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A Model of RZ inside
a Subexponential Time Resource

EUGENIO CHINCHILLA

Abstract  Using nonstandard methods we construct a model of an induction
scheme called% inside a “resource” of the forfiM (a) : M is a Turing ma-
chine of code< r, andM(a) is calculated in less than'?" step$, where|x|
means the length of the binary expansiorxainda, r are nonstandard param-
eters in a model o8. As aconsequence we obtain a model theoretic proof of

awitnessing theorem for this theory by functions computable in tithe™2, a
result first obtained by Buss, Kiagk, and Takeuti using proof theory.

1 Introduction In [2], Buss defined bounded arithmetic the@yand fragments

Sg. In an extended arithmetical language he defined a hierarchy of forrrﬁ]!las
corresponding td:ip, that is, predicates in thieh level of the polynomial time hi-
erarchy. For exampleztl’ formulas define NP predicates. Thec@.y is axioma-
tized by a finite set of open axioms for the symbols of the language plus a spe-
cial schema ofength-induction for P formulas. ThusSl ¢ S C ... and S =

US,. Itis stated that thezP, ,-recursive functionsSi™ can define are exactly
those computable in polynomial time by a Turing machine using an oracle from
the cIassEip. It is then not a surprise if many important problems in complexity
theory are closely related with the study of this hierarchy of theories. The main
open question in bounded arithmetic is about the finite axiomatizabilit$, dor

of theory I Ay, S being a conservative extension bk + Q; introduced in[L1]

by Wilkie and Paris). This is the same as whether or not the incluﬁQms %”1

are strict, as eacl$) is finitely axiomatizable (seeEl]). Krajicek, Pudhk, and
Takeuti showed ir% that if S, is finitely axiomatizable then the polynomial hier-
archy PH collapses. Budg][and, independently, ZambellEf], strengthened this

by showing thatS; is finitely axiomatizable if and only if it proves the collapse of
PH. Most of this work has been done by using proof theoretical methods. Good
introductory references for these topics are B(@s Hajek and Pudik [6], and
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Krajicek [7]. We present here a model theoretic construction for bounded arithmetic
theory RZ, from which we derive a witnessing theorem for this theory by functions

computable in time 2°” | aresult first obtained by Buss, Kiggk, and TakeutE].

2 Basicnotionsandresults We use Buss’s notations (s€g), working in the ex-
tended arithmetical languadig = {0, 1, +, -, <, [X/2], |X|, #2, #3}, where|X| is the
length of the binary expansion &f x#Yy means XY andx#;y stands for Z#2!Y,
Most of Buss's results ifid] were stated for theories in languagg without the #
symbol (reacsmash 3). But, as he pointed out, they readily generalize to languages
L; including a function symbol#vith the same rate of growing as functian_, of

I3 (x#y = 2X#-1¥), provided we substitute polynomial time by the correspond-
ing S-time (also called #time in some texts). In particular, to langualggcorre-

sponds 21°” time, toL, is 22" -time, and so on. Quantifiers of the for@x < t,
wheret is a term, are called bounded quantifiers. Those of the fQur< |t| are
called sharply bounded quantifiers. Formulas with only sharply bounded quantifiers
are called sharply bounded formulas. This class is nad=8, or I15. Fori > 0,
xP,, is the smallest class of formulas containig, I1P, and negations of1, ;, and
closed byA, Vv, sharply bounded quantifiers, afix < t. CIasseS‘[ib are defined anal-
ogously. A formula is said to betrict =P if it has the form3y < t[A5]. More gener-
ally, a formula isstrict =P if it has the formBy < t[strict T1°_,]. We denote by:P the
class ofstrict Eib formulas. The c:Ias:fIib is defined analogously. IF is any theory
andi > 1, we say thatv is AP(T) if T (¥ = W) A (W = W) for someW; € xP
andy, e l'Iib. By a(x)-IND up to y we denote the formula

[@(0) AVX < y(a(X) = a(X+1))] = a(y)

and if"is a class of formulas and € N, I'-L ™ IND denote the schema(x)-IND
upto|y|mforain T, where|y|m=|(lYlm-1)| and|y|o =Y. Inthis article we are con-
cerned withm = 1, 2 so we write LIND, LLIND and ||y|| for LDIND, L ®IND and

|yl2. BASIC; is a finite set of open axioms for the symbolslafand &\[ is the the-

ory BASIC; + XP-LIND (originally it is defined by another induction schema called
PIND, but these two axiomatizations are equivalent; see Buss and Iglt’;jﬁ])viR‘l>

is the theory BASIG+ ZP-LLIND. By S}, R we denote the corresponding theories
for strict formulas. We shall suppose that included in our language are some other
useful primitives. These are known to be definable frlogrwith a little amount of
induction, and its inclusion does not increase the strength of theories contsyning
for example. In particular we supposelipthe Cantor pairing functiofx, y) and its
projections{z),, (2)2, aswell as a binary functioty = (¢) for y isthe xth element in

the sequence coded by c. In general, we will be able to code sequences of logarithmic
length. ByxP-replacement we denote the schema

Vx < |a|dy < bW (X, y) = 3cVx < [a]¥(X, (C)x)

for ¥ € =P. Infactc can be bounded by a term b, so the conclusion is als&P
and, moreover, implies trivially the premise. Hence, this schema allows usito
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inside sharply bounded quantifiers ®P formulas. This, together with the possibility
to merge two consecutive quantifiers of the same type into a single one using coding,
permits us to puEib formulas in the strict form. AS) - Eib-replacement, we have

thatS} = Si. Onthe other hand, we have thef - =P-replacement (see Allefi]),
but it is not known if this holds foR}. Nevertheless, we can derive R} the =P_, -
LIND axioms, thus proving tha} - S~%. Wenote byS; the class of total functions
computable in time 2°”. For an integea we putSs(a) = { f(a) : f € S3} and we
say that anz-structureK is S3-closed ifS3(a) C K foreveryae K. LetC(e, T, X, y)
meany is calculated from x in time T by {e}, the Turing machine coded by e. Later
we will see that this is definable @ The aim of this article is to prove the following
theorem.
Theorem 2.1 Let M bea countable nonstandard model of 83,1 Leta,r e M\INand
supposethat M = 3y(y = 22°"). Let R={y: M =3e<r C(e, 212 a, y)}. There
isan Lz-substructure K* of M such that

1. ae K%

2. K*is §-closed, and so K* <ab M;

3. K*CR

4. K* = R.
As a consequence we get two known corollaries. Their proofs are classic; we give it
for the sake of completeness.

Corollary 2.2 Let p(x,y) bea Eg’-formula and suppose that
REE Vxaye(x,y) .
Then for some f € S5, S§ - Vxg(x, f(X)).

Corollary 2.3  Thetheory R3 is VZP-conservative over Si.

Proof of CorollaryP2]  As explained above we can suppase 2. Then, using
coding to merge two consecutive existential quantifiers into a single one, we can as-
sume thatp is AB. Let a be a new constant symbol and Tebe the theory

Stu{vy(C(e 219" a y) = —¢(a,y)) 1 e ke N}.

We claim thatT is inconsistent. Suppose the contrary andllet= T U {Vy(C(e,
2llall* 3 y) = y < d) : e k € N}, whered is another new constant symbol. Clearly
T’ is also consistent. Lé¥l be a countable model for it. Adis a bound fors;(a),

M must be nonstandard. We have for eveyg N

M = Vk < roVe < kvy(C(e, 2131, a, y) = —p(a, y)).
In particular,
M [= Vk < rove < k¥y < d(C(e, 213", a, y) = —p(a, y)).

As we will see later, this last formula is equivalent td1& one inS}, and S} - I1b-
LIND. So by overspill it must be valid for sormg € M\N. If ais interpreted by some
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standard integer the®(a) = N and thus, a81 = T, wewould have forevery € N

M = —p(a, y). By elementarity this formula holds in N, hence [N Vy—¢(a, y).

As N is obviously a model of%, this contradicts the hypothesis of the theorem. So
let us suppos@ € M\N and letr < rg such thatM = 3y < d (y = 22°") (see
Lemma3.13. Then we have

M = Ve < rvy < d(C(e 2@ a, y) = —gp(a, y)).

By definition of R we havey < 224" _ d for everyy € R, and so the last equation
reads

M EVye R—g¢(a,y).
By Theoreni2. 1kthere is arlz-structureK* c M such that

1. ae K*;

2. K* is $-closed;

3. KC R

4. K* = R.
By (1), (2), and (3) we havK* = Vy—g¢(a, y), andby (4) K* = Vx3y (X, y). Thus
we get a contradiction and the claim is proved. A inconsistent, by compactness
there is some, ey, ..., €y, Ko, . .., kn € N such that

sk \/3y(Ce. 2191 a, y) A p(a, y)).
i=0

By the theorem on constants

sEHvx\/3y(Cle. 2M x, y) A g(x, y)).
i=1

Let f(x) be the result of the following search: foe 0 to n we run{e} on inputx
with clock 2XI Jooking for an outpuy satisfyinge(x, y). Clearly f € Sand by the
last equatior%1 F Vxp(X, f(X)). Hence the corollary is proved. O

Corollaryl2_3lfollows immediately.

Remark 2.4 Buss, Krajcek, and Takeuti] have shown a result stronger than this
corollary: the theoryR? is V£5-conservative oves:.

Remark 25 The proof of Buss’s main theorem [@][ and those of Buss, Krijek,

and Takeuti inlf], uses proof theory methods. On the other side, Wilkie (in an un-
published manuscript) gave a proof of Buss’s theorem in a model theoretic way, from
which Pudék gave a version iff]. Another model theoretic proof is given by Zam-
bella in [L2.

Remark 2.6  Theorenl2.llcan be generalized as follows: M = S}, i > 1, we
can consider a larger resourBeby giving the Turing machines access to oracles in
theith level of theS;-time hierarchy. Then we can contruct\® , -elementaryl ;-
substructur&k* of M which is a model oﬁé*l. The corresponding witnessing and
conservation corollaries follow similarly 8&2and23]
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Remark 2.7 Todrop thestrictin Theorenf2.1lit would suffice to carry out the con-
struction with formulas of the forx < |uj3y <tVz<svy, ¥ € AP instead of sim-

ply ig formulas. The theory obtained in this way would prc‘ﬂ‘@replacement. But

the inclusion of an extra quantifier, even a sharply bounded one, poses some prob-
lems. A solution for these could throw some light on how to treatthease without

the use of oracles. Note parenthetically that we cannot use oracles if we want subex-
ponential time witnessing theorems, and this makes it nontrivial to construct models
for 2P induction axioms inside the corresponding resources.

Remark 2.8  Our proof is inspired by Wilkie's, but in addition it shows the possi-
bility to use a nonstandard initial segment of Turing machine programs at the same
time as an initial segment of computing times. We hope that this possibility will help
to pass fromxz5 to =P formulas in the construction and the result of this article. In
such a case, by extending the corollary one could obtain a proof of some recent re-
sults of Pollett[[d], namely, that theor>1A'i"+'1 hasS_;-time witnessing functions for

25’ formulas. Here'IA'ii;ri1 is essentially the theory in the language 1, including the
#,1 function symbol, withs:P-L W IND axioms, andS ,;-time is the subexponential

time corresponding th;, 1 (S-time is polynomial time Sz-time is 201°Y _time, etc.).

Remark 29 These results yield a hierarchy of theorigs,; such that if T},
proves that a setX is NTIME(S.1) N co-NTIME(S.1), then actually

X e DTIME(S.1). Thus they are possible analogs of theNlP N co-NP problem,
hence their interest: in view of the difficulty ofsfNP N co-NP it is important to
have analogous problems which we can settle. In addition, a further study of the

proof and model theory oAii;ril may Yyield lower bounds about the function which

to a proof in'fii;ril thatX is NTIME(S. 1) N co-NTIME(S 1) associates an algorithm
in DTIME(S 41) deciding X. Such lower bounds would shed precious light on NP
N co-NP. The reinforcement of model theory introduced here for the stué'er'gf
should not be superfluous for such ambitious aims.

3 Proof of Theorem2.1  In Sectiod3 Tiwe briefly explain how the proof goes. Sec-
tionB.2presents some tools needed to work with Turing machines. Next we introduce
the notions of sparse sequences and resourf&giand finally we present construc-
tion of modelK* in Sectiorl2.4]

3.1 Sketch of the proof Fix an enumeration of axionsIND up to ||d|| with pa-
rameters irlM andé running overs3 formulas. We construdt* as the union of an in-
creasing chaiilKp)n<,. LetKog= S3(a) ={f(a): f € S3}andlet;-IND uptol, be
the first axiom in the enumeration having its paramete#sginWe wantK; Oy, Ko,
K1 S3-closed and satisfying

—61(0) v 3] < 14[01()) A —61() + D] v 61(11)

whered, (j) =3y < tVz < sy(j, y, ). We can suppose < ||a|| andr = 211, Let
(Tj)j<l,+2 be a decreasing sequence such that2s> To>> Ty > - > T 2> 1
(whereA > BmeansA > B.2/121°") and such that th@;’s are easy to calculate from
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aandr (for example Tj = 2/ ~G+DIal"*) ‘Forj=0,... 13+ 2let Rj(x) = { y:
C(e Tj,x,y) for somee <r}. K; will be generated by an elemeai obtained by
running on input the next progranP (which depends on a code fp).

1. Computa = 2IfI-1,

2. Compute the parameters@fIND up to |1 and Ty from the inputa.

3. Putj:=0,y_1:=0.

4. ComputeTj.

5. Look fory;j € Rj({j,a,yj-1)), yj < t, such that for everyz € Rj;1({] +
1,a,yj)) suchthaz <s, M = ¥ (], yj, 2).

6. If there is no suclyj, stop the machine with outpai = (], a, yj—1).

7. If yjis found andj < Iy, then putj := j + 1and go to 4.
8. If y, is found, stop the machine with outpait= (I, + 1, a, yj,).

Leta; = (J1 + 1, &, yy,) and suppose, for example<0J; < |I1. Then we have

1. foreveryze Ry y1(ag) suchthaz <s, M = ¥(J1, yy,, 2);
2. foreveryy e Ry 1(a;) suchthaty <t,thereissomee Ry 2({(J1+2,a,Y))
suchthaz < sandM = —=y(J1 + 1,V, 2).

So, in order to haveK; &= 61(J1) A —01(J1 + 1), we chooseK; contained in
Ry+1(a1) and allowing computations in timigy, ;.

a0 L
Ki={{e}(a) < 22" calculated intime < O(1).r2.Ty 5, e < [r|°D} .

It is easy to see thay C, Ky andK; is Sz-closed. To prove thaK; C R we
use the fact thaP can be coded by some < |r|°D and calculates; in less than
r2.To steps. Consider nods-IND up to |, the next axiom in the enumeration hav-
ing its parameters ik;. We wantK, D, K; satisfying this axiom while preserv-
ing 61(J1) A —601(J1 + 1). The new axiom will be satisfied by letting the construc-
tion of K, imitate that ofK4, replacinga, 6., 11 by a;, 82, |, and the sequencg by
another sequenct. As explained above;(Jy) A —61(Jy + 1) will be preserved

if Ko C Ry41(a1) andK; allows computations in tim&;, ,. In other words, the
maximal computation time§, are chosen betweem, ;1 and T, » (for example,
Tj’ _ TJ1+1/2(1+1)|\a||f/4 if Ty = 2||a\|ff<j+1)||a|\’/2). In this way Ty 11> Typ > T >
BN 'I'l’2+2 > Tj42. Let P’ be a program similar t&, running on inputa, with
62-IND up to |, andT; in place of¢1-IND uptol; andT;. Letay = (J+ 1, a1, y3,)

be its output andK, = { {€}(ap) < 22°% calculated in time< O(l).rZ.T32+2, e<
Ir|°®}. Then we prove as above thi C(, Kp, Ky is S3-closed,K,; ¢ R and
Ky = 6:,-IND uptol; A 6,-IND uptols. Inthis way we geKs, Ky, ... and putting
K* = Un-, Kn We have the desired model. 0

3.2 Definability of Turing machine computations We cdl S the set of total func-
tions computable in time2° in the standard structure N. For a predicXtere say
that X € S if its characteristic function belongs &. Note that (the intended inter
pretation in N of) function symbols df3 are inS;. In particularAg predicates are
decidable in time 2/°", therefore S;-closed substructures are-elementary. This
will be used thoroughly.Eib predicates correspond exactly to predicates inithe
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level of the 271°”-time hierarchy. We present here some known facts saying roughly
that in any model oSﬁ these functions are definable and have the expected proper-
ties, and this will also hold for some nonstandard functions wileg N. Proofs

are omitted since they are tedious and contain no new ideas. For a refereri@ék see |
and B]l In order to formalize computations we consider deterministiapes Turing
machines, for a fixe#d € N, and a natural coding of its programs and computations.
If eis an index for a Turing machine, that is, a code for its program, we nofe}by
both the machine itself and the function it computes. By S3 we mean{e} € &3

ande e N.

Lemma3.1 For every standard Turing machine M there is a AP(S}) formula
Compp (¢, X) expressing that ¢ is the code of a computation of M on input x.

In %1 we can code sequences of logarithmic length and there are tgnstanding
LS

for 22" In consequence we get

Lemma3.2 Everypredicatein Sy is AP definablein St

Lemma3.3 For every standard Turing machine M
St Yovxale(Compw (¢, X) A Th(c) = |v])

where lh(c) isthe length of the computation coded by c.

If M %1 andlog(M) := {]y| : y € M}, this lemma will allow us to define compu-

tations in timeT providedT e log(M). In particular, as 2! € log(M) for every
k € N, we have

Lemma3.4 Everyfunctionin S;isprovably Atl’ (total) in S§

Remark 3.5 By Buss’s theorem (the version fsé) every function provablyzg’ in

S ios(lzn S; (seelB]). As a consequence eveny?(S}) predicate is decidable in time
2In=

Now using Lemm@&_.4lwe can define a restricted version of a universal Turing ma-
chine which will nevertheless be able to simulate all functionSzin

Lemma3.6 Thereisa A?(%) formula U (e, v, X, y) expressing that e is the code
of a (probably nonstandard) Turing machine and {e} calculates y from x in lessthan
|v| steps.

Lemma3.7 Thereisa A?(%l) formula exp(x, v, z) expressing that x¥ = z

We shall assume some properties of this definition. In particﬁ})&r y=1t(X) <

y = 224" for everyk € N. Moreover, we assume that for every tet(®) in Lg,
if (X, y) is the AP definition of the corresponding function &, thenS! I- y =
t(X) <= o(X,y).

Definition 3.8 C(e, T, X, y) is theEIAE formula3du(jv] =T A U(g v, X, y)). It
means that the Turing machife} running on inputx stops with outputy beforeT
steps.
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Lemma3.9 Thereiskg € IN such that

1. Sl ve € 3¢’ < (e.€)ke vx ({e}((€, X)) = (€'} (X));
2. St-ve €3¢’ < (e€)OVT, T, x y,z2d
(T,T,T4+T <|dAC(e, T, X, yY)) AC(€,T,y,2) = C(e', T+ T/, X, 2)).

Remark 3.10 Condition 1 will help us to estimate the code of a Turing machine.
For example, suppose thdtis a multiplicative closed cut in a model S§ andM a
Turing machine. 1fM can be viewed as a standard program with some extra inputs
P1,--., Pn € X, n e N, then by (1)M can be coded by somge X.

Remark 3.11 By condition 2, ife, € € X are Turing machine codes, then the com-
posite function(e} o {€¢'}, if defined, has a cod® € X.

3.3 Sparse sequences, resources, and basic structures

Notation 3.12 Let M be a nonstandard model & and F a function from N to
M. We put

1. A> F(O@)) iff A> F(n)foreveryne N;

2. F(O(1)) > B iff F(n)> Bforsomenec N.

Even in a nonstandard model we ke@gl) running over standard constants.

Lemma3.13 Let M be a nonstandard model of S§ and let a, d € M\IN such that
S3(a) isbounded by d. Thereissomer € M\IN such that following properties hold
in M:

1 3y <d(y=22"").

2. risapower of 2,andsor = 2I"-1,

3. r<|all.

Moreover, r can be chosen smaller than any givenrg € M\IN.

Proof: Weknow that for everk € N, t(a) € Sz(a) andty(a) = 22" i1 M. Thus

we have for every; € N, M = VK < |r1|Ay < d y = 22™"). This formula is?
in M and so by overspill it is true for sonte € M\N. Now letr, € M\N such that
r, < |r1| andry < |||, and putr = 2!"2=1, Then we have € M\N, r is a power of
2, as|ry| = Ir|, and finallyr <r, < ||a]|. O

Remark 3.14 Infact we have provet =EVx<r3dy <d(y= g2y

Remark 3.15 By (1) of Lemmd3.13we have [02/@'] ¢ log(M) and then, by
Lemma3.3] computations in tim& < 2/121" are definable ifM.

Remark 3.16 Wewantr to be computable from some Turing machine of cede
Ir|®D, That is why we impose condition 2 (see (3) of Lemifad).

Remark 3.17 Wewant also #2I" € S;((a, r)). For thisr < ||a||°® would suf-
fice, we putr < ||a]| for simplicity. In this way 22" is calculated from{a, r) by the
function (x, y) — 2/XI™ ™Y which is clearly inSs.
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Definition 3.18 Let M be a model ogl, A, B,l,a e M, (Tj)j< asequence iV
andF afunction from N toM. SupposeA > B.
1. The sequenceT;) < is between AandB if (Tj)< is decreasing and
A> (Tj)j5| > B.
2. The sequenceT)) ;< betweenA andB is generated by « if for somee € S

(@) To={e}({a, A));
(b) T ={&(, T})), j<I.
3. The sequenceT)) ;| betweenA andB is F(O(1))-sparse if
(@) A> F(O(1)).To;
(b) Tj > F(O)-Tj4a, j <1
(c) T, > F(O(1)).B.

Lemma3.19 LetM,a,r beasin Lemmal3.13] Let A, B, « € M and suppose that
21" > A~ B ae S(a), (Tj)j<I isa sequence between A and B generated by «,
and | < 2131°” Then for someec Sswehave Tj = {e}((j.a. A), j < 1.

Proof: Lete e S such thaflp = {€}({(«, A)) andT;11 = {€'}({«, Tj)), j <. Let

k € N such that < 2" and consider the standard Turing machine which on input
(j, @, A) calculatesa from «, then 2@ (kis coded in its program); next it compares
jand 28 and if j < 2131 it computes(e’} It (@, A)). It runs in time 21°” as

€ € S; and we iterate this function at most®" times (note that 21" < 2/11°® as

ae S3(a)). Finally, we have that it calculatéd§ whenj < 1. This can be proved by
induction onl asl € log(M) and the condition considered;@. O

Lemma3.20 Let M, a,r beasin LemmaR13] Let A, B,| € M and suppose that
2lal" > A > 211al°® Band| < ||a||°®. Thereisa 2/l21”" -sparse sequence (Tj) j<i
between A and B generated by (a, p) for some p € M\ IN. Moreover, p can be chosen
smaller than any given nonstandard integer in M.

Proof: Wehave foreverk e N, M =3y < a(y = 2@ A A> y.B). By overspill
this formula is true for somp € M\N, and we can choose it as small as we want.
Takep < ||al| and consider the function

F(X, Y, 2) = msp(x, ||y||™n(Z/211v1D)y

wheremsp(u, v) stands forlu/2"| whenv < |u|] (msp is for most significant part;
see[P]). Then clearlyf € S3 and so isg defined byg(u, x) = f(x, (u)1, (u)2). Put

To=9((a p), A) and Tj;1 =g((a p), T;), forj <I.

Then we havély = | A/2121"" [ and forj < I, Tj, 1 = | T;/2/@1"* |. Itisthen clear
than(T))j< is 21a1°% _sparse, betweeA and B and generated bya, p). O
Definition 321 Let M be a model ofS} and leta, r, T, c € M.

1. WeuseR(r, T, c¢) todenote the subsgg e M :Jde<r C(ge T,c, y)}. We all
these definable setesources.
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2. The basid_s-structures we will consider are of the form

alk
fyeM:3keN3Ie<|rk(y<22"" AC(e kT, c, y))
Wewrite K (a, v, T, ¢) as an abbreviation for the expression above.

Lemma3.22 Let M,a,r beasin LemmaBI3] Letc, T € M satisfy 2/18l" >
O().Tandlet K= K(a,r, T, c). Then K hasthe following closure property.

1L Ifye Kand T < O(1).T, then K(a,r, T', y) C K.
Moreover, if T > 211@1°Y then

2. Kis S-closed;
3. [0, Ir|°D[ U {r} c K.

Proof: (1) Let T’ < O(1).T, k € K, e < Ir|%, such thatC(e,k.T,c,y). If z¢

K(a,r, T, y) then for som&k’ € N, z < 22‘IaIIk andC(¢,K.T',y, z) for somee <
Ir|¥. We have thak.T + K. T’ < O(1).T < 2/l2" hence by (2) of Lemm&.Qlkthere
is somek” € N, k” sufficiently large and some’ < |r|¥" such thaC(e”, k".T, c, 2),
2104
thatis,ze K. (2) If T > 2/81°® andz e S;(y) for somey € K, then sincey < 22"

we have thaz < 22%°"” andC(e, T, y, z) for somee € N andT’ < 2/13I°Y < T,
Hencez e K andK is Ss-closed. (3) Ifp < |r|°® there is some < |r|°® such that
vx({e}(x) = p) andC(e, |pl, X, p) ({e} is just a Turing machine that writgsregard-
less of the input; its program can be coded by serre| p|°(). As|p| < 2/181°7 <
T we have thap € K. In particular|r| € K. Now, r can be calculated fromn| easily
by a standard Turing machine # because = 2I''-1. Hence, by (2)r e K. [

‘O(l)

Remark 3.23  Wewill consider only structure& (a, r, T, ¢) with T > 2/1&I"" By
Lemma3.9l(2) we are guaranteed these structures will naturallsubstructures
of M and moreover, they will bag-elementary. In particular thBASIC3 axioms
will hold.

Remark 3.24  In connection with Lemm&.20] condition 3 will be useful to gen-
erate 2% -sparse sequences, asmgall nonstandard integer being availablekn

Lemma3.25 Let M,a,r beasinLemmal313] Letc, ¢/, To, T, Ty € M and let
K=K(,r, Ty c), K =K(,r, T,c). Suppose that

1. ceK’;
2. 21" > 01).T;
3.7 > Ts.

Then K Cc K.

al O
Proof: Letze K. Thenz < 22°°” andC(e, k.To, ¢, 7) for somek € N ande <
Irj%. Butk.T, < O(1).T’ < 2@l andc € K’, hence, by LemmB22ze K. [

Lemma3.26 Let M,a,rbeasinLemmaB13l Letc,c/, Ty, T, To € M and let
K'=K(a,r, T, ¢’). Suppose that
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1. C(p, Te, ¢, ¢) for some p < |r|°D;
2. 2" > Ty > To + O(1).T'.

Then K’ C R(r, Ty, ©).

Proof: Lety e K’ and letk € N, e < |r|K such thatC(e k.T’, ¢, y). We have
that C(p, Te, ¢, ¢) for somep < [r|°® and Ty + k.T' < T, < 2/@I", By (2) of
Lemmal.9there is some < |r|°?D < r such thatC(¢, Ti,c,y) , hencey €
R(r, T4, ©). O

3.4 Constructing a model of IQ% Let M, a, r be as in Lemm&.13 Let R denote

the resourcdr(r, 218!l a). We call it the main resource. The aim of this section is to
construct inside it a modé{* of R containinga. This model will be constructed as
the union of an increasing chaiik,), _ , €achK, satisfying a new instance (ﬁfg—
LLIND while preserving those satisfied previously. First we prove the key lemma
which will help us to pass fronK, to Kp 1.

Lemma3.27 Let M,a,r beasin Lemma[313] Letc, T;, T, € M\INand K =
K(a,r, Tz, c). Letho. ..., bn e K, I e log(log(K)), ¥(j. Y. z b) aAgformuIavvith
parameters b and let 6(j, b) be the formula 3y < tVz < sy/(}, Y, z, b), wheret =
t(j, b), s=s(j, y, b) are Ls-terms(parametersbwill frequently be omitted). Suppose
that

(@) ac Kandce K(a,r, T, a) for some T, such that 213" >~ O(1).T;

(b) Ty e Kand2ldl' > T; > T, > 2/,

(©) (Tj)j<i+2 isa|lal|®D-sparse sequence between T; and T, generated by

(a, p) for some p € K.

Thenthereareintegers p,g,c’, Y € M, J € MU {-1}, and an Ls-structure K’ sat-
isfying

. p<Ir|°YandC(p,r2.T;, c,c);

cd=J+1cVY),-1<Jd<landY <t(J);

If J# —1thenVze R(r, TjH, c),z<s(JY)= ¥(J,Y,2);

q < Ir|°® andvydz < s(J+1,y) C(q,r2.Tj,,, (C. V), 2);

If J# | thenvVy e R(r, T}, ,.¢), y<tJ+ D Az={q)((c.y) = z <
sS(J+1L, Y)yA—yYy(J+1,Yy, 2);

K'=K(@r 2T}, ¢);

K’ is S3-closed;

KcKcR

K’ C R(r, Ty, ©);

10. If xe K’, K(a,r,r2.T, x) C K’;

11. K’ = BASIC3 + 6(j)-IND uptol.

=

a koD

© o N

Proof: First note thar € K by Lemma322land integers, b, |, Ty, p are inK
by hypothesis. Hence we can obtain them all fromn time O(1).T, by means of
some (possibly) nonstandard Turing machine of cedg|°V, and these integers
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are bounded byZ*""” . The integerp will be the index of the Turing maching
that is working as follows on input

1. Compute, a, b, |, Ty, p fromec.
ComputeT; froma, p, Ty.
Putj:=0,y_1:=0.
ComputeT| ;
Look fory;j € R(r, T/, (], €, yj—1)) such that

yj <tandvze R(, Tj’+1, (1+Lcy)), z<s= ¥(jYj, 2.

froma, p, Tj/.

a ~ DN

(Searching inR(r, T, X) is done by simulating no more thansteps in the computa-
tion of {e}(x), if eis the code of a Turing machine and this for all values sbm 0
tor. Verification of a condition for everg € R(r, T, X) is done in a similar way.)

6. If there is no sucly;j, stop the machine with outpir(c) = (j, ¢, yj—1).
7. If yjis found andj < I, then putj := j + 1 and go to 4.
8. If y; is found, stop the machine with outpBt{c) = (I + 1, c, ;).

Let (J+ 1,c,Y) be the output, that isy = y;, and let us ame itc’. Then (2)
and (3) follow easily from the definition dP, once the existence of the computa-
tion is established. As explained above, to execute the first line the machine needs a
standard number of programs of code|r|°) (namely, 6+ m programs, a® =

bo, ..., bm). By (c) a unique standard function i& suffices to obtainT; from

a, p, T; and TJ-’+1 from a, p, TJ-’. Havingr, T/, j, c, yj—1 we generate the elements
of R(r, T/, (], ¢, yj—1)) by means of a standard program. Computation of the val-
ues of termd, s and evaluation oﬁg formulas is also done by standard programs
in S3. Thus P can be viewed as a standard Turing machine running amh a
standard number of extra inputs boundedh§®. By (1) of Lemmd3.9we con-
clude thatP can be coded by some < |r|°D. For the running time we have that
r,a bg,...,bm |, T1, p, are calculated in timé®(1).r2.T, fromec. As Ty, p € K

we haveTy, p < 22°°" and thenT/ < Ty < 22 for everyj < | +2. By (c),

Ty € (@, p, 1)) and TJ-’Jrl e S({(a, p, Tj/)) for j <141, henceTj’ is obtained

in time 2131°" for every j. It is known that simulatingl/ steps of the computa-
tion of {e} can be done in tim@(l).lel.Tj’ by an universal program (see Papadim-
itriou [[9], for example). Ase < r we can bound it byr|2.Tj/. We calculate the val-
ues of termg(j, b), s(j, y, ) in time 2121°” | asthey correspond to functions &

and its arguments are all bounded b?)'}a'?om. Deciding if y; < t is done in time

al o) ) )
O(1).]t|, thus less tpan‘?”o(l) sincet < 22" The same is valid foz < s. Eval-
uation ofy(j, yj, z b) wheny; < tandz < stakes time pa1°Y pecauses is Aband

_ 210 . o
ji,t,s bo, ..., bm < 22", Thus, we have that is calculated in timd less than

|
OD). Tp+ 21817 137 (2RI p (2.7 4 201°7 r (r 2.7 4+ 219
=0

‘O(l)

DR
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Remembering thaf| > T, > 211al°" \ve get that

|
T <

(Ur T +r(r P+ DT,
j=0

Butr(|r|2+ 1).T/,; < T/ sincer < ||al| and(T})j<i42is l|a||°D-sparse, thus

|
T<r(rP+0.) T < r(rP+(Te+1.T)) .
j=0

Now, I.T; < T becausé < ||a|®™ and (T))j<2 is ||a]|°P-sparse. So we con-
clude thatt’ is calculated in time

T<2r(r?+1).Ty < r2T.

Finally note thatr?.T} € log(M) sincer?. T} < T; < 2/ and 281" ¢ log(M)
by Lemmal3.13 Therefore we hav&w(jw| = r2.T; A U(p, w, ¢, ¢)), that is,
C(p,r2.T}, c,c') and (1) is proved.

The required integeq will be the index of the Turing machin® working as
follows on input(c’, y).

1. Computel + 2, cfromc'.

Compute, a, b, ..., by, T1, p fromec.

Compute = t(J+ 1, b) from J+ 2, by, . .., bm.

ComputeTJ’+2 fromJ+2 a, p, T;.

If y<t, computes=s(J+1,y, b) and look forz € R(r, T3+2, (J+2,¢, %)
such thaz < sA —y¥(J+1,, 2). Else, stop the machine with output 0.

6. If such azis found, stop the machine with outputElse, stop it with output O.

a bk wn

As ¢ = (J+ 1 ¢, Y) we can obtain] + 2 and ¢ from ¢’ by means of two stan-
dard functions inS;. Integersr, a, b, ..., bm, T1, | can be calculated frora using

a standard number of functions of code|r|°® since they belong t& as we ex-
plained above. The values of tertps are calculated by standard functionsSn By
LemmaB.19%and hypothesis (c)I}, , is obtained from] + 2, a, p, T1 by means of a
standard function irfg3. The computations of line 5 require only a standard program,
analogously for line 5 of prograrR. In the same way as we did fé&t, we conclude
that Q can be coded by songe< |r|°®D.

. . . . aom
For its running time first note that < 22" sincec e K(a,r, T, a) by hy-
2101 a|O)
pothesis (a). We have algol < 22°"" henceY <t < 22" andJ +1 <

| +1 <22, Thus we get that' = (J+ L.c.Y) < 2%, AsJ+2.ce
S3(¢'), computations on line 1 are done in timeag™ ™ Integers in line 2 are in
K, hence they are calculated in tim@(1).T, from c. The value oft is calcu-
lated in time 221°” as for programP. We obtainT}, , in time 2121°” asT}, , €

a| o1 T . .
S(J+2apT))andd+2a p Tr < 22%°" . Deciding if y < t takes time
2/1al1°" and when this inequality holds the valueoifs calculated in time &1

; 2llal | OD |§n°(l>
sincey <t < 2 and the other arguments sfare also bounded by? .
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Searching fozin R(r, T, ,, (J+ 2, ¢, y)) verifying the condition in line 5 is done in
time less tham(|r|.T}_, + 21121°%y Thus,Q((c/, y)) is calculated in time less than
211all°® 4 O(l).Tz+r(|r|2.T3+2+2“a“°(l)). SinceT),, > T > 2/1a1°" \vecan con-
clude thatQ((c’, y)) is calculated in time less than.T)_,. Thusifz= Q((c’, y))
then C(q, r2.T3+2, (c,y),2) and itis clear thaz < s(J + 1,y) in all cases. This
shows (4).

To see (5) supposé < |. Asc’' = (J+1,c, Y)andY =yj;, J < | means that
the programP did not find they;, ; it looked for. In other words this says théy
R(r, Tj+1, (J+1,c,Y)) such thaty < t(J + 1), there is some € R(r, T3+2, (J+
2,¢,Y)) satisfyingz < s(J+ 1,y) A =¥(J + 1,y, 2). Then, the progran®Q will
eventually find thiz and so (5) holds.

Now letK' = K(a,r, 12T} ,,¢). WehaveO(1).r2.T} , > rZT, > 211l
so (7) and (10) follow from Lemnfa22] By (2), ¢ € S3(¢’), and by (7)S3(¢’) C K/,
soc € K'. Also 21a" = O(1).T; > O(1).r2.T)_, since(T)) <142 is [|a]|°V-sparse
andr < [|a]|, and cIearIyrZ.TjJr2 > T, becauseT;j) <42 is betweenl; andT,. We
can then apply Lemnfa25to conclude thak ¢ K’'.

Now we use LemmB&.26lto prove (9) andk’ c R. We haveC(p,r2.T;, c, ¢)
andp < |r|°® by (1), and 3" > Ty > O(1).r2.T > r2.Tj + O(1).r2. T} ,, thus
by Lemmd3 26K’ c R(r, Ty, ¢) and (9) is proved. By (a) there is sorke N and
e < |r|*suchthaC(e k.Te, &, ¢). By (1),C(p,r2.T, ¢, ¢’) andp < |r|°®. Then by
(2) of Lemma3Tthere is some& < |r|°Y such thatC(e, k. Tc +r2.Tj, a, ¢'). We
have 221" > k. T, + Ty since 2al" >~ O(1).T.and 2@!" > O(1).T, by hypothesis. As
indicated abovdy > r2.T{ + O(1).r.T}_,, thus we get that/ 2" > k. Tc+r2. T+
O(1).r2.T}, , which implies by LemmB&.26thatK’ ¢ R(r, 218", a), thatis,K’ ¢ R
and (8) is proved. By (7K’ <ab M and soK’ = BASI C3. Now we use the previous
points to get two easy consequences implying (11). RememberthatJ < 1.

Fact 3.28 1f0< J<IthenK’' =6(J).

Proof: First note thatl,Y € S3(¢’) ¢ K’ by (2) and (7), and alsK’ C
R(r, T},,.¢), snce K = K(a,r,r2T) ,,¢)andTj,, > riT),, Letze K,
z<s(J,Y). Thenz e R(r, Tj/+1’ ¢’) and by 3)M = ¥ (J,, 2). Wejust noted that
K’ <Al M, soK’' = %(J,Y, z) and thusK’ =3y < t(J)Vz < s(J, y)¥(J, Yy, 2), that
is, K/ = 6(J). a

Fact329 If—1<J<I|—1thenK' = —6(J+1).

Proof: Lety e K, y <t(J+ 1) and letz = {q}((c,y))). We havey e
R(r, T},1.¢), S0y 5) M =z < s(J+ 1, y) A=¢(J +1,y,2). By Lemmd3.22]
and (4),ze K, so by elementarityK’' =z<s(J+ 1, y) A=y (J+1,y, 2. We have
provedK’' =Vy <t(J+1)3z<s(J+1, y)—y¥(J+1, Y, 2),thatis,K' =—0(J+1).

O
From Facti2.28hnd3.29 e obtainK’ = —6(0) v 3j < I[0(j) A —=0(j + 1)] v o(l),
thatis,K’ = 6(j)-IND uptol . O

Now we are ready to construct the chalt,) - Starting from someKo (for prac-
tical reasons chosen different from the one used in the sketch of the proof), we induc-
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tively defineK, for n > 1, using the procedure of extension exhibited in Lerfi2a]
This is the content of the next lemma. First we define some useful notations for the
rest of the section.

Notation 3.30 WhenM, a, r as in Lemm&_13are fixed, we writed > B for A >
2’ g IfsequenceST )j<i;,i=0,1,...are defrned we notBl(x)the resource

R(r, T}, x). By (b)I we denote a set of parametdags

Lemma3.3l Let M,a,r beasin LemmaB.13] Let T2, T? € M suchthat T? e
Ss((a,r)) and 2131 > 7O T9 » 1. Let Ko = K(a,r, T, a) Jo=0a=a Let
n € IN, n > 1 and suppose we have n Ls-structures Ko, ..., Kn_1 , Eb formula
6u) = 3y < t¥2 < 51U (i, Y, 2, ¥n( ¥, 2) € AB, with parameters (B)n € Ko 1,
and someinteger |, € log(log(Kn—1)). If n=1wehavejust Ko, 61 and ;. If n > 1
suppose we have alsofor each1 <i < n:

(a) integers (b);, pi € Ki-1, li € log(log(Ki-1)); i
(b) axbformulad;(j) =3y <t Vz<s ¥i(], Y. 2) with parameters(b);, vi(j. Y. 2)
e Ab;
(c) integers pi, gi, &, Y; € M, J e MU{-1};
(d) a2!lall°” -sparse sequence (T} j<i+2between i1 and T}~1 , generated by
(& pi);
satisfying (1) —(8) below.

1. pi < [r|°® and C(p;, r2. Ty, ai—1. a&).
2.8 =(J+La_1,Y),-1<J<liand¥; <t(J).
3. 1f i #—1thenvze Ry (@), z<s(J, Y) = ¥i(d. ¥, 2).
4. qi < |r|°® andVyaz < s(J + 1, y)C(q, 12T} 5, (&, ¥), 2).
5. 1fJ #lithenvye R, (&), y<t(J+DArz={g}((@,y) = z<s(J+
Ly)yA=%i(Ji+1Y, 2.
6. Ki=K(a,r,r2 T3+2,a).
7. Kiis S3-closed.
8 K_1CcKiCcR
Then thereisa 2/181°" -sparse sequence (T <2 between T5-1  and T9-1 , gen-
erated by (a, pn) for some pn € Kn_1, integers pn, On, an, Yn € M Jy € M U{ 1},
and an Ls-structure K, such that (1) —(8) hold for i = nand
9. K, C R‘Ji+1(a4),fori =0,...,n
10. Ifye Khthen {gi}((a, Y)) e Ky, fori=1,...,n;
1. Ky, = BASIC3+ 6i(j))-INDuptolj,fori=1,...,n

Proof: Letn > 1. By hypothesidjy—1 ; > T)~! , and froml, € log(log(Kp)) it

follows thatl, < ||a||°. By recurrence om we have that 2" > T}l Thus
by Lemmd2.2dthere is a $1°" -sparse sequened@) <+ betweenT?~1 , and
T}~ , generated bya, pn) for some smalpn. AsT]~1 , > 1is easily proved by

recurrence om, we can ue Lemma3.22}o argue thabn can be chosen iK,_;. We
want to apply Lemm&.27For K = K,_1. Solet us first check its hypotheses (a), (b),
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and (c). Ifn = 1thenK,_1 = Ko = K(a, r, T, a) and thus hypothesis (a) is trivially
verified € = a). We have $3" > TO >» T? > 1 and hence by LemnfaZ2K is
Ss-closed and € Kq. ThusTf € S3((a, r)) C Kp and so, condition (b) is verified
for T, = T andT, = TJ. Asthe sequencele)j§|1+2 is obviously||a||°V-sparse,

and p; € Ko, we have (c) forTj/ = le, | =1;andp = p;. If n> 1 we dheck the
hypotheses of Lemnfa27forc=a, 1, i =T 1 |, To=r2T) L, K =Ky g,

b= (b)y | =1n6=06h andT/ =T/ for j <, + 2. First, we haveb),, € K,_1 and
In € log(log(Knh_1)) by hypothesis.
Now we verify (a), (b), and (c):

(@) Fromag = (Ji + 1,a_1, Y;) it follows thata;_1 € S(g),i=1,...,n— 1.
el . .
It follows also, by recurrence anthata;, J;, Y < 2217 n particular this
impliesa; € K; foreveryi < n. Composing functions iss we getthahh=ag €
S(an_1), and by (7)S3(an_1) C Kn_1. Thereforea € K,_; . Now, we have
thatan_1 = {pn-1}(@n—2), ..., & = {pP1}(@) andp; < [r|°D,i=1,...,n—
1. By (2) of Lemmd3.3kthere is some < |r|°® such thatC(e, T, ao, an-1)
for T=Y""1r2 T ButY 1 r2 T < (n— 1).r2TE « T « 211", Hence
21all" > O(1).T anda,_1 € K(a,r, T, a).

(b) We prove by recurrence amthat TJ”n—_iH € Kn_1. Forn =1 it was stated
above. Suppos&] 2 ; € Ky_». By (8) T} 2, isin K,_; also, as well as
pn_1, 8n_1 and, consequentlyl,_; + 1. By Lemm@ﬂ‘;irl € SS((In1+
1,a, pn_1, Tj‘njfﬂ)), henceTJ”nj+1 € K,_1 asKp_1 is S3-closed. The rest fol-
lows from 214" > T~ > T0-1 ) > 1 which was remarked at the begin-
ning of the proof.

(c) The sequenceTj”)jgnJrz is obviously||a||°V-sparse and is betweé'rj‘nj+1
andrz.Tj‘nj+2 sincer < [|all.

Applying now Lemmd3.27lwe getpy, Gn, @, Yo € M, J, € MU {—1} and an
Ls-structureK, satisfying already (1) — (8). Let us see (9)—(11).

(9) Fori =nitis clear by definition (6) oK, and the factthafy , ;> O(l).rz.'I:L”Jrz.
Consider the case< n. We have thata, can be calculated from by compos-
ing successivelypi;1}, - .., { pn}, and the total computing time is bounded by
r2(To 4+ T < (=2 T <« T, . By (2) of Lemmd.9lwe have
C(e T, &, ay) for somee < |r|°D andT « Tii+1' SinceT + O(1).Tj , <
T} .1 < 28", we can apply LemmE.26ko conclude thak, C R, (a).

(10) Let1<i <nandy € K,. Clearlya € K, and then so isa;, y) sinceK,
is S3-closed. Ifz = {g}((&,y)) then by (4),z < s(J + 1,y) and
C(a, 12T o @, ¥).2). If y < 6(J + 1) thens (3 +1,y) < 22*°, and
wheny > t;(J + 1) thenz = 0 by definition of {g;}. In all cases we have

2llal °D 2 Ti 2 n - i n -
z2<2 . Butr<.Ty ., < O(1).r<.Ty ,,, sinceTy , < Tj ., wheni <n,

so we can apply Lemnfa24dto conclude that € Kp,.

(11) This fact is a direct consequence of (3), (5), (8), (9), and (10). Surprisingly,

it will not be used later and this is because our extensions preserveAgnly
formulas. We will rather imitate its proof for a bigger model of the fariK,
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in the proof of Theorer.1below. This is the reason we do not prove it here.
O

Proof of Theorem[21] Arguing as in the proof of Lemnfa 13 there isrg € M\N,

ro < r (and thus 977 exists also), such thapy = 21 andry < ||a]|. As

R(a, ro, 2@y ¢ R, it suffices to prove the theorem fog. So we can assume

r = 2= andr < ||al| without losing generality. LeT? = 2/13I" and letTY be such
that TY >> T2 > 1 (any 24" withr > p > O(1), for example). As we remarked
after Lemmd3.13 we have 221" € S;((a, r)). Let Ko = K(a, r, T, a). Fix an enu-
meration with infinite repetitions of paikg(j, b), |d||) whereg is a%5 formula and

b, d are parameters iM. Consider the first pair in the enumeration with parameters
in Ko and name it61(j, (b)1), 11). Thendy(j) =3y < ¥z < s191(|, ¥, 2), with yrq

aA8 formula with parameterg)s, and we are in the case= 1 of the hypothesis of
Lemmad3.37] This gives usK;. Suppose we have just obtainég from K,,_; using

this lemma and letf,1(j, (0)nt1), Ins1) be the first pair in the enumeration after
(6n, In) having its parameters iK,. Lemma3.31kays thaK, satisfies also (1) —(8),
thus we are again verifying its hypothesis and therefore we obtain. In this way

we get an increasing chain bg-structuregKn) . - Ateach step a ne\&g—LLIND
axiom is satisfied while the preceding ones are preserved. But the chain iag}nly
elementary and hence preservation of these axioms under the union of the chain is not
guaranteed since they a@-formulas. Rather, this preservation is a consequence of
the specific way the models are built. In other words, we have not yet proved that
K* :=UpN Kn is @ model ofig-LLIND . Instead, (a), (b), and (c) are inmediately
verified and thux™ < .o M. Let6(j) be ash formula with parameters € K* and

let] € log(log(K*)). Suppose that6(j), ) was considered when constructikg,
thatis,0(j) = 6n(j) is the formulady < t,Vz < s, ¥n(j, ¥, 2), b= (b)n, | = I, with

(b)n € Kn_1, In € log(log(Kn_1)). Note thata, € K* and hence by (b)), and Y,

are also ik*. Note too thak* C R} ; (an) by (9) of Lemmd3.31] Remember that
1< J<ls

Fact 3.32 1If0 < J, <I,then K* = 0h(Jn).

Proof: Letze K* such thatz < sy(Jn, Yn). As wejust remarkedz R3n+1(an)
so by (5) of Lemm&B3IM E ¥n(Jn, Yo, 2), and by (2)Yn < ta(Jn). By AL-

elementarityK* = ¥n(Jn, Yn, 2). We have provedK* =3y <thVz < sy (Jn, Y, 2),
that is,K* = 6n(Jn). O

Fact 3.33 If —1< Jy<Il,—1then K* = —=6,(Jn+1).

Proof: Lety e K* such thaty < t,(J,) and letm > n such thaty € K. We
havea, € K, C K, s0 by (10) of Lemmd33T{gn} ((an, ¥)) € Km. By (9) Ky, €
R’J‘n+1(an), hencey e RrJ‘nH(an) and by (5), ifz = {gn}((an, y)) thenM E z <
Sh(Jdn, V) A=Y (Jdn+1, Y, 2). Therefore we have thate K* and byAg—eIementarity
K'E z2< s Y) A =Yn(dh+ 1 Y,2). ThusK* = Vy < t332 < $9=¢n(dn +
1,vy, 2), thatis,K* = —=6,(Jn + 1). O
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From Fact8.32hnd3.33 K* = —6,(0) v 3 < In[6n()) A _'Qn(j + D]V 6n(lp), that
is, K* = 6,(j)-IND up tol,. Thus we have proved th&t* = EQ—LLIND. O
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