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Completeness and Definability
in the Logic of Noncontingency

EVGENI E. ZOLIN

Abstract  Hilbert-style axiomatic systems are presented for versions of the
modal logics KZ, where 2~ C {D, 4, 5}, with noncontingency as the sole modal
primitive. The classes of frames characterized by the axioms of these systems
are shown to be first-order definable, though not equal to the classes of serial,
transitive, or euclidean frames. The canonica frame of the noncontingency
logic of any logic containing the seriality axiom is proved to be nonserial. Itis
also shown that any class of frames definable in the noncontingency language
contains the class of functional frames, and dually, there exists a greatest con-
sistent normal honcontingency logic.

1 Introduction Thenoncontingency operator A isdefinedintermsof the necessity
operator [ by putting AA := A v O—-A. Thisinduces atranslation of A-formulas
(i.e., formulasinthe propositional modal languagewith A asthesolemodal primitive,
A-language for short) into O-formulas. So, to any CI-logic L (i.e, logic in the O-
language) one can associate a noncontingency logic of L, denoted by L*, consisting
of all A-formulas whose trand ations are theorems of L.

Montgomery and Routley [8] axiomatized the noncontingency logics of T, $4,
and S5 (see also [[9] and [[1Q]). It is worth noting that in case when L contains T,
or more specifically, the reflexivity scheme DA — A, necessity isdefinablein terms
of noncontingency (A-definable, for short) by OJA = A& AA. Inthelogic Ver, the
same effect is observed: it proves, for any A, aformulalJ] A < T, which can bere-
garded as a A-definition of CJ. Cresswell [[B] provides an example of logic H such
that H 2 T, H £ Ver, but (O is A-definablein H.

A systematic study of noncontingency logic, in particular, the caseswhen [ is
not A-definable, was initiated by Humberstone. In his paper [4], a (rather compli-
cated) system axiomatizing the noncontingency logic of K was presented. Kuhn [5]
succeeded in simplifying this system and proposed a finite axiomatization of the
noncontingency logic of K4.
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Our paper continues this line of investigation. In Section[2lwe present finite ax-
iomatization for the logics K=, where Z C {4,5}. We have dightly modified the
axiomatization of K2 and K42 suggested by Kuhn [5] to make it similar to the stan-
dard axiomatization of normal logics. In Section[3we discuss a problem with canon-
ical model construction for the logic D#; it appears that if anormal logic L contains
the seriality axiom then the canonical frame of L* isnot serial and hence falsifies L.
However, there is a detour way to find an axiomatization of some of these noncon-
tingency logics; namely, adding the seriality axiom to some logics does not change
the noncontingency logic thereof. Section[4j s concerned with definability of classes
of frames by sets of A-formulas. Here we show that the class of functional framesis
the smallest A-definable class; in particular, this explains why most of (-definable
classes of framesare not A-definable. Dually, in SectionBlthe logic Ver 2 isshown to
be the greatest in the lattice of consistent normal noncontingency logics. In the final
Section[ first-order formulas are found that correspond to (i.e., characterize the same
classes of frames as) the axioms of noncontingency logics mentioned in Section[2]

Thelogic KD45 is known to capture the principles of reasoning involving epis-
temic judgments: the postulates of thislogic arevalid under the (informal) interpreta-
tion of asentence of theform CJA as* Aisknown (to someidealized person)”. Inthis
context, the noncontingency assertion A A means “the truth value of A is known to
the person”. (Strictly speaking, the logic KD45 is usually proposed to represent cat-
egorical beliefs, when CJAisread “ A is believed (by an idedlized person)”, for this
logic does not contain the axiom A — A and hence allows the person to believe
in false statements. In accordance with this, doxastic, understanding of the modal-
ity ‘[0, the assertion A A means “the person has a definite view-point concerning the
truth value of A”.) In Section[3lthe logic of this modality, that is, the noncontingency
logic of KD45, is shown to coincide with that of K45.

2 Transitive euclidean noncontingency logic The propositional modal language
consists of adenumerable set of variablesVar = { po, p1, ...}, Symbolsfor falsehood
L, implication —, and aunary modal operator (1. Other connectives(T, —, &, Vv, <>,
() aretaken as standard abbreviations. The set of formulas of thislanguageis defined
as usual and is denoted by Fm™. This language will be referred to as a C-language
anditsformulasasO-formulas. A A-languageand theset Fm# of A-formulasarede-
fined similarly. Wefix anatural translation tr: Fm® — Fm" which respects Boolean
connectivesand tr(A A) := Ctr(A) v O—-tr(A).

A (Kripke) frameisastructure (W, 1), where W is a nonempty set of “worlds’
and 1 isabinary “accessibility” relation on W. By | we denote the converserelation
of 4. Amodel M = (F, =) consistsof aframe F and avaluation = C W x Var. The
notion “Aistruein M at w” (written M,w = A and M usually omitted) is defined
for both (- and A-formulas in the standard way; the modal clauses are as follows:

wkEOA = Vx{w XEA
wEAA = (Vxlw XxEA)jor (Vxlw XE A).

Obvioudy, w = A & w = tr(A), for any A-formula A. A formula Aisvalidina
frame F (F = A, insymbols) if Aistrueat every world in every model based on F.
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If I isaformulaor aset of formulasthen aI'-frameisaframevalidating I'; the class
of al I'-framesis denoted by #(I").

A O-logicisaset of C-formulas containing all classical tautologies and closed
under the rules of modus ponens, substitution, and equivalent replacement:

A A>B A oy _A<B

Gub)y e RE ) Fasos

MP
(MP) = A[B/p]

(Here A[ B/ p] istheresult of substituting aformula B for al occurrences of avariable
pin A) Thenotion of A-logicisdefined similarly. Given ad-logic L, anoncontin-
gency logic of L (briefly, a A-logic of L), denoted by L, isthe set of all A-formulas
whose translations are theorems of L (it isindeed a A-logic):

LA ={AeFm® |tr(A) e L} =tr }(L).

The minimal normal modal logic K hasthe rules (MP), (Sub), and the following ax-
ioms and the “necessitation” rule:

(AZ) All classical tautologiesin the C-language

A
A O(p—q) — MOp—0g)  (distributivity) | = TA

In this paper we consider the systems KZ, ~ C {D, 4, 5}, obtained by adding to K
the axioms (AQ), & € Z, listed below (the class of frames characterized by (AQ) is
first-order definable by aformula (go%) also shown below).

(A5) Op— Op (¢5) Yw Ix  wtx (seriality)
(AD)Op—00p | () Vw¥xlwVylx wty  (transitivity)
(AFh Op— O0p (p5) Yw ¥x|w Yylw xty  (euclideanness)

Now we formulate our axiomatic systemsfor A-logicsof KZ,  C {4, 5}; logics con-
taining the seriality axiom are considered in the next section. For notation simplicity,
we denote the systems by KZ2; Theorem[2.2]below justifies the notation. The logic
K2 hasthe rules (MP) and (Sub) as well as the following axioms and the “ noncon-
tingentization” rule (cf. [4]):

(A%) All classical tautologies in the A-language

(AR) A(p< ) = (Ap < AQ) (equivaence)
(A2) Ap < A—p (mirror axiom)
(A2) Ap— [A(@— p)VA(P—T1)] (dichotomy)

A
(NCR) AA

To obtain the system K YA 3 C {4,5), add to K2 the relevant axioms:
(A2) Ap— A(q— Ap) (weak transitivity).
(A2) =Ap— A(q— —Ap) (weak euclideanness).
Clearly, these systems are closed under the rule (RE%).
Before we pass to the main result of this section, let us recall for the future ref-
erence the axiomatization of A-logicsof T, S4, and S5 (cf. [B] and [9]). First, T, $4,
and S5 are axiomatized over K asfollows:

T=K+AD), SA=T+AY), s5=T+ @A),
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where (A?) isthereflexivity axiom CJp — p. The A-logicsof T, $4, and S5 can be
axiomatized over K#, however, in [B] and [3] the following simple axiomatization
thereof is proposed. The rules of T# are (MP), (Sub), and (NCR) and the axioms
are (A%), (A2), and

A)p— [A(p— Q) — (Ap— AQ)]  (weak distributivity).
Thelogics S4% and S5 are axiomatized as follows:
AL =TA+(Ap).,  SEA=T2+(A5) =T*+ (AD),
where the extra axioms are

(A3) Ap— AAp (b-transitivity)
(AS) AAp (b-euclideanness)
(AS) A(Ap—p) (weak euclideanness).

The properties of frames expressed by the above-mentioned noncontingency axioms
are presented in Section[5l There we show that classes of frames validati ng the ax-
ioms (A3) and (Ag)) (respectively, (AS), (A), and (A%)) strictly contain theclasses
of trangitive (respectively, euclidean) frames. The nameswe gaveto these axiomscan
be partially justified by TheoremE.3]

The main result of this section isformulated in the theorem below. It states that
the systems K =2 axiomatize exactly the A-logics of KX, = C {4, 5}. For its proof,
we use the canonical model argument adapted for A-logics by Humberstone [[4] and
Kuhn[B]. For K2 and K44 thetheoremisprovedin [[5], however, the axiomatization
of theselogicsproposed in that paper differsslightly from ours, sowerestatetheresult
for our systems. We need an auxiliary lemma.

Lemma2l K2FAp& Aq— A(P& Q).
Proof: Wederivein K2 (derivations are written quite schematically):

K+ Alp— g < Alp < (p& Q)] > [Ap— A(p&q)].
Here‘<i>’ is obtained from atautology [p — q] <> [p < (p& q)] by applying the
rule (RE%) and + 2" isan instance of the axiom (AR). Similarly,
K%+ Alg— pl — [Ag— A(P& 9)].
Finally, we use the dichotomy axiom:

KAFAp— {A(Q— p)VA(P— Q) —
—{[Ap—> A(p& Q)] V[AgQ— A(p& )]} <
< {((Ap& AQ) — A(p&Q)}.

Thefirst premise Apof Ap— {(Ap& AQ) - A(p& )} isredundant. (]

Theorem 2.2 (Completeness) For any X~ C {4, 5} and any A-formula A, the fol-
lowing statements are equival ent:
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1. KI2+ A
2. KZFtr(A);
3. Aisvalidinall KZ-frames.

Proof: Wefollow thescheme (1) = (2) < (3) = (1). Theequivalence (2) < (3)
isthewell-known (cf. [[2]) completeness of K = with respect to K Z-frames. In the rest
of the proof we refer to A-formulas as just formulas.

1 = 2 The axioms of K2 are valid in any frame and so the trandations
thereof are provablein K. The case of the axiom (A}) is considered in [E]. Wegive
asketch of a derivation of (the translation of) the axiom (A@) inK5:

KSE=ap=— /T omp—+

O-Ap— U(— —Ap) > A(Q— —AD).

3= (1) We construct the canonical model M| = (W, 4, =) for thelogic L =
KZ2. Itsworldsare maximal L-consistent setsof formulas. A valuation isdefinedin
the usual way: w = p < p € w, for any world w and avariable p. Before defining
the relation 1 we introduce some notation.

For aformula A, denote XA := {A(B — A) | B Fm%}. In the subsequent
proof, the symbol X playstherole similar to that of (I in the standard canonical model
argument for CJ-logics. The differenceisin their “types’: the operator (J maps afor-
mulato aformula, whereas X maps aformulato a set of formulas. Note that seman-
tically X is by no means equivalent to [J, in the sense that the truth at aworld w of
the formula[J A is not equivalent to the truth at w of al formulasin the set X A.

Now denote fw := {A € Fm® | KA C w}. Finally, put wtx if and only if
fw C X

Lemma2.3 For anyworld w € W, the following properties are satisfied:

1° (Dichotomy) If AA € wtheneither A e fw or —A € fw.

2° Theset fw isclosed under (even empty) conjunction (hence fw # @).

3° Theset fw is closed under derivability in L: if Ae fwand L = A — B, then
B e fw.

4° The dichotomy property isreversible: if A € fw then AA € w.

Proof:

1° Suppose A, —A ¢ gw, then by definition of gfw, for some formulas B, C we
have: =A(B — A) € w, =A(C — —A) € w. However, using the dichotomy
axiom, we derive: K4 = AA — [A(B— A) v A(C — —A)], and hence w
is even K 2-inconsistent, which contradicts our assumptions.

2° By definition, theempty conjunctionis T. Since A(B — T) isprovableinK#
for any formula B, wehave KT CKA CLCwandso T € fw.
Now let A, B € fw and provethat (A& B) € fw, thatis, A[C— (A& B)] € w,
for any formulaC. FromXA C w and XB C w it followsthat A(C— A) € w
and A(C— B) € w. Using LemmalZ.T] we derive

KAFA(C— A&AC—B) — A[(C— A& (C— B)] «—
<« A[C — (A& B)].
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Since w isclosed under conjunction and derivability inK# (and evenin L), we
conclude: A[C — (A& B)] € w.

3° To provethat B € ffw, we take an arbitrary formula C and show that A(C —
B) € w. Since XA C w, we have A[—-(C — B) — A] € w. The assumption
L H A— B truth-functionally implies L - [-(C — B) - A] « [C — B],
and an application of the rule (RE?) finaly yields A(C — B) € w.

4° XA C wimplies A(T— A) € w, whichisequivalentto AA € w. O

Lemma24(==>5) Foranyformula Aandaworldw, w =A< Ac w.

Proof: By induction on A. Atomic and Boolean cases are trivial. Now consider
A= AB.

(<)
ABew = (by dichotomy 1°)
Betw or =B e fw = (by definition of 1)
(Vx{w B e x) or (Yxl{w —B e x) = (by consistency of x)
(Yx{w Bex) or (Vxlw B¢ x) = (byinduction hypothesis)
Wx{wxEB) or (VXlwXE B) = wpE AB.

=)

Suppose AB ¢ w. Thenthesets X = fw U {B} and Y = fw U {—B} are L-consistent.
For,if Yisnotthen L+ (A1 & --- & A,) — Bforsomeformulas Aq, ..., A, € tw
andn>0. By 2°, (A1 & --- & Ay) € ffw, then Be fw by 3° and AB € w by 4°,
which is not the case. The argument for X is similar except for additional use of the
mirror axiom.

Therefore, X and Y are contained in some worlds x and y. Since fw € X and
fw C y, we have wtx and wty; by induction hypothesis, B € x and B ¢ y imply
XE Bandy | B, thusw # AB. O

By this lemma, the canonical model falsifies al the nontheorems of L. To conclude
the proof, it remainsto check that the canonical frameisaK Z-frame. ThecaseZ = @
istrivial.

Suppose 4 € ¥ and prove that 4 istransitive. Let w1x1y and show that w1y,
that is, fw C y. Takeany A e fw, then A(B— A) € w, for every B. By the ax-
iom (A}), K4 - A(B— A) - A[C — A(B — A)], forany C. Since w isclosed
under K44 -derivability, A[C — A(B — A)] € w. Hence XA(B — A) C w and
A(B— A) e fw C x,whence XA C xand A € fix C v, asdesired.

Suppose5 € ¥ and provethat 1 iseuclidean. Let w1Xx, w1y and show that X1y,
thatis, ix C y. Takeany A ¢ y,then A ¢ dw by fw C y, hence—A(B— A) € w, for
some B. Since w isclosed under K 5% -derivability, we apply (A£) toobtain A[C —
—A(B— A)] € w,foral C, thereforeK—A (B — A) C w. By wtXx, we conclude:
—A(B— A) € x,thusXA & xand A ¢ X, hence the claim. O

3 Aproblemwith seriality Itisknown (see([2]) that the canonical frameof thelogic
D = KD isseria (and soit validates D). It turns out that this does not hold for the A-
logic of D. More precisely, an application of the construction described in the previ-
ous sectionto D yieldsaframewhichisnot serial. A possible solution of the problem
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consistsin appropriate modification of the construction. However, in this section we
show that, in order to axiomatize A-logic of somelogicscontaining D, thisisnot nec-
essary. In particular, we provethat KDZ2 = K32, for any = C {4, 5}. Note that the
canonical frameof KDZ* validatesK =# (sinceitstransitivity and euclideannessfol-
low from the presence of the axioms (Af) and (ASA) in the logic) and hence KDZ2,
so KD>2 isacanonical logic in the usual sense.

Recall that thelogic Ver isobtained by adding to K theaxiom O p, that is, Ver =
K + Op. Similarly, Triv = K + (dp < p). Theresults obtained in [[Z] imply that,
foranylogicL D K,if 0T € LthenL C Triv, otherwise L C Ver. Now observe that
the logic Ver® can be axiomatized by adding to K the axiom A p. The following
fact is aready mentioned in [[4], p. 225.

Theorem 3.1  For any consistent C-logic L containing K, L € Ver®.

Proof: Let Ae L. Consider aformula A as atruth-functional compound of vari-
ables and formulas of theform AB: A= f(p, ABq, ..., ABy), where f isanon-
modal formulaand p is the list of all variables occurring in A. We must show that
Ver® - A, or equivalently, Ver® - f(p, T,..., T), since Ver® - AB < T for any
B. Thelogic Ver® is conservative over propositional logic, so it remains to prove
that f(p, T,..., T) isatautology. To this end, we take an arbitrary ¢ € {1, T}™
with m = | p| and check that thevalue ¥ .= f(o, T,..., T) =T.

Since L2 is closed under the rule (Sub), substituting & for pin Avyieldsa A-
sentence (i.e., A-formulacontaining no variable) A[6/p] € L*. Itiseasily seen that
any A-sentence of the form AB isequivalent to T in K2 (for this, observe that any
A-sentence is equivalent to either 1. or T, and both AL and AT are equivaent to
T). Hence A[6/p] isequivalent to 9 in K2, so ¢ € L2. Finally, due to consistency
of L2, weconclude: 9 = T. O

Corollary 3.2 For any consistent (-logic L 2 D, the canonical frame for L* is
not serial and hence not an L-frame.

Proof: The set Ver® is L2-consistent, since it is even Ver2-consistent and L2 C
Ver®. Soit is contained in some world w of the canonical frame F_ for L2. We
claim that w has no 4-successors (and thus the frame F_ is not serial). Indeed, if
wtx then dw C x, but w contains A A for all formulas A, hence fw = Fm” and x is
inconsistent. O

Now we show, following [4], that adding the axiom (AE) to some [J-logics does
not change A-logic thereof. Let F = (W, 1) beaframe. A set of worlds accessible
from w € Wisdenoted by wt := {x € W | wtx}. Weturn each “blind” world into a
world “seeing” only itself and obtain aframeF := (W, 1), wheref} := 1t U {{w, w) |
w1 = J}. Givenaclassof frames 7, Wedenote? = {f| F e 7} In[IZj itisnoted
that frames F and F validate the same A-formulas. Consequently, the A-logic of
classes F and ? coincide.

Definition 3.3  Wecall theset L2 (¥) := {Ae Fm" | 7 = A} aC-logic of aclass
of frames F. A O-logic L iscaled ( Kripke) complete (with respect to aclass ¥) if
L = £5(F); finitely approximable if it is complete with respect to a class of finite
frames. For the A-language, the same notions are defined similarly.
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Theorem 3.4 Suppose a L-logic L is complete with respect to a class ¥ and LD
isthe smallest logic containing L and the axiom (AE). If F C ¥ then LDA = LA.

Proof: Theinclusion (D) istrivial. Now take any A € LD%; clearly, Ac L* &

tr(A)eL s F FEtr(A & Va |: A, smtremamstoshowthat F |: A, for any frame
Fe T. Smce?c I, WehaveFe F and so F|:L bes«des F is seriad, hence
F = (AD). Thus F |= LD, whence F = LD, in particular, F = A. By the above,
thisisequivalentto F = A. O

As a consequence, KDZ* = Kz, for any = C {4, 5}, since the transitivity and eu-
clideanness properties are preserved as we pass from F to F. Forthecase T = @ the
result was obtained in [4].

4 Definability Insofar as the A-language is embeddable into the [J-language via
the trandation tr, the expressive power of the former is no more than that of the lat-
ter. Moreover, asis already noted in [H], it is essentialy less, for some well-known
J-definable classes are not A-definable. In this section we show that this effect is
explainable by the fact that every A-definable class of frames must contain the class
of functional frames.

Definition 4.1 A class of frames ¥ is O-definable if there exists a set I' of [J-
formulas such that, for any frame F, F e ¥ < F =T inthiscaseI' is said to [J-
define 7. For the A-language, the same notions are defined similarly.

Following [, p. 91, we call aframe functional if it satisfies the condition
Yw Vx{w Vylw X=Y (functionality).

In [A] it is shown that the logic Ver® is complete with respect to the class Func of
functional frames and moreover, this logic A-defines the class Func.

Lemmad4.2 |If " (respectively, I'') definesa class 7 (respectively, F)andI' C I
then ' C F (of course, I" and I'" are supposed to be in the same, - or A-, lan-
guage).

Proof: By assumption,VF(Fe F & FET) andVFFe 7 < F =T1"). Then,
forany frame F,wehaveFe ' © F=I'=>FET & Fe 7. O

Theorem 4.3 Ifaclassof frames T # @ is A-definable then Func C 7.

Proof: Supposeaset I'A-defines 7. Takealogic L := LD(T). Since F =T, we
have F = tr(I"), whence tr(I') € L and I € L2, By Theorem[21] L2 < Ver?, so
I' C Ver®. Now Lemmal2limplies unc C 7. O

Corollary 44 The classes of reflexive, serial, transitive, symmetric, euclidean
frames, as well as any subclass thereof, are not A-definable.

This corollary (for the first four classes) was already obtained by Humberstone [4],
Theorem 4.2 from other considerations.

We shall return to definability issuesin the next section. Now we show that the
map L — L2 preserves (Kripke) completeness; moreover, it is an epimorphism of
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thelattice (with respect to inclusion) of complete logics containing K onto the lattice
of complete logicsin the segment [K 2, Ver 2]. In addition, we obtain the same result
for finitely approximable logics.

Theorem 4.5

(a) If aO-logic L is complete with respect to a class F then L? is complete with
respect to the same class 7. In particular, if L isfinitely approximable then so
isLA.

(b) If a A-logic M is complete with respect to a class F then M = L2 for some
O-logic L that is complete with respect to the same class ¥. In particular, if M
isfinitely approximable then M = L# for some finitely approximable logic L.

Proof:

(a) By assumption, L = LE(F); then L2 = LA(F), since, for any A-formula A,
AcLA(F)e FEAs FEtr(A) otr(A) el Ac LA,

(b) Suppose M = LA (). Thentake L := £5( F) and the above argument shows
that M = L2, O

The above map isnot injective, asthefollowing exampleshows. Clearly, Triv # Ver,
however, Triv® = Ver®, since Triv® - A p and Ver® is the greatest noncontingen-
cy logic, by Theorem[3.1] The same argument applied to any logic L containing the
functionality axiom ¢ p — Opyields LA = Ver?.

On the other hand, the restriction of this map to the family of logics contain-
ing T isinjective. Thisisan easy consequence of A-definability of (I in theselogics
by OA = A& A A and hence the existence of a natural trandlation from [J- into A-
language. Details are left to the reader.

We close this section with an observation that adding the class Func to anonempty
class F does not changeits A-logic. Thus, any (consistent) complete A-logic can be
represented as the A-logic of a class containing Func.

Lemma4.6 LA(F)= L (F U Func) for any nonempty class .

Proof: First, LA(FU G) = LA(F) N LA(G), for any classes F and G. Secondly,
since  is nonempty, thelogic L := £5( ) isconsistent and L2 < Ver® by Theo-
rem[3.1] Thirdly, the argument used in the proof of Theorem[4.5{a) yields LA (F) =
L2 and therefore L2 (F) € Ver®. Finally, L2 (FUFunc) = LA(F) N LA (Func) =
LA(F)NVer® = LAF). O

5 First-order correspondence Herewe present first-order formulas characterizing
the same classes of frames as the axioms of the noncontingency logics mentioned in
Section[Z] We begin with introducing some convenient notation.

Validity of a first-order formula ¢ in aframe F = (W, 1) will be denoted by
F @ to distinguish from validity of modal formulas. Quantification over worlds
accessible from a given world w € W will be written as Vx| w and 3x{w (as was
donein SectionZ). Instead of X NY # &, we write briefly XN'Y.
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A world w is called functional if it “sees’ at most one world; this property is
obvioudly first-order expressible by

Fnc(w) = VX, ylw (X=Y).

A world w is branching (Bra(w), in symbols) if it is not functional. We introduce
special notation for bounded quantification over branching worlds:

Yw o(w) = VYw[Bra(w) — ¢(w)];
Jw p(w) = 3FJw[Bra(w) & ¢(w)].

Bounded quantification over branching worlds accessible from w is written as

Vx¢w o(X) = VX[{wtx& Bra(xX)} — ¢(X)];
Ijwex) = Iwtx& Brax) & ¢(X)].

The existence of abranching world accessible from w will be abbreviated as§x¢w,
which is equivalent to Ix|wT. Fina ly, by Tran and Eucl we denote the classes of
transitive and euclidean frames, respectively.

Recall that the formula A p defines the class Func of frames satisfying the con-
dition YwFnc(w). The main theorem of this section states that the classes of frames
defined by A-formulas,

(AD) p—[A(p—q) — (Ap— AQ)]
(A})  Ap— A(q— Ap)

(AZ) Ap— AAp

(A8)  —Ap— A(q— —Ap)

(AS)  A(Ap— p)

(AS) AAD,

are first-order definable by the following formulas (braces enclosing two formulas
mean a conjunction thereof):

((pf) ?wTV’\X\Lw Vylx why

wh) FulBrwwer cunvunyfT LTI ]
((p5A) YU) VX, y\Lw XTy

((pé) Xw VX, ylw X1y

(v3)  Fu[Exw > Ve ylw xt = yp).

Theoremb5.1 FE (Aé) = Fg (<pé),for eachs € (T, 4, 4b, 5, 5b, 5’} and any
frame F.

Proof: Notethattheclaimfor s = T isalready statedin [[4]. Each formula(Aé) un-
der consideration belongsto the logic Ver 2 and henceistrue at any functional world
under any valuation. Wherefore in the ‘<" part of our proof it is assumed that we
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are given an arbitrary frame F = (W, 1) such that F EX ((pé), avaluation =, and a
branching world w € W.

e=T:

(=) Assumetha F ¥ (p2), that is, 3w —(wtw) and then 3x, yJw : X # y.
To falsify (A$) at w, put p (respectively, g) to be true only at w (respectively, X).
Then w = p; w = Ap, even w = C—p, since V| wt B p; w = A(p — Q), even
w E=O(p— q),sinceVvt]wt = p — q; however, w £ Ag, since X = qand y  q.

(<) Suppose w = p, Ap; by (¢4), we have wtw, hence w = Op. Further,
suppose w = A(p — ). Toseethat w = Ag, consider two cases:

(@ w EO(p— q); together with w = O p, thisimplies w = Og.
(b) wEO=(p— q),thatis, w =O(p& —q); it followsthat w = O—q.

=4
It suffices to consider aformuladp — A(q— Ap) instead of (A2).

(=) Asumethat F & (¢2), that is, JwIx} w3yl x : ~(wty). Let p befase
only at y and g be true only at x. Then w = [p, since =(w1y); however, w
A(q— Ap), for the following hold:

@ wkE 00— Ap), since Bra(w) implies3z{w, z# X, sothat zE£ gand z =
q— Ap.

(b) wkEO—-(g— Ap),sincewtX, X = q, and X £ A p; to seethelatter, note that
xtyand y B p, whereas Bra(x) implies3t|x,t # y, sothatt = p.

(<) Suppose w = O p and prove that even w = C(q — Ap). Take any x| w;
if Fnc(x) thenx = Apandso x = q — Ap; if Bra(x) then even x = Cp, since, for
any y| x, we have w1y by (¢4), and from w = Op it followsthat y = p.

6 =4b:
Clearly, instead of (Aj,) we can deal withOp — AAp.

(=) Asumethat F B (p4), that is, JwIxglw : Xot € wt and 3x, y}w such
that at least one of the conditionsin bracesin (gofb) fails. There are two cases:

1. Either x or yisfunctional, say, Fnc(y). Since Bra(xp) and xgt £ w4, we have
ds,t|Xg:S#t, —(w?s). Let pbefaseonlyats. Thenw = Op, for = (w1s);
y E Ap, for Fnc(y); and Xg £ Ap,forsg£ pandt = p; thusw B AADp.

2. Both x and y are branching. Then two subcases are possible:

@ xt\w?r) # (y?\ wt). Dueto symmetry, we can assume that 3s e
XM\ w?), s¢ (yr\w?). Thisimplies xts, =(y1s), and =(w1s). Let
pbefaseonlyats. Thenw = Op, for—=(w1s); y = Ap,eveny = Op,
for =(y1s); and x £ Ap, since s £ p, whereas Bra(x) implies 3t x,
t#£s sothatt = p; thusw £ AAPp.

(b) Now assumethat (x1\ w1) = (y4\ w?) and (dueto symmetry) x+ N w4
and yt N w1t = @. Let p betrueonly at worlds accessible from w. Then
w = Op by construction; y = Ap, even y = CO—p, for yt Nw?t = 9;
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and x £ Ap, sincext N w4 impliesx = ¢ p, whereas (Xt \w1) = (Y1
w?) # @ (the inequality is due to Bra(y) and yt N w4 = @) implies
X = O—p. Thusagain w & AAPp.

(<) According to (¢4, ), two cases are possible:

1. ¥x}w(xt € wt). Thenevenw = Op — DA p, for assumethat w = Op and
wX. If Fnc(x) then x = A p; if Bra(x) then even x = Op, since x4 € w.

2. Now suppose the second digunct in (goﬁ)) holds. We must show that w =
Op& O—Ap — O—Ap. Assumethat w = Op& O—Ap, thenIx|w : X
Ap, henceds t{x: sk p, t ¥ p (clearly, s# 1), and so Bra(x). Now take
any ylw; to see that y E£ Ap, first note that —(w+1t), for w = Op, hence
te (Xt \w?) = (y1\w?), soyrtand y = O—p; secondly, consider cases:

(@ w*s; then xt Nw1, hence yt Nw* by (¢3) andsoy = Op.

(b) —(w?s); thense (xt \wt) = (y1 \wt) (the equality holds by (¢3)),
whence ytsandy &= Op.

=5

(=)  Assumetha F [ (¢2), that is, Jw3x, ylw : =(x1y). From Bra(w) it fol-
lowsthat 3z| w : z # x (possibly z=y). Let p (respectively, q) betrueonly at y (re-
spectively, X). Thenw = —Ap, sincey = p and either x or zdiffersfrom y, call it t,
sothat wrtandt £ p; w = O(q— —Ap), for zE£ q; w = O—(q— —APp), since
XEqgand X = Ap, even x = O—=p, for =(x1y).

(<) Supposew = —Ap, then3x, ylw: X &= p,y ¥ p. Weprovethat evenw =
(g — —Ap) andmoreover: w = —A p. Forany z, w, wehave z1X, z1y by (<p5A),
hencezkE= ¢Opandzi= O—pandsoz= —Ap.

6="5"

Theformula(A%) isequivalent (moduloreplacing—pby p)toO(p& Ap) — (Op&
OADp).

(=) Assumethat F (9&), that is, Jwax, ylw : =(x}y). Consider two cases:

1 Xx=vy. Let pbetrueonly a x. Thenw &= ¢(p& Ap), since x = p and
X = O=p, for =(x1x); however, w £ Op, since Bra(w) implies3z{w : z #
X, o that z £ p.

2. X#Y. Let pbefdseonly ay. Then w = ¢(p& Ap), since x = p and
X = Op, for =(x1y); however, w B Op, since y B p.

(<) Suppose w = O(p& Ap). ThenIxjw : x = p and X = Ap. From (¢5)
it follows that w1 C xt. Since wtX, we have xtX, whence x = Op. Therefore
w = 0Op, since wt C x1; and for any ylw wehavey = Apandeven y = [p; to
see the latter, first note that w1 x and w1y imply y1x; now take any z}y. If z= X
then z = p; if z # X then from y1x, y1z and hence Bra(y) we infer, by (¢5), that
X712, 0 ZE= p.
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& = bb:

Theformula (AS) isequivalent to OA p — OAPp.

(=) Asumethat F B (p5), that is, JwIxglw and 3x, ylw : xt # yt. Then
two cases are possible:

1. Either xor yisfunctional, say, Fnc(y). SinceBra(xg), wehaveds, t| xg: s# t.
Let pbetrueonly ats. Then w = QAp, for y= Ap by Fne(y); and w =
O—Ap,sincexg B~ Ap,forsi= pandt B p. Thusw B AADp.

2. Both xand y arebranching. Since xt # y4, we can assume (due to symmetry)
that 3s| x: —(y1s). Let pbetrueonly ats. Thenw = QAp, fory = Apand
even y = Op by virtue of =(y1s); and w = O—ADPp, since X £ A p: indeed,
Sk p, whereas Bra(x) implies3t|x:t # s, hencet £ p. Aganw £ AADp.

(<)  Therearetwo possibilities:

1. Vx| w Fnc(x). Then Vx| w X = Ap, hencew = CApand so w = (AS).
2. Ix}w. Assumethat w = OAp, that is, Ix|w : X = A p. Takeany y| w; then
Xt =yt by (¢5), whencey = Ap. Thusw = OAp — OAp. O

Corollary 5.2  Thefollowing strict inclusionshold. Other inclusions between these
classes of frames follow from the exhibited ones.

Tran C F(AD) C F(AL)

U U
Junc  F(AL)
N U

Cucl C F(AS) = F(AS)

Proof: That gunc € F(A) for any A-formula A is proved in Theorem[4.3] The
Completeness Theorem@impliesthat Tran C T(Af) aswell as Gucl C T(Aé).
Since putting g := T in (A) yields aformula equivalent to (A3,) in K#, we have
F(AD) € F(A3). Theinclusion F(AL) € F(Ay) istrivial, since (AS) is the
succedent of theimplicationin (A2). Theequality 7(AS) = F(A%) isestablished
in Theorem[5.1]

Letusprovethat 7(AZ) € F(AL). Suppose F EX (¢&), thatis, any twoworlds
accessible from a branching world “see” each other (themselves as well). We prove
that even YwVx, ylw(xt = y1). Take a branching world w in F and any X, y]w,
then xty and y1y. To prove the inclusion xt C y1, take any z|X. If z=y then
clearly ytz If z# y then from xty and xtz it follows that Bra(x) and again y*tz.
The converseinclusion is left to the reader.

The inclusion of classes Fune, Tran, and Eucl into the nearest classes in our
diagramisstrict, sincethesethree classesareincomparable. Theinclusion F (ASAb) C
7(A§b) isstrict, for the following inclusion of logicsis strict:

T2+ (Ap) = 4% C S5 =T + (A3).
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X >

Frame X Frame Frame Z

Figure 1. Three frames.

Theinclusions F(A3) C F(Ag) and F(AS) C F(AL) arestrict, sincethe frame X
in Figure[Llvalidates (A) and (A3), but falsifies (A7) and (A2) a w. (Reflexive
and irreflexive points are depicted by e and o, respectively.)

Finally, no other inclusions hold that do not follow from our diagram. To show
this, it suffices to refute the inclusions Eucl C f(Af) and Tran C 7(A§b). InFig-
ure[1] the euclidean frame ¢ falsifies (Af) at w, whereas the trangitive frame Z fal-
sifies (AS) at w. O

It isworth noting that if we modify the frame Z by making w irreflexiveand y reflex-
ive then we obtain a frame possessing, as Cresswell [B] proved, the following inter-
esting property: its -logic is not equal to Ver, does not contain T, but necessity is
A-definableinitby OA=[AA& (A< AAA)].

Theorem 5.3  For & € {4, 4b} (respectively, & € {5, 50, 5'}), the axiom (A%) ex-
presses the transitivity (respectively, euclideanness) property of re flexive frames.
Precisely, a reflexive frame F validates (Ag) if and only if F is transitive (respec-
tively, euclidean).

Proof: Recall that, in the presence of reflexivity, necessity is A-definable by A =
A& AA. Thisinduces a trandation Tr from - into A-language which respects
Boolean connectives and Tr((JA) := Tr(A) & ATr(A). Clearly, FE A& F =
Tr(A), for any reflexive frame F and any [I-formula A. Therefore, in the logic T,
O-formulas A and tr(Tr(A)) are equivalent.

Now we are ready to prove our theorem. For s € {4b, 5b, 5’} the claim follows
immediately from completeness of axiomatization of S4* and S5* proved in [8] and
[9]. Consider, for instance, the case & = 4b.

Take an arbitrary reflexiveframe F. If F istransitivethen F = $4, so F = S44
and F |= (A}). To provethe converse, assumethat F = (A2), then F = S4%. Due
to completenessof S4%, from S4 - tr(Tr(AL)) it followsthat S4* - Tr(A}), o F =
Tr(AD) and F |= (AD), thus F istransitive.

The claim for & = 5 follows from equivalence of (AS) and (AS).

For & = 4 the argument is. on the one hand, (Af) is stronger than (Afb), by
Corollary [5.2] on the other, it is not too strong to go beyond S4%, that is, (A}) €
K42 c S4%. Hence, (A) can betreated like (AZ) above. O

We conclude with aremark on axiomatic systems presented in Section[2.] According
to Corollary 5.2] the axiom (A% isstronger than (AZ)). Hence (A%) can be replaced
by (A2) in the axiomatization of $4%. Humberstone [4] conjectured that K4* can
be axiomatized using the simpler axiom (A3 instead of (AZ). However, Kuhn [E]
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refuted the conjecture by providing the frame X (see Figure[llabove) which separates
these axioms. For the same reason, in the axiomatization of K52, the axiom (ASA)
cannot bereplaced by (A%) (for theframe X separatesthese axiomstoo). At the same
time, we can replace (A%) by (A2) in the axiomatization of S5%, since K5* - (A%)
by Corollary[5.2]land Theorem2.2] Here is an open question: Can we replace (AS)
by (AZ) in the axiomatization of K542
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