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Incommensurables and Incomparables:
On the Conceptual Status and the Philosophical

Use of Hyperreal Numbers

MICHAEL WHITE

Abstract After briefly considering the ancient Greek and nineteenth-century
history of incommensurables (magnitudes that do not have a common aliquot
part) and incomparables (magnitudes such that the larger can never be surpassed
by any finite number of additions of the smaller to itself), this paper undertakes
two tasks. The first task is to consider whether the numerical accommodation
of incommensurables by means of the extension of the ordered field of rational
numbers to the field of reals is ‘similar’ or analogous to the numerical accom-
modation of incomparables by means of the extension of the ordered field of
reals to the field of hyperreals. The second task is to evaluate several contem-
porary attempts to use concepts and techniques of the nonstandard mathemat-
ics of hyperreals to address classical, Zenonian puzzles concerning continuous
magnitudes. The result of both these undertakings is, in a certain sense, ‘defla-
tionary’.

1 Introduction We are now quite accustomed to the view that the extension of the
field of rational numbers to the field of real numbers is a natural, useful, and proper
move—irrespective of the precise mathematical methods that we may prefer in or-
der to effect that extension and irrespective of our ontological persuasions (or lack
thereof) with respect to (rational and real) numbers and other mathematical objects.
To someone of a philosophical cast of mind contemplating the development of non-
standard analysis over the last forty years, it might well be assumed that, by parity of
whatever reasoning that could be invoked to justify this view concerning the relation
of the rationals to the reals, we should similarly be prepared to regard the extension
of the field of real numbers to the field of hyperreal numbers as a natural, useful, and
proper move.

I begin by drawing a distinction: incommensurables are magnitudes that do not
have a common aliquot part; what I call incomparables are magnitudes such that the
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larger can never be surpassed by any finite number of additions of the smaller to it-
self. After briefly rehearsing some well-known facts about the ancient Greek and
nineteenth-century history of these concepts, I shall make a case for the initial appeal
of seeing the extension of the reals to the hyperreals as ‘similar’ to the extension of
the rationals to the reals but then raise some animadversions against this perspective.
I conclude that the vagueness or ambiguity of the (informal) notion of ‘similarity’ en-
tails that there is no obviously correct answer to the question of whether the extension
of the reals to the hyperreals is similar to the extension of the rationals to the reals. I
shall then argue that the contemporary development, by so-called ‘nonstandard analy-
sis’, of the mathematics of hyperreal numbers has what I term a ‘Janus-faced’ charac-
ter ( which I attempt to describe more precisely) that militates against a paradigm-shift
that would result in the displacement of the real by the hyperreal number line. This
Janus-faced character proves to be particularly relevant with respect to contemporary
attempts to develop novel, nonstandard accounts of some classical puzzles concern-
ing continuous magnitudes, such as those of Zeno of Elea. I conclude that these at-
tempts encounter a problem that arises as a result of this Janus-faced character of the
principal contemporary developments of nonstandard mathematics.

2 A brief historical background According to canonical lore, it was those myth-
ical, mystical Pythagoreans who discovered that there are some magnitudes that are
incommensurable with others. In addition to constituting a specifically mathemati-
cal conundrum, this discovery supposedly was regarded as generally very bad news
by the Pythagoreans who wished to develop a numerical ontology of everything. A
common assumption is that the first instance of incommensurability to be so unpropi-
tiously discovered was that of the diagonal and side of a square. Aristotle alludes to
a reductio in which it is proved that “the diagonal is incommensurable [with the side]
because what is odd becomes equal to what is even if it is assumed to be commensu-
rable” (An. pr. 1.23.41a26–27). Such a proof is easy enough to construct: a version
of it that was formerly printed as Proposition 117 of the tenth book of Euclid is now
thought to be an interpolated scholium. In contemporary (and quite un-Greek) termi-
nology, we see that the rational numbers are not closed under the operation of taking
the square root:

√
2 (length of the diagonal of a square with unit side) is not express-

ible as a ratio of integers. In this sense—a sense that obviously has implications even
for elementary plane geometry— the rational numbers are ‘incomplete’. Would it not
make good sense to ‘fill in the gaps’ by adding to the rationals some ‘new’ numbers
by which we can represent the length of the diagonal of the unit square, as well as
other constant, incommensurable (and, in fact, ‘transcendental’) ratios such as that
of the circumference of a circle to its diameter.

Sensible or not, it was a move that Greek geometers did not make. Rather, the
Greek response was to draw a sharp distinction between discrete πλη̂θoς (multiplic-
ity or plurality) and continuous µέγαθoς (magnitude) and to locate the phenomenon
of incommensurability squarely in the latter category. Distinguishing these two co-
ordinate kinds of quantity πóσoν, Aristotle characterizes multiplicity as numerable
quantity and magnitude as measurable quantity (Meta. 5.13.1020a8-10), maintaining
that “number (α’ριθµóς) is commensurable (σν́µµετρoς), but number is not pred-
icated with respect to what is not commensurable” (Meta. 5.15.1021a5). The ‘the-
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ory of incommensurability’ is explicated by Euclid in his theory of proportionality of
magnitudes in the fifth and tenth books of the Elements. Bostock nicely characterizes
the Greek persistence in refusing to subsume (relatively) incommensurable magni-
tudes under the concept of number. As he points out, the assumption “that every line
must have a definite length could perfectly well be denied—classical Greek mathe-
matics did in fact deny it—but it is surely this sort of assumption that lies behind our
conviction that there is such a number as

√
2 ” (Bostock [2], pp. 210–11).

A second Greek mathematical conundrum pertains to what I have termed in-
comparable magnitudes. In his work, the Methodus (’́ Eϕoδoς), the great Hellenis-
tic mathematician Archimedes of Syracuse (third century B.C.) sets forth a method
of discovery that he used in finding some of his most famous results. Examples of
what is often termed the Archimedean ‘mechanical method’ are set forth in this work,
which was known in antiquity but lost thereafter and rediscovered only in 1899. In
brief, the method involves an ‘idealization’ of the concept of center of gravity that
applies to straight lines and plane figures as well as solids (in De planorum aequi-
libriis sive de centris gravitatis planorum). For example, the center of gravity of a
straight line is its midpoint; the center of gravity of any parallelogram is the point of
intersection of its diagonals; the center of gravity of a triangle is the point at which
the straight lines joining each vertex to the midpoint of the opposite side meet. It also
involves the assumption that a plane figure can be identified with the collection of
(parallel) linear segments ‘filling it up’ and a solid figure can be identified with the
collection of its (parallel) planar laminae or ‘cross sections’. The strategy is to ‘bal-
ance’ the linear segments or planar laminae of one geometrical figure against those
of those of another and thus to infer the ratio in which (the areas or volumes of) the
complete figure stand.

It is important to emphasize that Archimedes did not consider this sort of argu-
ment to constitute a proof of the result. Early and more-or-less rigorous forms of what
is now often termed the Zenonian paradox of measure were well known by the third
century B.C.: on pain of paradox, the positive breadth (πλάτoς) of a plane figure can-
not be identified with the sum of the breadths of linear sections of the figure which
individually have null breadth; nor can the positive depth (βάθoς) of a solid figure
be identified with the sum of the depths of planar cross sections which individually
have null depth.

Would it not make good sense to introduce the concept of positive but ‘van-
ishingly small’ or ‘infinitesimal’ magnitudes so that, say, the linear segments would
not be strictly lines—they would have positive breadth—but such extremely small
breadth that their centers of gravity would be determined exclusively by their length
(µη̂κoς), just as is the case for lines in the strict sense. Similarly, planar laminae of a
solid figure would not be strictly planes—they would have positive depth—but such
extremely small depth that their centers of gravity would be determined exclusively
by their two-dimensional areas. Such a small breadth or depth would be ‘vanishingly
small’, ‘insignificant’, or ‘unassignable’ relative to any ‘standard’ magnitude in the
following sense. It would not ‘have a ratio’ (λóγoν ’́εχειν) to the larger standard
magnitude in the terms of Definition 4 of the fifth book of the Elements: “a magni-
tude is said to have a ratio to another when it can, when multiplied, exceed the other.”
As previously indicated, I use the term ‘incomparable’ to designate such magnitudes
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that would not (as we now say) stand in any real-valued ratio to one another.1

Again, whether sensible or not, the introduction of quantities that are incompara-
ble in this sense seems not to have been a move made within the mainstream of Greek
mathematics. In fact, Archimedes is known for having stated in the first book of De
sphaera et cylindro a postulate (the Archimedean or Eudoxean axiom) that requires
that the difference between any two unequal magnitudes of the same kind (i.e., lines,
surfaces, solids) and any other magnitude of that kind ‘have a ratio to one another’
in the sense of Definition 4 of the fifth book of Euclid. For present purposes, I adopt
the familiar forms the Archimedean axiom: (1) for x > y > 0, there is some posi-
tive natural number n such that y added to itself n times exceeds x; or (2) (a common
contemporary account that is equivalent, for ordered fields, to the first account) for
each element x of the field, there is a positive number n such that the multiplicative
identity element (usually designated ‘1’) added to itself n times exceeds x.

So, adoption of the Archimedean axiom rules out the possibility of incompara-
ble magnitudes: it rules out magnitudes that would be infinitesimal relative to stan-
dard, finite quantities as well as infinitely large quantities, which would be larger than
any standard finite quantities and equal to the multiplicative inverses of infinitesi-
mals. The combination, then, of the Archimedean axiom and reductio proof provides
a means of utilizing an informal concept limit in a finitistic context (viz., the availabil-
ity of finite differences between variable quantities V and some fixed quantity L, that
can be made ‘as small as one wishes’) without actually ‘passing to the limit’—that
is, without, for example, actually identifying the area of the parabolic segment with
the ‘infinite sum’ of areas of inscribed triangles. This perspective became the math-
ematically orthodox one, the unfortunately named ‘method of exhaustion’.

In concluding this brief account of incommensurables and incomparables in
Greek mathematics, I wish to emphasize the point that the Greeks made no attempt
to accommodate either incommensurables or incomparables numerically. However,
classical Greek mathematics found comfortable (if, at times, a bit complicated and
unwieldy) geometrical means for dealing with both phenomena: the theory of propor-
tion for the analysis of incommensurables; a combination of the method of exhaus-
tion, as a method of proof, and (at least in some cases) the method of indivisibles, as
a method of discovery, for infinitary analysis.

According to contemporary mathematical orthodoxy, a satisfactory and final res-
olution of both the ancient conundrums that we have been considering—that per-
taining to incomparables (and, more generally, the employment of infinitary ana-
lytical techniques) and that pertaining to incommensurables—was achieved in the
nineteenth century. Although he was in certain respects anticipated by Cauchy and
Bolzano, Weierstrass is usually credited with fully appreciating that the limit con-
cept could be developed, in terms of the so-called ε, δ approach, in such a way as to
eliminate any temptation to appeal to an idea of infinitesimal or infinitely small (and
infinitely great) quantities. Talk of ‘infinitesimal differences’ or differentials increas-
ingly came to be regarded as a mere façon d’parler (see Robinson [25], ch. 10). De-
spite the still prevalent Leibnizian notation, (d f/dx)x=x0 , the derivative is not some
ratio of infinitesimal ‘differences’ or quantities.2 Indeed, the Weierstrassian perspec-
tive became the mathematically orthodox one: incomparables were denied any nu-
merical or arithmetic status.
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The nineteenth-century fate of incommensurables was, in a certain respect, di-
ametrically opposed to the nineteenth-century fate of incomparables: with the arith-
meticization of the continuum by Dedekind and Cantor, relatively incommensurable
magnitudes found a secure numerical home as irrationals. Dedekind and Cantor each
developed techniques, now regarded as standard, for the ‘construction’ of the real
numbers from the rationals: reals are defined in terms of disjoint nonempty classes
(‘cuts’) of rationals by Dedekind and in terms of Cauchy sequences by Cantor.3

The principal issue that motivated both Dedekind and Cantor was the construc-
tion of an arithmetic continuum as an (analytic or reductive) instrument for represent-
ing the geometrical continuum. Their aim, in other words, was the arithmeticization
of the continuous magnitudes (µεγεθη̂) that the Greeks have relegated to geometry
(the study of continuous magnitudes), as opposed to arithmetic (the study of discrete
magnitudes). Ehrlich aptly characterizes this program:

The newly constructed ordered field of real numbers was dubbed the arith-
metic continuum because it was held that this number system is completely
adequate for the analytic representation of all types of continuous phenom-
ena. In accordance with this view, the geometric linear continuum was as-
sumed to be isomorphic with the arithmetic continuum, the axioms of geom-
etry being so selected to insure this would be the case. In honor of Cantor and
Dedekind, who first proposed the thesis, the presumed correspondence between
the two structures has come to be called the Cantor-Dedekind axiom. Given
the Archimedean nature of the real number system, once this axiom is adopted
we have the classic result that infinitesimal line segments are superfluous to the
analysis of the structure of a continuous straight line (Ehrlich [7], p. viii).

In other words, as a result of nineteenth-century developments with respect to the two
classical Greek phenomena of incommensurable and incomparable magnitudes, the
former was arithmeticized—incorporated into a system of numbers—while the latter
was not.

The Cantor-Dedekind perspective is perhaps given added support by a classical
uniqueness result for the arithmetic continuum or ordered field of real numbers:

(Real Completeness Theorem): The ordered field R of real numbers is, up
to order-isomorphism, the one ordered field that is complete in the following
sense: an ordered field F is complete just in case every nonempty subset X ⊆ F

that has an upper bound in F has a least upper bound (lub or supremum) in F.4

It is also well known that the completeness of an ordered field is equivalent to sev-
eral other important properties, for example, (A) the conjunction of the field’s pos-
sessing the Archimedean property and the existence, for every Cauchy sequence de-
finable on the field, of an element of the field that is the limit of that sequence; (B)
Dedekind continuity (the absence of gaps—that is, the absence of any cut (X, Y), of
the ordered field F, where both X and Y are nonempty, with respect to which there is
in F both no greatest member of X and no least member of Y). This sense of ‘com-
pleteness’ should be distinguished from another sense in which the ordered field R

is also uniquely complete. R is, up to isomorphism, the unique Archimedean or-
dered field that is Archimedean complete in the following sense: there is no proper
extension of it that is itself an Archimedean ordered field. Ehrlich has recently dis-
cussed the way in which Hahn obtained this result as a special case in the course of
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his study of Archimedean complete ordered groups, which may be non-Archimedean
(Ehrlich [8]).5

It might thus seem that any proper extension of the field R of real numbers must
sacrifice in some way the ‘completeness’ of the reals. And, in a sense, this is true:
any such extension must sacrifice the Archimedean property of the ordered field. But
we already knew that the addition of incomparable magnitudes (infinitesimals and
infinitely large numbers, relative to the standard reals) to the ordered field of reals
would entail sacrifice of the Archimedean property. The question is whether there
are other significant senses of ‘completion’ in which an ordered field containing rep-
resentations of incomparable magnitudes might be regarded as a completion of R.

3 The hyperreals: A non-Archimedean extension of the reals The model-theo-
retic construction of the hyperreals and an accompanying theory of nonstandard anal-
ysis developed by Robinson in the 1960s has become well known, and Robinson is
sometimes credited with restoring what I am calling incomparables—in particular,
infinitesimals—to mathematical grace as numerical entities. However, as Ehrlich has
pointed out, “Robinson was an authority on the theory of ordered algebraic systems
before he became a nonstandard analyst” ([7], p. xxii) and, as such, Robinson may
be regarded as extending earlier work on non-Archimedean ordered fields. Ehrlich
[7] and [8] provide a fine survey of a tradition of work on non-Archimedean geom-
etry and algebra extending from about the 1870s into the mid-twentieth century that
includes such figures as Thomae, du Bois-Reymond, Stolz, Veronese, Vivanti, Bet-
tazzi, Hilbert, Hölder, Hahn, and (later) Artin, Schreier, Tarski, and McKinsey. Al-
though much of this work no doubt should be characterized, in Ehrlich’s words, as
“mainstream mathematics,” there is a sense in which it represents a minority tradi-
tion. It is arguable that the Cantor-Dedekind perspective eventually achieved the sta-
tus of mathematical orthodoxy despite continuing work in non-Archimedean geom-
etry and algebra. The attitude of Cantor himself seems to have played a part in this
process. His own opposition to infinitesimals was unswerving and, at times, vitriolic.
In a letter to Vivanti, he credited Thomae with being the first to “infect mathematics
with the Cholera-Bacillus of infinitesimals;” and he suggests that, in developing the
ideas of Thomae, du Bois-Reymond found “excellent nourishment for the satisfac-
tion of his own burning ambition and conceit.” (Letter of Cantor to Vivanti, quoted
in Dauben [5], p. 131). In effect, Cantor denied the possibility of infinitesimal num-
bers because he believed that the Archimedean principle, or something equivalent to
it, was entailed by the concept of (linear) number. In the words of Dauben,

had Cantor agreed that the Archimedean property of the real numbers was
merely axiomatic, then there was no reason to prevent the development of num-
ber systems by merely denying the axiom, so long as consistency was still pre-
served. But to have allowed this would have left Cantor open to the challenge
that, if infinitesimals could be produced without contradiction, then his own
view of the continuum was lacking and the completeness of his own theory of
number would have been contravened. ([5], p. 235)

Of course, as has been previously noted, no non-Archimedean ordered field is com-
plete in the mathematical sense specified above—or in any intuitive sense that is
equivalent to or entailed by the Archimedean axiom (e.g., in having no gaps). How-
ever, an ordered field is characterized not just by the order relation but by the algebraic
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field operations; and if we shift our attention from the order relation to these algebraic
operations, a rather different intuitive picture of ‘completeness’ emerges.

An ordered field F is real closed just in case both (i) every positive element of
F has a square root in F and (ii) every polynomial of odd degree has a root in
F.

Artin and Schreier investigated the theory of real closed fields in the 1920s showing
that the ordered field R of real numbers is a real closed field. The ordered field Q of
rationals clearly is not: there is no element of Q, for example, that is the square root
of the element 2. There is a fairly intuitive sense in which the concept of a real closed
field represents a sort of ‘algebraic completeness’. In fact, Artin and Schreier’s work
formed the basis of the discipline of ‘real algebra’. Sinaceur points out that Artin and
Schreier termed the propositions provable about the real numbers within the theory
of real closed fields the “ ‘theorems of real algebra’, thus creating a new discipline
which screens the usual propositions of real analysis in order to locate those which
can be assigned or reassigned to algebra. In general, every question involving real
numbers which is solvable within the general framework of real closed fields is an
algebraic question” (Sinaceur [27], p. 196). However, R is not characterizable up
to isomorphism as the unique real closed field. There are real closed fields of only
denumerable cardinality, such as the field RA of algebraic numbers; and there are ex-
tensions of the reals, such as Robinson’s ordered field *R of hyperreals (to be further
discussed) and Conway’s ordered field of ‘surreal’ numbers, that are real closed fields
(see Conway [4] and Ehrlich [6]).

In the late 1940s, Tarski and McKinsey showed that all real closed fields, consid-
ered as models of first-order sentences of the language of ordered fields, are elemen-
tarily equivalent—that is, satisfy the same set of first-order sentences of the language
of ordered fields. More particularly, for the real closed field R of reals, if F is a real
closed field and R ⊆ F, then F is an elementary extension of R—that is, any first-
order formula of the language of ordered fields containing only constants that desig-
nate real numbers is true when interpreted in R if and only it is true when interpreted
in F. Keisler points out the limitation of this classical and very important result:

There is an important loophole in the result of Tarski. It applies only to for-
mulas in the language of ordered fields, that is, formulas built up from predi-
cates =,≤ the function symbols +, ·, and the constants 0, 1. Nothing has been
said about how one might extend other real relations or functions to the larger
set F. For example, the exponential functions, the trigonometric functions, and
the set of natural numbers cannot be defined in the language of ordered fields
(Keisler [17], p. 213).

Keisler proceeds to note that a construction, such as Robinson’s, of the (non-
Archimedean) ordered field *R of hyperreal numbers will yield the result that *R “is
an elementary extension of the real number system even in the full language which
has a symbol for every relation and function over R” ([17], p. 213).

The existence of non-Archimedean elementary extensions of the reals, such as
*R, can be established using the compactness result for first-order logic.6 Contem-
porary nonstandard analysis supplies a number of ways of proceeding to introduce
the non-Archimedean ordered field of hyperreals, as Keisler notes: “either by an ax-
iomatic approach which lists its properties and proves that a structure with those prop-
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erties exists, or by an explicit construction” ([17], p. 213). With a slightly different
emphasis, Chang and Keisler comment that “in practice most research in the sub-
ject [of what they call ‘Robinsonian analysis’] uses one of two approaches: super-
structures and internal set theory. The intuitive idea underlying all approaches is to
start with a set-theoretic universe 〈V,∈〉 and form an elementary extension 〈W, E〉 in
which all infinite sets are enlarged” (Chang and Keisler [3], p. 263). The “explicit
construction” to which Keisler refers is a certain kind of ultrapower, which estab-
lishes the existence of superstructures possessing the desired properties. So we can
classify the most frequently encountered approaches to nonstandard structures into
the model-theoretic (superstructures—often developed with the use of ultrapowers)
and set-theoretic (usually some extension/modification of Zermelo-Fraenkel set the-
ory with the axiom of choice [ZFC]). I shall describe the former approach and, later,
make some brief comments about the latter.

3.1 Superstructures The superstructure approach works with languages with a
constant designating the binary set-membership relation ∈ and bounded quantifiers
defined in terms of it [(∀x ∈ y), (∃x ∈ y)]. We shall let the base set R of a superstruc-
ture V(R) be the set of real numbers. The nth cumulative power set is defined in-
ductively as V0(R) = R; Vn+1(R) = Vn(R) ∪ P (Vn(R)). Then the superstructure V(R)
over R is the union of all the cumulative power sets Vi. In view of the standard method
for defining ordered sequences in terms of sets, n-ary functions as n + 1-ary relations,
and so on, it is fairly clear that a superstructure contains the properties of reals, rela-
tions on reals, functions and operations on reals, “function spaces, measures, and all
other structures from classical analysis” (Keisler [16], pp. 39–40). The ‘trick’ of the
method of superstructures is to find another superstructure V(*R) and a monomor-
phism or injective mapping * from V(R) into V(*R) satisfying certain conditions.7

The result is an ordered triple 〈V(R), V(*R), *〉 that Chang and Keisler call a non-
standard universe ([3], pp. 266–7). Let 〈V(R),∈〉 be a model with ∈ the binary set-
membership relation. The essential conditions that 〈V(R), V(*R), *〉 must satisfy in
order to be a nonstandard universe are (in addition to the requirement that R and *R
be infinite, which we have already assumed):

(i) that (as the notation already suggests) * maps the base set R of V(R) to the base
set *R of V(*R);

(ii) that the mapping * be a bounded elementary embedding of 〈V(R), ∈〉 into
〈V(*R),∈〉—that is, for every bounded-quantifier well-formed formula ϕ with
n free variables (where ϕ is a bounded-quantifier wff of classical analysis)
and every a1, . . . , an ∈ V(R), a1, . . . , an satisfy ϕ in 〈V(R),∈〉 (i.e., 〈V(R),∈〉
|= ϕ[a1, . . . , an]) if and only if *a1, . . . ,*an satisfy ϕ in 〈V(*R),∈〉 (i.e.,
〈V(*R),∈〉 |= ϕ[*a1, . . . ,*an]).8.

(iii) that, for every infinite X ⊆ R, σ X = {*r : r ∈ X} � X.

We also desire that the nonstandard universe 〈V(R), V(*R), *〉 be saturated over
V(R). There are a number of ways of characterizing saturation in such a case. One
way is the following. Suppose that we extend our bounded-quantifier language for the



428 MICHAEL WHITE

reals (with a constant ‘∈’ for set membership) by adding a constant for each element
of V(R). Then

〈V(R), V(*R), *〉 is saturated over V(R) if and only if, for every n < ω and for
every set � of bounded-quantifier formulas of this expanded language, if every
finite � ⊆ � is satisfiable in 〈V(R),∈〉 by elements of Vn(R), then � is satisfiable
in 〈V(*R),∈〉 by an element c of Vn(*R). ([3], p. 283)

Although there are other accounts of saturation,9 the preceding account nicely sug-
gests how nonstandard universes introduce numerical elements (members of non-
Archimedean ordered fields) to represent quantities that were once regarded as ‘ideal’
in something like the sense of Leibniz: mathematical fictions introduced to shorten
the process of reasoning. For example, saturation yields the result that, since there is
some N > n for each n that is a member of any finite subset of the set N of natural
numbers, there is some ‘ideal’ element c ∈ *N such that c *> *n, for every n ∈N. It
can then be shown that there is another ‘ideal’ numerical element c−1 = 1/c ∈ V(*R),
the multiplicative inverse of c, that is infinitesimal, nonzero, and nonnegative but less
than (*<) any standard hyperreal (‘embedded real’) *r such that r ∈ R.

Along with the saturation characteristic of nonstandard universes, the other espe-
cially crucial characteristic of nonstandard universes is that the monomorphism * of
such universes be characterized by what is usually referred to as the transfer principle
(or Leibniz’s principle). In essence, this is the requirement (ii) above: the requirement
that the monomorphism * be a bounded elementary embedding of V(R) into V(*R).
We thus obtain a way of taking any sentence ‘of the language of the reals’ and its in-
tended interpretation in V(R) and constructing, with the use of the monomorphism *,
a hyperreal interpretation of it (its ‘*-transform’) in V(*R). There is a shift from ‘se-
mantics’ to ‘syntax’ here that, while natural enough from the mathematical perspec-
tive, can be confusing to philosophers whose mathematical training is primarily logi-
cal. As previously noted (see note 8), condition (ii) in the definition of a nonstandard
universe is semantical: it pertains to the equivalent satisfaction of the same bounded-
quantifier formulas (of the theory of real analysis) by two different models, related
by the semantic monomorphism *. However, in the development and use of non-
standard analysis it has become customary to turn the semantic monomorphism *
into a syntactic transformation. That is, * in its syntactic sense is an inductively de-
fined mapping of terms or canonical names for entities in the domain V(R) of the
model 〈V(R),∈〉 onto terms or canonical names for entities in the domain V(*R) of
the model 〈V(*R),∈〉—entities that are the *-images of the denotations of the corre-
sponding terms of the language of real analysis interpreted by 〈V(R),∈〉. While gen-
erally harmless enough, and indeed often quite useful from a mathematical perspec-
tive, this ambiguity of the monomorphism * results in a subtle shift in the conception
of a nonstandard universe. We began, it seems, with the conception of one language
and one ‘theory’ (e.g., that of real analysis or some proper subtheory of it) with two
models—one standard and one nonstandard. When the monomorphism * is rendered
syntactic, however, we seem to have created two languages and two theories. There is
the language/theory of real analysis, to be interpreted in the standard model 〈V(R),∈〉
of the reals; and there is a certain part of the language/theory of (nonstandard)
hyperreal analysis—the part that ‘corresponds’, in terms of the monomorphism *,
to the language/theory of the reals—which is to be interpreted in the nonstandard
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model 〈V(*R),∈〉. The latter, syntactic perspective gives rise to questions concern-
ing the status of that part of the ‘language/theory of hyperreals’ (i.e., the theory of the
model 〈V(*R),∈〉) that does not ‘correspond’ to the theory of the reals. It is here that
what I termed the ‘Janus-faced character’ of contemporary nonstandard mathematics
manifests itself—an issue to which I shall later return.

However, it is the syntactic use of * that gives rise to what is usually called the
transfer principle or Leibniz’s principle:

a bounded well-formed formula (wff) ϕ is true (in 〈V(R),∈〉) if and only if its
*- transform *ϕ (an inductively defined syntactic transformation of ϕ in which
its terms are replaced by terms canonically designating the *-images in 〈V(*R),
∈〉 of the denotations of those original terms in 〈V(R),∈〉) is true (in 〈V(*R),
∈〉).

Consequently, a ‘nonstandard theory of the hyperreals’ can be regarded as a conser-
vative extension of the ‘(standard, Archimedean) theory of the reals’ in the follow-
ing sense. Any true claim about the reals has a corresponding *-transform true claim
about the hyperreals; and any true claim about the hyperreals that can be represented
as the *-transform of a claim about the reals has a corresponding true claim (that
claim of which it is the *-transform) about the reals. Ballard aptly describes such
a transfer principle as insuring that a nonstandard theory “is ‘safe’ for conventional
mathematicians” (Ballard [1], p. 77). In particular, the transfer principle supplies a
new, and sometimes useful (or elegant, or interesting, or relatively more simple), way
of proving theorems about the real numbers.10

The *-transforms of first-order propositions about the reals (propositions that
involve quantification over only the real numbers themselves) have essentially the
same ‘sense’ as the first-order propositions about the reals of which they are the *-
transforms. Thus, for example, corresponding to the claim that, for every positive real
number (element of R), there is a smaller positive real number, there is a straightfor-
ward analogous claim (*-transform) about positive hyperreal numbers (elements of
*R). However, while higher-order propositions about the reals have true *-transforms,
they exhibit a more marked ‘shift in meaning’. To consider a concrete example, the
ordered field of reals is ‘complete’ in the sense defined above: every nonempty sub-
set X ⊆ R that has an upper bound has a least upper bound (supremum). This char-
acteristic can be formulated as a second-order truth about the reals—second-order
because it involves quantification over sets of reals or, in terms of our restriction to
bounded quantifiers, over elements of the power set of the reals, P (R). We face here
what initially appears to be an antinomy. There is a true *-transform, that is, a ‘corre-
sponding’ truth about the hyperreals, to the second-order proposition expressing the
completeness of the ordered field of reals. But, because the ordered field of hyperre-
als is non-Archimedean, there will be sets of hyperreals (elements of P (*R)) which
are bounded above but have no least upper bound (e.g., among many other sets, the
set of positive infinitesimal hyperreals). The antinomy is only apparent because the
bounded second-order quantifier in the *-transform of the completeness proposition
rangers over the *-transform of the power set of the reals, that is, *P (R), and this set
is not identical to (is, in fact, a proper subset of) the power set of the hyperreals, that
is, P (*R).

To speak informally, there are entities of the hyperreal superstructure V(*R)—
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here, certain sets of hyperreals or elements of P (*R)—that the *-transforms of truths
about the reals fail ‘to detect’ or ‘to know about’. These are just the entities that would
‘make trouble’—in our particular example, sets of hyperreals or elements of P (*R)
that, while bounded above, do not have a least upper bound. This situation is the man-
ifestation of an important distinction among three kinds of entities of the hyperreal
superstructure V(*R). A standard entity y is an element of V(*R) that is the image,
in terms of the monomorphism *, of some x of V(R) (i.e., (∃x ∈ V(R))(y =*x)). An
internal entity y is an element of V(*R) that is an element of some standard entity x
that is itself an element of V(*R) (i.e., (∃z ∈ V(R))(∃x ∈ V(*R))(x =*z ∧ y ∈ x)). It
is easy to show that all standard entities are internal ones, but the converse does not
hold. Finally, an external entity is an element of V(*R) that is not internal. Propo-
sitions that involve essential reference to external entities constitute that problematic
part of the language/theory of hyperreals to which I earlier alluded: the part that does
not ‘correspond’ to the language/theory of the reals.

It is only internal entities that bounded quantifiers of the (syntactic) *-transform
of our language/theory of reals range over. Or, from our original semantic perspec-
tive, it is these entities in the domain V(*R) that the theory of reals, when interpreted
in the nonstandard model 〈V(*R),∈〉, ‘detects’ or ‘knows about’. The theory of reals
so interpreted does not detect/know about external entities, which thus have a sort of
‘ghostly’ presence in the model. I shall later return to the philosophical implications
of this ghostly presence. For the moment, I merely note some straightforward but per-
haps somewhat surprising consequences of the distinction among standard, internal,
and external entities. The *-image *r of each and every real number r (member of
R) is a standard entity; and, indeed, such images are customarily thought of as sim-
ply being the real numbers ‘embedded’ into the set *R of hyperreals. However, *R
contains infinitesimal and infinitely large elements that are not the *-images of any
real numbers; hence such infinitesimal and infinitely large hyperreals are not stan-
dard but are internal (because they are members of the standard entity *R). However,
the set σR = {*r ∈ *R: r ∈ R} of all and only the ‘embedded’ standard reals is an ex-
ternal set—as is the set of all and only infinitesimal elements of *R and the set of all
and only infinitely large elements of *R. Consequently, we can say that, although the
theory of reals, when interpreted in the nonstandard model V(*R), detects or knows
about the ‘embedded’ or standard reals ‘individually’ or ‘distributively’, it has ‘lost
sight’ of the set of standard reals. In fact, it turns out that any infinite set containing
all and only standard reals is external (Stroyan and Luxemburg [28], pp. 56–7, Theo-
rem 4.5.3). One might say that, with respect to the interpretation of the theory of reals
within the nonstandard model V(*R), the standard reals become ‘indistinguishable’
from nonstandard hyperreals in infinite sets. As we shall later see, a generalization
of this result holds for nonstandard or ‘internal’ set theory and is utilized to obtain a
striking ‘philosophical’ result by McLaughlin.

3.2 Nonstandard set theories One of the two first developments of a foundation
for nonstandard mathematics that is ‘strictly set-theoretic’ (as opposed to model-
theoretic) was the axiomatic ‘internal set theory’ (IST) of Nelson, dating from the late
1970s (Nelson [22]).11 Nelson constructs IST by beginning with Zermelo-Fraenkel
set theory with the axiom of choice (ZFC) and adding
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(a) a new 1-place predicate (‘is standard’) and
(b) three new axiom schemata governing the new predicate.

A well-formed formula (wff) of IST is called ‘external’ if it contains the new predicate
‘is standard’ and is called ‘internal’ if it does not. In practice, Nelson typically uses
the ‘is standard’ predicate to produce restricted quantifiers:

‘(∀stx)ϕ’ is shorthand for ‘(∀x)(x is standard −→ ϕ)’,
‘(∃stx)ϕ’ for ‘(∃x)(x is standard ∧ϕ)’, and

‘(∀st finx)ϕ’ for ‘(∀x)([x is standard ∧x is finite] −→ ϕ)’,

and so on, (where ‘x [a set] is finite’ has its usual meaning: “it is an abbreviation for
the internal formula which asserts that there is no bijection of x with a proper subset
of itself” [22], p. 1166). The three added schemata are as follows:

(T [Transfer]) (∀stt1) · · · (∀sttk)[(∀stx)A(x, t1, . . . , tk) −→ (∀x)

A(x, t1, . . . , tk)], where A(x, t1, . . . , tk) is an internal
wff with free variables x, t1, . . . , tk and no other free
variables;

(I [Idealization]) (∀st finz)(∃x)(∀y ∈ z)B(x, y) ≡ (∃x)(∀st y)B(x, y),
where B(x, y) is an internal wff with free variables
x, y (and possibly other free variables);

(S [Standardization]) (∀stx)(∃st y)(∀stz)[z ∈ y ≡ (z ∈ x ∧ C(z))], where C(z)
is either an internal or external wff with free variable z
(and possibly other free variables).

Of these schemata, (T) and (I)—as their designations indicate—provide the axiomatic
means for procuring analogues of those desirable characteristics of nonstandard uni-
verses that I earlier discussed: transfer (or bounded elementary embedding) and sat-
uration (or idealization), respectively. The attempt to form sets from external wffs
using the ‘normal’ ZFC abstraction or ‘separation’ schema (Aussonderung Axiom)
is prohibited as “illegal set formation” and, in fact, quickly leads to antinomy. The
standardization schema (S) provides a very restricted substitute: one can use a wff—
internal or external—to form a (standard) set whose standard members satisfy that
wff if one ‘applies’ that wff to a set that is standard.

A salient feature of Nelson’s IST, which both contributes to its elegance and has
dissuaded many mathematicians from accepting it as an adequate set-theoretic foun-
dation for nonstandard mathematics, is that it does not allow for the existence of any
sets that, in different formulations (such as the nonstandard-universe approach or the
ultrapower construction that we have considered), are termed external. Thus, when
IST is used to construct nonstandard hyperreal mathematics in a way analogous to
which ZFC can be used to construct the mathematics of the real numbers, there will
be no set of all and only standard natural numbers, or sets of standard rational or
real numbers. Nor will there be, for example, any sets containing all and only the
(nonstandard) infinitely large hyperreal numbers or ‘hypernatural’ numbers, or any
set of all and only the (nonstandard) positive infinitesimals, or any of the sets that
nonstandard mathematicians have come to call ‘monads’—for each hyperreal (stan-
dard or nonstandard) number r, the set (equivalence class) of all hyperreal numbers
s that are at an infinitesimal distance from r (i.e., {s : s 
 r}). From the perspective
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of IST, such sets have, as it were, ‘disappeared’. Thus, the set of natural numbers N

in IST is a set containing many nonstandard members: in fact, it can be depicted as
being constituted as an ordered set beginning with the standard naturals followed by a
densely ordered collection (without first or last member) of discretely ordered sets of
numbers, each with the order type of the signed integers (that is, in Cantorian terms,
the order type of the hypernatural N is ω + (ω*+ω)θ, where θ is a dense order type
without first or last element). Although the standard natural numbers may be said to
be, individually, members of this set, the set of all and only these standard members
(which we would intuitively like to think of as constituting the initial ‘ω-segment’ of
the ordered set N) simply does not exist in IST—as a member of the power set of N

or in any other way.
From a purely mathematical point of view, IST’s elimination of external sets has

generally been viewed as at least awkward. Fletcher comments that “external sets,
such as monads, galaxies, and the set of standard elements of a standard set S (written
as 0S), are very common in nonstandard arguments, and to express such arguments
in IST requires rephrasing to remove all references to external sets” (Fletcher [10],
p. 1001).12 He adds that

it seems probable that all external sets introduced in proving standard theorems
(as opposed to external sets used for studying nonstandard models for their own
sake) can be defined in terms of internal sets and the predicates ‘standard’ and
‘internal’; so the above paraphrasing should always be possible. Still, the re-
sulting statement of IST is much less transparent and more awkward to handle.
([10], p. 1004)

IST’s ‘disappearing’ of external sets, in addition to producing mathematical ‘awk-
wardness’ (for those mathematicians who wish to use it in “proving standard theo-
rems” in ZFC, real analysis, etc.), can also lead to a rather peculiar picture of mathe-
matical ontology. In an engaging and accessible presentation of Nelson’s IST, Robert
succinctly sets forth one such picture:

. . . the set N of natural numbers is the same in NSA [i.e., Nelson’s IST] sim-
ply because it is unambiguously defined in (ZF), and thus is part of our new
system. More explicitly, we are not going to add elements to the classical set
N of natural numbers, and we shall never refer to an ‘extension’ ∗N of N as
Robinson initially did. But if N still represents the same classical set, it is also
true that the new deduction principles—resulting from the new axioms—may
give a psychological feeling of extension since they reveal elements that were
unknown to (ZF). In a sense, the new axioms bring to life unsuspected elements
in the traditional set N. While this set N has not changed, people working with
NSA discern ‘more elements’ in it, because they have a richer axiomatic. Of
course, these unsuspected elements had always been there . . . . (Robert [24],
p. 9)

Most developments of nonstandard mathematics have been Janus-faced, to use the
term that I previously introduced. What does this mean? A nonstandard universe,
for example, consists of a standard, intended model, and a nonstandard model. So it
looks both ‘back’ to the standard, intended interpretation or model of (a part of) the
mathematical theory of the real number system and ‘forward’ to a nonstandard model
of that same theory. To oversimplify a bit, the standard entities and internal entities of
these developments represent areas where the two models ‘hook up’ (in terms of the
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monomorphism * from the standard to the nonstandard models); external sets repre-
sent areas (entities of the latter, nonstandard model) where they do not ‘hook up’. If
we choose to transform * into a syntactic mapping in order to create two ‘theories’,
a standard one and a nonstandard one, the later becomes a conservative extension of
the former. But, whichever perspective we adopt, it is characteristic of most develop-
ments of nonstandard mathematics to keep in view (and ready for use) both models
or theories-cum-models. This is what I mean by ‘Janus-faced’.

Nelson’s elimination of external sets in the IST suggests a point of view that is
not Janus- faced in this sense but exclusively ‘forward’ looking: in effect, the stan-
dard model (theory-cum-model) has been replaced by a nonstandard one. The ques-
tion then arises as to what has happened to the various (infinite) sets of the original
standard model. In most developments of nonstandard mathematics they survive, af-
ter a fashion, as external sets of the nonstandard model (theory-cum-model). But,
since Nelson’s IST has no external sets, they cannot survive in that fashion. What,
then, has happened to such sets in IST? Robert’s answer seems to be that they were
never there to begin with! Because of our relatively impoverished ‘axiomatic’ (of a
standard set theory such as ZFC) we simply did not recognize all the elements present
in, say, the set N of natural numbers or the ordered field R of reals—but the unrecog-
nized elements were actually there all along. Other comments by Robert indicate that
he may not, in fact, wish to be committed to the raging mathematical platonism that
would seem to accompany such a perspective. However, the passage that I quoted
earlier suggests, I believe, that—at least as Robert interprets it—Nelson’s IST repre-
sents an approach to the hyperreals that is significantly different from the more usual
Janus-faced perspective, an issue to which I return in the ‘philosophical’ comments
of the following section.13

The objections by mathematicians to Nelson’s IST, however, have typically been
more ‘practical’. Nonstandard mathematics has for the most part been developed as a
conservative extension of standard mathematics: that is, it has quite self-consciously
been developed in such a way that whatever theorems provable in nonstandard math-
ematics about ‘standard’ (set-theoretic, real-analytic, etc.) mathematical entities are,
in principle, provable in the relevant branch of standard mathematics (ZFC, real anal-
ysis, etc.). I have already rehearsed Fletcher’s comments about the ‘awkwardness’
of IST’s elimination of external sets, which are often used in nonstandard arguments.
There is perhaps some irony in the fact that Nelson himself introduces external sets
as a convenience, while commenting that “external sets are not entities of IST” ([22],
p. 1176). Chang and Keisler note that “a disadvantage [of IST] is that the language
cannot talk about sets of external sets [it can ‘talk about’ particular external sets
whose elements are internal by use of wffs containing the ‘is standard’ predicate],
such as the σ-algebra generated by an algebra of internal sets. In practice, internal
set theory has been adequate for certain areas of Robinsonian analysis (e.g., singular
perturbations), but inadequate for others (e.g., probability theory, Banach spaces)”
([3], p. 287). Consequently, subsequent work on formulation of a set-theoretic foun-
dation for nonstandard mathematics has provided for the existence of external sets.14

4 Some philosophical considerations After the technicalities of the preceding sec-
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tion, I return to one of the principal conceptual questions of the paper: Is the nonstan-
dard method of according numerical status to incomparables—by means of the hyper-
real extension of the field of real numbers—a simple and straightforward analogue of
the nineteenth-century method of according numerical status to incommensurables—
by means of the real extension of the field of rational numbers? As I have now indi-
cated, there certainly are some similarities, beginning with an informal picture of the
number line. The ‘construction’ of the reals by Dedekind and Cantor suggests the
filling in of ‘gaps’ in the rational line by irrational numbers. Similarly, according to
a common picture of the hyperreals, infinitesimals ‘fill in the gaps’ surrounding each
standard, finite real (yielding monads); and the negative and positive directions of
the real line are extended by ‘galaxies’ of hyperfinite reals. In his elementary cal-
culus text Keisler [15], which is based on Robinson’s development of nonstandard
analysis, Keisler uses the heuristic devices of the ‘infinitesimal microscope’ and the
‘infinite telescope’ for ‘looking at’, for example, the behavior of the slope of a 1-place
function within the ‘monadic neighborhood’ of a given ordered pair of points. In fact,
these devices are formally defined in [16].

From a somewhat more rigorous perspective, there is an obvious similarity be-
tween the Cantorian construction of the reals by means of Cauchy sequences and
the construction of the hyperreals by means of ultrapowers. However, we saw that
the field R of reals numbers is the unique complete ordered field up to isomorphism.
Since the non-Archimedean field *R of hyperreals is not isomorphic to the reals, it is,
of course, not complete in the technical sense that we earlier noted: every nonempty
subset X ⊆ R that is bounded above has a least upper bound. For example, the (exter-
nal) set of infinitesimals, while bounded above (by any standard real), has no supre-
mum: there is no greatest infinitesimal nor smallest standard real number. An anal-
ogous uniqueness theorem for the hyperreal number system is more difficult to con-
struct because of the fact that nonstandard models of the theory of real numbers—
such as the hyperreal nonstandard universes 〈V(R), V(*R), *〉—of arbitrarily large
cardinality can be found. However, it turns out that, if one desires, one can find such
a uniqueness theorem: If we require (i) that the monomorphism * of a nonstandard
universe 〈V(R), V(*R), *〉 satisfies the transfer principle, (ii) that 〈V(R), V(*R), *〉 be
saturated over V(R), and (iii) that both *R and the set of all internal sets have the car-
dinality of the first uncountable inaccessible cardinal,15 there is, up to isomorphism,
a unique such nonstandard universe 〈V(R), V(*R), *〉 (see [16]). However, it might
be objected that condition (iii) seems to be quite arbitrary.

A different perspective—one that does not make platonist assumptions about the
foundational, ‘givenness’ of R—begins with the observation that different set theo-
ries (e.g., one in which the continuum hypothesis holds and one in which it does not)
might yield nonisomorphic Rs. One could then infer from a perspective such as that
of Feferman (“I am convinced that the Continuum Hypothesis is an inherently vague
problem that no new axiom will settle in a convincingly definite way,” [9], p. 109)
that R itself is not a unique or determinate, well-defined mathematical object. Con-
sequently, any ‘ambiguity’ or ‘vagueness’ with respect to the ontological status of *R

is matched by that of R itself.16

My conclusion is that there is not a sufficiently obvious, clear, and determinate
sense of ‘similar’ in order to supply a plausible mathematical answer to the question



HYPERREAL NUMBERS 435

of whether the extension of the ordered field of reals to that of hyperreals is similar to
the extension of the ordered field of rationals to that of reals. Similarity here appears
to be largely in the eye of the beholder; and whether one finds it or not will depend
upon any number of different predilections, assumptions, and commitments.

However, I wish to return to a fundamental difference between the classi-
cal nineteenth-century approach to incommensurables and the influential twentieth-
century nonstandard approach to incomparables. As the term ‘nonstandard’ suggests,
nonstandard hyperreal models were developed as alternative, nonstandard models of
the theory of real numbers. A principal motivation for the development of nonstan-
dard analysis was, in the words of Robinson, the conviction “that the theory of certain
types of non-Archimedean fields can indeed make a positive contribution to classi-
cal Analysis” ([25], p. 261). Even for those applications of nonstandard mathematics
that essentially employ nonstandard models (such as Loeb measure on a hyperfinite
grid, concerning which see Section 5.2 below of the present paper), it has generally
seemed necessary or advisable to mathematicians to establish a reference to some es-
tablished area in classical Archimedean mathematics (such as Lebesgue measure on
the real line in the case of Loeb measure) (see Keisler [17], p. 222).

So it is perhaps not surprising that most developments of nonstandard mathe-
matics have had the Janus-faced character to which I earlier alluded: they look both
‘back’ to the standard, intended interpretation or model of (a part of) the mathemat-
ical theory of the real number system and ‘forward’ to a nonstandard model of that
same theory. This Janus-faced character is made particularly perspicuous by the for-
mal representation 〈V(R), V(*R), *〉 of a nonstandard universe, which contains both
a superstructure on the reals and a superstructure on the hyperreals, together with the
monomorphism * connecting them. It is clear that, at least with respect to infinite
sets, the two superstructure models are incompatible in the sense of assigning infi-
nite sets that are not isomorphic as extensions of the relevant predicates— for exam-
ple, N and *N to ‘is a natural number, *R and R to ‘is a real number’, similarly for
‘is finite’, and so on. As we saw, within the nonstandard model, the former infinite
sets of standard elements possess only a ghostly existence as external sets, which the
bounded quantifiers do not recognize: a ghostly but important existence, however.
If the principal value of such nonstandard models is to serve as one element, among
many, in the tool kit of mathematicians working in classical analysis or some other
area of Archimedean mathematics, it is crucial not to let any of the entities of the
original intended Archimedean model—or other important external sets of the non-
standard model—disappear.

The situation with respect to the nineteenth-century construction of the reals
from the rationals was quite different. It certainly was never supposed that the
(Archimedean) ordered field Q of rationals and the (Archimedean) field R of reals
were alternative—and in a sense incompatible—models or interpretations of the same
mathematical theory. The added irrational elements of the latter were simply numeri-
cal representations of entities that had possessed, since at least Greek antiquity, a well-
established and respectable geometrical presence—whereas the numerical represen-
tation of incomparables (infinitesimals and infinitely great but still ‘hyperfinite’ reals)
added by hyperreal models have never had such a well-established and respectable
presence. And there never seemed to be any danger that, in working with the field



436 MICHAEL WHITE

of reals as opposed to the field of rationals, mathematicians had to worry about ‘los-
ing’ any structures thought to be mathematically significant. Therefore, there was no
compelling mathematical reason for the nineteenth-century real analyst (or ‘rational
analyst’) to adopt a Janus-faced perspective, keeping in view both ordered fields Q

and R as alternative models for the ‘theory of rational numbers’. One can certainly,
if one wishes, interpret the theory of rationals in the latter, ‘enlarged’ model, that is,
the field R of reals. But, in doing so, it does not seem that one has ‘lost’ anything
significant about the original intended model Q in the way in which one has ‘lost’
the original set R of reals—it has either become an external set or has disappeared
altogether—in the nonstandard model of the theory of reals, that is, the superstruc-
ture V(*R).

While it is eminently useful in terms of most current mathematical employments
of nonstandard models, the Janus-faced perspective introduces, as I shall argue in the
next section, a sort of ambivalence into the attempt to use nonstandard models con-
ceptually—for example, the attempt to use such models in order to resolve certain
classical problems concerning continua.

5 The philosophical employment of nonstandard models: three examples In this
last section, I consider three attempts to apply concepts of nonstandard analysis to
several of Zeno of Elea’s famous puzzles concerning continuous motion. I shall ar-
gue that what I have termed the Janus-faced propensity of contemporary nonstandard
mathematics imparts to these attempts to employ nonstandard concepts philosophi-
cally a certain ambiguity—a ‘sic et non’ character (rough English translation: “well,
yes, but . . . ”).

5.1 Zeno’s arrow paradox In 1982, in White [29] I applied nonstandard concepts
to resolve a version of Zeno’s Arrow paradox formulated by Jonathan Lear:

1. Anything that is occupying a space just its own size is at rest.

2. A moving arrow, while it is moving, is moving in the present.

3. But in the present, the arrow is occupying a space just its own size.

4. Therefore, in the present the arrow is at rest.

5. Therefore, a moving arrow, while it is moving, is at rest (Lear [19]).

The most common resolutions of the Arrow paradox, in this form, would probably
deny one or both of premises 1 and 2. If ‘the present’ is a durationless temporal instant
or ‘point’, Aristotle will deny 2 (and, by implication, some instances of 1), respond-
ing that the arrow is neither at rest or moving with respect to such a ‘now’ (τo‘ νυ̂ν)

because both motion and rest imply a lapse or duration of time. Some contemporary
resolutions will deny 1 (and perhaps 2) by introducing a ‘derivative’ sense of motion
(pun intended) applicable to the temporally instantaneous states of bodies. Accord-
ing to such a conception, although motion in the full-blooded sense implies temporal
lapse or duration, a body undergoing such motion and possessing positive instanta-
neous velocity with respect to a temporal point or instant can correctly be said to be
moving ‘with respect to’ (or ‘at’, but not ‘in’) such a ‘now’.
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However, some ancients—perhaps some Stoics—may have been inclined to re-
gard the present or temporal now (τo‘ νυ̂ν) as having duration. From such a perspec-
tive, as Lear suggests, premise 3 can be attacked “by developing a theory of time in
which the present can be conceived as a period of time. . . . one can then proceed,
as Aristotle did not, to give a sense to the notion of an object moving at an instant or
at the present instant [in the ‘full-blooded’ sense of moving]” ([19]). I suggested, in
effect, that temporal presents, instants, or nows be identified with monads of the hy-
perreal line used to represent the temporal dimension of motion ([29]). Recall that a
monad is an equivalence class of points standing at infinitesimal distances from each
other: for a given t{t′ : t 
 t′}. This, so to speak, is to give temporal instants infinites-
imal duration, making them ‘fat’. I could then diagnose the argument as a fallacy
involving equivocation on the phrase “occupying a space just its own size,” which
can mean, for something of ‘size’ r, either (a) “occupying a space r′ such that r = r′”
or (b) “occupying a space r′ such that r 
 r′.” Sense (a), but not (b), is taken to make
premise 1 true; while sense (b), but not (a), makes premise 3 true ([29], pp. 242–3).

While such a resolution possesses a certain neatness and cleanness, it depends
on ascribing to monads (which are external sets not even existing in Nelson’s IST) a
‘physical’ or temporal reality—as ‘nows’ or temporal instants—that is withheld from
the hyperreal points contained in such monads. Since each such monad contains pre-
cisely one standard real point, it is possible to view such monads as the ‘fat surrogates’
of points of the real-line representation of the temporal dimension of motion. So my
analysis ‘looks backward’, in effect, to the (external-set replacements of the) points
in the real-representation of the temporal dimension of motion in order to obtain its
‘basic units’ of time. Yet, it ‘looks forward’ to the hyperreal line for its representa-
tion of motion: motion is change of place with respect to lapse of time where both
‘change of place’ and ‘lapse of time’ are defined in terms of hyperreal coordinates.
Consequently, a hyperreal version of the Arrow paradox may be formulated simply
by identifying ‘the present’ or a ‘now’ with any hyperreal point, rather than with any
monad. And it is clear that such a ‘strengthened Arrow’ cannot be resolved by the
same maneuver; its resolution apparently will depend on one of the ‘classical’ ma-
neuvers, such as denying premises 1 or 2.

5.2 Zeno’s dichotomy paradox: one resolution According to Zeno’s Dichotomy
paradox, a runner is charged with traversing a distance of unit length. But, according
to Zeno, before the runner can reach the goal point—call it ‘1’—he must first traverse,
in order, an infinite sequence of checkpoints {(2n − 1)/2n}, beginning with n = 1 and
continuing as n increases without limit, that is, {1/2, 3/4, 7/8, 15/16, 31/32, . . .}.
According to one (charitable) interpretation, Zeno’s principal point is that such a run-
ner cannot reach the goal 1 because he first has to complete, sequentially, an infinite
number of actions (each one associated with reaching a checkpoint and no one of
which is equivalent to reaching the goal 1) of which there is no last member—and
that, Zeno believes, is impossible. According to another version of the Dichotomy,
the sequence of tasks of reaching checkpoints is inverted, {. . . 1/32, 1/16, 1/8, 1/4,

1/2, 1}, so that there is no first member of the sequence and the runner, according to
Zeno, cannot ‘get started’.

Keisler outlines a resolution of the Dichotomy that makes use of a nonstandard
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concept to which I have previously alluded, a hyperfinite grid. Where H is an infinite
hypernatural number, the hyperfinite grid H with mesh 1/H is the set of all multiples
of 1/H between −H and H. As Keisler notes, an H is usually selected such that ev-
ery standard natural number divides it (e.g., by letting H = J! or J factorial, for some
infinite hyperfinite number J), with the result “that each standard rational number be-
longs to H , that is Q ⊆ H.” ([17], p. 219). Keisler applies such a hyperfinite grid,
restricted to the unit interval [0, 1], to Zeno’s Dichotomy:

On the hyperfinite grid, Zeno’s [Dichotomy] Paradox is resolved as follows. We
can get from 0 to 1 in H steps by taking one step of length 1/H every 1/H
seconds, always staying in the hyperfinite grid H. Along the way, we will pass
through all the points 1/2, 3/4, 7/8, and so on, since they all belong to the set
H. Of course, we will overshoot irrational points such as

√
2/2, but there will

be a time at which we pass from below
√

2/2 to above
√

2/2 with one step of
length 1/H. ([17], p. 233)

Such a hyperfinite grid, as well as its restriction to the unit interval, are ‘hyperfinite’—
that is, they belong to the extension of the predicate ‘is finite’ when interpreted in
the nonstandard superstructure model V(*R) of hyperreal numbers. As Keisler notes,
such a hyperfinite subset of *R “inherits the first order properties of finite subsets of
R” ([17], p. 218) as well as appropriately weakened higher-order properties. Thus,
for example, there is no internal one-to-one mapping between such a set and any of
its proper subsets. Also, in terms of the < relation, there is a ‘first’ member and a
‘last’ member of each such set, and its members are discretely ordered: that is, any
member that has a successor (predecessor) has a unique, immediate successor (prede-
cessor). Consequently, many of the worries about the possibility of completing, se-
quentially, an infinite sequence of tasks seem to disappear. Although from an ‘exter-
nal’ (standard) point of view, the runner must complete an infinite sequence of tasks,
there will be a first task and a last task for him to complete; and any task strictly be-
tween these will have a unique, proper succeeding and a unique, proper preceding
task, and so on. And, as Keisler notes, each of the Zenonian checkpoints in the se-
quence {(2n − 1)/2n} is ‘embedded’ as one of these tasks—as is each of the check-
points in the inverted Zenonian sequence {. . . 1/32, 1/16, 1/8, 1/4, 1/2, 1}.

Does, then, Keisler’s resolution ‘work’? Sic et non. There are subsets of a hyper-
finite grid of a given mesh (as restricted to [0, 1]) that raise some of the same Zenon-
ian worries about completing sequentially an infinite sequence of tasks. For example,
there is the set of all initial steps, individually of length 1/H, the sum of which is less
than any real value, as well as the complement of this set relative to the hyperfinite
grid restricted to [0, 1]. It would seem that all of the tasks or steps in the former set
would have to be completed, sequentially, before the runner could undertake work on
the tasks/steps in its complement. But there is no last task/step in the former set nor
any first task in the latter. These ‘problem-causing’ subsets, however, must be exter-
nal subsets of the hyperfinite grid restricted to [0, 1]. This means that they do not fall
within the range of the higher-order bounded quantifiers over sets of hyperreals (that
is, quantifiers ranging over *P (R)), when the wffs of the theory of the reals are in-
terpreted in the nonstandard superstructure V(*R). Does it also mean that the sets are
‘not there’ to cause problems for Keisler’s analysis of the Dichotomy? Well, in most
formulations of nonstandard analysis such problem-causing sets are ‘there’, as exter-
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nal sets or members of P (*R)−*P (R). Although this may be a sort of mathematically
‘ghostly’ existence (in terms of the interpretation of the theory of reals in the nonstan-
dard model V(*R), or in terms of that ‘part’ of the ‘theory of hyperreals’ pertaining
to embedded reals), it is far from clear (to me, at least) that the existence of such sub-
sets does not raise more or less the same issues about the possibility of completing,
sequentially, an infinite sequence of tasks, that Keisler’s resolution of the Dichotomy
in terms of hyperfinite grids was supposed to avoid.

5.3 Zeno’s dichotomy paradox: another resolution Perhaps the most interesting
attempt with which I am familiar to apply nonstandard concepts to a classical philo-
sophical problem is the ‘critical’ application of Nelson’s IST to Zeno’s Dichotomy
paradox by McLaughlin and Miller. The argument of McLaughlin and Miller depends
on an epistemological assumption:

(E2) The fact that an object is located at a point in spacetime cannot be es-
tablished if the coordinates describing the point are nonstandard real numbers.
(McLaughlin and Miller [21], p. 378)

McLaughlin and Miller add that “the phrase ‘[t]he fact that’ in E2 means that the ob-
ject’s location has been observationally verified or could have been observationally
verified had one been sufficiently equipped and attentive to capture the requisite nu-
merical description of the event” ([21], p. 379). In a later paper by McLaughlin, this
assumption becomes the “critical mensuration thesis,” which he characterizes as fol-
lows:

every phenomenon can be completely described through the use of real num-
bers, but not all real numbers can be used for describing phenomena. The
first clause, the “mensuration thesis,” in the statement of the greater thesis,
rests upon the success of experimental science. The second clause must be ar-
gued, and this is carried out through the medium of internal set theory . . . .
(McLaughlin [20], p. 283)

Since McLaughlin is working within the framework of Nelson’s IST, which does not
provide for the existence of external sets, the extension of the predicate ‘real number’,
as he uses the phrase, is what is designated *R in other formulations, that is, the hy-
perreal numbers, and includes nonstandard infinitesimals, infinitely large reals, and
so on. As it turns out, the second clause will rule out precisely the nonstandard reals
for use in describing physical processes:

Although the mensuration thesis has appealed to real numbers for the means to
express results of a measurement process, it is clear that the thesis can be ex-
tended to other mathematical objects which might serve as measurement labels,
for example, complex numbers, vectors, real intervals. Specimens of such ob-
jects would be suitable candidates for the process only if they were standard.
([20], p. 289)

And, says McLaughlin, “we consistently adopt the perspective of an observer who is
measuring phenomena and have shown that nonstandard numbers are not available
as measurement labels for those phenomena” ([20], p. 289).

Now, consider the set of ‘checkpoints’ of Zeno’s Dichotomy, designated by
McLaughlin and Miller as C = {r ∈ [0, 1] : r = 1 − 2− j, 1 ≤ j < ∞} ([21]). From
the perspective of IST, this (standard) set will contain (a great many) elements that
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are nonstandard. That is, it will include infinitesimals for (all) values of r = 1 − 2− j

where j is what is variously called an ‘infinite hypernatural’ or ‘illimited [positive]
integer’ (see Robert [24], p. 17)—which numbers possess, of course, the first-order
properties of standard finite natural numbers. But, then, by the critical mensuration
thesis (hereafter, CMT), the set will contain (nonstandard) elements that cannot de-
scribe any physical process and, consequently, no runner could correctly be described
as traversing the set C of spatial loci.

But what of the set frequently characterized, in some formulations of nonstan-
dard set theory, as σC (or 0C)17, the set of all and only the standard elements of the
set C? We might—perhaps with some prejudice—characterize this as the ‘original
set giving rise to the Zenonian worry’. In other formulations of nonstandard mathe-
matics it would be an external set. But in Nelson’s IST, although all of its members
can be said to exist individually as standard mathematical entities, the set σC simply
does not exist. In fact, IST does not allow for the existence of any set that is infinite
(in the usual, standard sense of ‘infinite’) but contains only standard elements (see
[22], p. 1167, Theorem 1.1).

So, the supposed infinite sequence of tasks of Zeno’s Dichotomy cannot be de-
scribed by the (nonexistent) set σC; and application of the CMT rules out its descrip-
tion by the set C, which contains nonstandard members. Consequently, McLaughlin
draws a finitistic conclusion about (the mathematical description of) a physical pro-
cess such as Zeno’s Dichotomy:

For Zeno’s Dichotomy, incursion into an infinitesimal neighborhood of 1 was
seen to be possible but epistemologically opaque, disabling his claim of para-
dox. . . . Assume that there are no physical constraints to prevent a traverse of
any finite segment of the Checkpoint sequence of The Dichotomy, and . . . im-
plement a counting scheme to register the passage of the moving object past
each checkpoint. It must be the case that the count ceases prior to the record-
ing of an unlimited natural number. This implies that the count must terminate
at some standard natural number . . . ; to avoid paradox, the premise of no-
physical-constraints must be judged false. That is, phrased positively, physical
reasons must prevent the observations from being made. ([20], pp. 290–91)

McLaughlin’s argument, perhaps somewhat oversimplified, is the following:
Physical-epistemological considerations preclude any mathematical description of
a physical process that appeals to a set containing nonstandard numbers. But IST
provides only for finite sets of elements containing nothing but standard elements.
Therefore, the mathematical description of physical processes must be finitistic—
apparently, suggests McLaughlin, because of physical-epistemological reasons.

McLaughlin does not intend the CMT to yield such a finitistic conclusion di-
rectly. The use of IST—and in particular, its ‘disappearance’ of external sets—is a
crucial step in his argument. Consequently, it seems to me that one cannot infer that
the finitistic conclusion of his argument is due exclusively to physical-epistemological
considerations. It is the combination of the CMT and IST that yields such a conclu-
sion. If one were to accept IST + CMT, that fact would entail that any physical the-
ory could not fail to be finitistic, “on pain of being mathematically unintelligible,” as
McLaughlin has, in personal communication, expressed it to me. However, I suspect
that the appeal of the finitism characteristic of physical theories—and, indeed, the
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persuasiveness of arguments on behalf of such a characteristic of physical theories—
would rest on considerations quite independent of IST + CMT.

The fact that Nelson’s IST is, in its elimination of external sets, less Janus-faced
than competing formulations—including other set-theoretic formulations—of non-
standard mathematics seems to be crucial to McLaughlin’s argument. From the per-
spective of alternative such formulations providing for the existence (as an external
set) of the ‘original’ Zenonian set σC of checkpoints, there would be no apparent
reason to disallow this set as an acceptable description of a sequence of actions per-
formed by Zeno’s runner, since McLaughlin’s CMT in itself does not rule it out. But
then we are faced afresh with all the puzzles concerning the sequential performance
of an infinite sequence of acts. One could, of course, invoke physical-epistemological
considerations in order to strengthen the CMT so that it does commit one to finitistic
descriptions of physical processes. But that would be to render the IST otiose in the
argument for such a conclusion.

To summarize, I think that any arguments on behalf of some form of finitism are
going to be independent of Nelson’s IST. McLaughlin’s combintation of CMT + IST
is presented in such a way that it may look like it is intended as an argument for such
finitism. However, I think that what McLaughlin really intends is to model, math-
ematically and epistemologically, such a physical finitism. IST, among the various
mathematical developments of nonstandard mathematics, is singularly useful for such
an enterprise because, in dispensing with all external sets, it lacks the Janus-faced
character of virtually all other contemporary developments of nonstandard mathe-
matics. However, this very fact has rendered IST unsuitable, in the view of many
mathematicians, for many of the most interesting mathematical uses that have been
thus far found for nonstandard mathematics.

6 Conclusion It is obvious, I think, that incommensurable magnitudes have found
a secure numerical home in the real line, a process that was effectively concluded,
from a mathematical point of view, in the nineteenth century and that involved a
‘paradigm shift’ with respect to the classical Greek treatment of incommensurables.

Although the development of nonstandard mathematics has provided incompa-
rables with a spacious numerical Lebensraum in the hyperreal line, I believe that it is
clear that there has not yet been a similar paradigm-shift with respect to incomparable
magnitudes: that is, there is not yet any widely accepted arithmeticization of incom-
parable magnitudes in the form of a paradigm-shift from real to hyperreal line. Al-
though there are now some important exceptions (e.g., Loeb measure, canards), con-
temporary nonstandard mathematics has, for the most part, been developed as a tool
for doing classical, Archimedean mathematics. Consequently, it has been essential
to this perspective not to abandon classical Archimedean models while, at the same
time employing nonstandard models as needed. The result has been the Janus-faced
character of contemporary nonstandard mathematics, which militates against a shift
away from the Archimedean paradigm.

In my view this Janus-faced character has made nonstandard mathematics of
doubtful use, at present, in addressing ‘deep’ conceptual or philosophical issues per-
taining to continuity and infinity. Nonstandard mathematics has, in effect, adopted a
sort of ontological ambivalence toward external sets of nonstandard models (and set
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theories). As I have attempted to show, this fact raises problems for attempted non-
standard resolutions of classical conceptual problems pertaining to continuous mag-
nitudes.
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NOTES

1. I reserve my technical term ‘incomparable’ for magnitudes of the same (geometri-
cal) kind or species. Thus, in this sense, lines are neither comparable nor incompara-
ble to planes/surfaces, and planes/surfaces are neither comparable nor incomparable to
solids—although there is an obvious intuitive sense (recognized by Greek geometers) in
which magnitudes of different species are incomparable.

2. On the supposition that a real-valued function f of one variable defined for all x in
the real open interval (0, 1) is differentiable at a real number x0 in this interval, the
derivative of f at x0 is the real number a (i.e., f ′(x0) = (d f/dx)x=x0 = a) just in case
limx−→x0 [( f (x) − f (x0))/(x − x0)] = a. According to Weierstrass’ ‘ε, δ approach’
this last condition is analyzed as follows: For any positive real ε there exists a posi-
tive real δ such that |[( f (x) − f (x0))/(x − x0)] − a| < ε for all x in (0, 1) such that
0 < |x − x0| < δ.

3. Although there were other nineteenth-century constructions of the irrationals and reals,
those of Cantor and Dedekind are no doubt the best known. See, for example, Kline [18],
pp. 982–87.

4. This classical result may be obtained in a number of ways. For example, Pickert and
Görke obtain it in terms of the isomorphic mappings of all complete (in the above sense:
each nonempty set that is bounded above has a lub) ordered modules containing the ra-
tionals, where these mappings leave the rational numbers fixed and preserve order and
addition (Pickert and Görke [23], pp. 134–46).

5. My thanks to an anonymous referee for NDJFL for impressing upon me the importance
of this distinction.

6. The well-known argument is the following. Recollect that the compactness theorem
states that a set � of wffs of a consistent first-order theory has a model (is satisfiable)
just in case every finite � ⊆ � has a model. Consider a first-order fragment T of the the-
ory of real numbers with a constant designating the binary irreflexive order relation <,
a constant designating the set N of natural numbers, a ‘canonical designation’ for each
standard natural number n (e.g., 0, 1, 2, 3, etc.), and a ‘fresh’ constant c. Let � be the
(denumerably) infinite set � = {c ∈ N ∧ c > 0, c ∈ N ∧ c > 1, c ∈ N ∧ c > 2, c ∈
N ∧ c > 3, . . .}. Since it is clear that there is a model of T that is also a model for all
the finite subsets � of � (simply assign to c the successor of the largest natural number
whose canonical designation occurs in �), the compactness theorem entails that there is
a model for � as well. However, since no natural number is larger than itself, this model
must assign to c a number larger than any of the standard numbers. Consequently, the
model will not be Archimedean.

7. For alternative characterizations of the monomorphism *, see Hurd and Loeb [12], p. 79
and Robinson and Zakon [26], p. 111.



HYPERREAL NUMBERS 443

8. It is to be emphasized that this is a semantic condition. That is, the notation
〈V(R),∈〉 |= ϕ[a1, . . . , an]) means that a sequence of objects of the domain V(R) of
the model 〈V(R),∈〉 satisfies the bounded-quantifier formula ϕ(x1, . . . , xn) with respect
to that model 〈V(R),∈〉. Similarly, 〈V(*R),∈〉 |= ϕ[*a1, . . . ,*an] means that the se-
quence of objects 〈*a1, . . . ,*an〉 of the domain V(*R) of the model 〈V(*R),∈〉 (which is
the *-image of the sequence 〈a1, . . . , an〉) satisfies the same bounded-quantifier formula
ϕ(x1, . . . , xn) with respect to 〈V(*R),∈〉

9. Another way of characterizing the saturation of an elargement over V(R) begins with the
idea of a concurrent binary relation S ∈ V(R): a relation such that for any finite number
of elements a1, . . . , am of its domain, there is some b ∈ V(R) such that (ai, b) ∈ S, for
each i = 1 . . . m. An enlargement of the superstructure V(R) (or nonstandard universe
〈V(R), V(*R), * 〉 that is saturated over V(R)), then, is one for which, for each concurrent
relation S ∈ V(R), there is some c ∈ V(*R) such that (∗x, c) ∈ *S for all x in the domain
of relation S simultaneously. The monomorphism * is then said to bound all concurrent
relations; and such ‘added’ elements c ∈ V(*R) are sometimes said to be ideal. There
are also other more general model-theoretic characterizations of saturation (and of α-
saturation for a cardinal α) that I shall not discuss in this essay.

10. A striking elementary example is the very succinct and elegant nonstandard proof (un-
fortunately marred by some typographical errors) by Robinson of the (standard) inter-
mediate value theorem for continuous functions ([25], p. 67, Theorem 3.4.6).

11. An anonymous commentator on this paper reports that, while Nelson [22] was published
a few months previously, Hrbáček [11] had been submitted prior to the submission of
Nelson’s paper. The same commentator notes that the two theories were developed com-
pletely independently.

12. A galaxy is a set (equivalence class) of hyperreal numbers such that any two members
of the set are a finite distance (in the standard sense of that phrase) apart.

13. An anonymous commentator on the present paper represents a different reaction: “One
might retort that this is so [i.e., that IST is not Janus-faced in the way that most develop-
ments of nonstandard mathematics are], not for any intrinsic reasons, but simply because
IST chooses to wear blinders on its backward-looking face.”

14. Several of these later axiomatic developments introduce two ‘new’ unary predicates,
‘is standard’ and ‘is internal’. Hrbáček weakens Nelson’s idealization (saturation) ax-
iom, strengthens Nelson’s standardization axiom, and provides for external sets satis-
fying a limited number of ZFC axioms. It was obvious that a well-foundedness axiom
cannot apply to external sets. Hrbáček showed that neither of the combinations of re-
placement and choice axioms or replacement and power set axioms can apply to external
sets (Hrbáček [11]). Kawai has constructed an axiomatic nonstandard set theory much
like Hrbáček’s but with a stronger idealization and considerably weaker standardization
axiom, which allows all of the ZFC axioms except well-foundedness to apply to external
sets (Kawai [14]). Fletcher has developed a “stratified nonstandard set theory” (SNST)
along similar lines, but with an idealization schema that is intended “to allow only as
much idealisation as is needed” ([10], p. 1005). Ballard—in his monograph containing
a very useful synoptic account of the set-theoretic development of the foundations of
nonstandard mathematics—has proposed an “enlargement set theory” (EST), which is a
more radical approach than Fletcher’s to variable idealization and, according to which,
“for each cardinal κ, the internal universe Iκ shall be a κ-saturated elementary exten-
sion, not of S [the universe of standard sets], but of Eκ [the variable universe of external
sets]” ([1], p. 101). Finally, in a series of three articles, Kanovei and Reeken have de-
veloped a variant of IST, bounded set theory (BST), which is a theory for those IST sets
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that are members of standard sets. An enlargement of the BST universe satisfies the ax-
ioms of HST, “an external theory close to a theory introduced by Hrbáček” (Kanovei and
Reeken [13]).

15. A strong limit cardinal is a cardinal α such that for any cardinal β less than (included in)
α, it is also the case that 2β < α. Where β is a limit ordinal, the cofinality of β (cf(β))
is the least cardinal α such that there is a set X of that cardinality for which both X ⊂ β

and
⋃

X = β. A cardinal α is regular just in case cf(α)= α. Finally, a strong limit car-
dinal that is regular is inaccessible. ω(= ℵ0) is an inaccessible cardinal. An uncount-
able inaccessible cardinal would be a larger inaccessible cardinal. The assumption of the
nonexistence of uncountable inaccessible cardinals is consistent with Zermelo-Fraenkel
set theory. The axiom of inaccessible sets (due to Tarski), providing for the existence of
such uncountable inaccessible cardinals is, in the words of Chang and Keisler, “like the
[Generalized Continuum Hypothesis] . . . a plausible extra assumption about set theory
that can usually be avoided” ([3], p. 590). But not avoided, it seems, for obtaining this
‘uniqueness’ theorem. See the following discussion in the text.

16. I am grateful to an anonymous commentator on this paper for suggesting this idea to me.

17. While σC is usually considered to be a set of V(*R), in some notations ‘0C’ designates a
set ‘of classical real analysis’—that is, not a set of V(*R), but of the original (standard)
model V(R): where C is a set of V(*R), 0C = {x :*x ∈ C} ∈ V(R).
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