ tn∃z ≤ sn¬ψn(Jn +
1, y, z), that is,K∗ |= ¬θn(Jn + 1). �
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From Facts3.32and3.33, K∗ |= ¬θn(0)∨∃ j < ln[θn( j)∧¬θn( j + 1)] ∨ θn(ln), that
is, K∗ |= θn( j)-IND up to ln. Thus we have proved thatK∗ |= �̂b

2-LLIND. �
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