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Abstract. In this paper we study the existence of time periodic solutions
to a class of nonlinear parabolic equations with multivalued nonlinear terms

subject to the homogeneous Dirichlet boundary condition. We give two

types of existence results: one for large periodic solutions with any large
data, and the other for small periodic solutions with small data. Both

concern the case where the nonlinear terms contain either a upper semi-

continuous multivalued term or a lower semicontinuous multivalued term.
Some applications of our results are also given.

1. Introduction

Let Ω ⊂ RN be a bounded open subset of RN with smooth boundary ∂Ω, and

let QT := Ω × [0, T ] and ΓT := ∂Ω × [0, T ] with T > 0. Consider the following
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time-periodic problem:

(P)


∂

∂t
u(x, t)−∆u(x, t) ∈ −∂φ(u(x, t)) +G(x, t, u(x, t)), (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = u(x, T ), x ∈ Ω,

where ∂φ is the subdifferential of the proper lower semicontinuous convex func-

tion φ : R→[0,∞] and G : QT ×R→2R is a nonmonotone multivalued mapping.

Such inclusions appear naturally in the study of the existence of time periodic

solutions to parabolic equations with discontinuous nonlinearities, usually when

one extends the discontinuous nonlinearity to a multivalued map by filling the

jumps at the discontinuity points of the nonlinearity, and one passes to the

problem of finding solutions to the corresponding differential inclusion. We refer

to [25] where a time periodic problem with the homogeneous Dirichlet condition

is studied for the equation

(1.1) Lu(x, t) = g(x, t, u(x, t))

driven by an uniformly parabolic operator

Lu(x, t) :=
∂

∂t
u(x, t)−

n∑
i,j=1

(aij(x, t)uxi
)xj

+

n∑
j=1

bj(x, t)uxj
+ c(x, t)u(x, t)

with a discontinuous nonlinearity g(x, t, u). To prove the existence of strong

solutions for (1.1), one considers the problem of proving the existence of solutions

for the differential inclusion

(1.2) Lu(x, t) ∈ [g−(x, t, u(x, t)), g+(x, t, u(x, t))]

with g−(x, t, u) = lim inf
v→u

g(t, x, v) and g+(x, t, u) = lim sup
v→u

g(t, x, v).

Conditions on the points of discontinuity of the nonlinearity under which

any solution of the inclusion (1.2) satisfies the equation (1.1) almost everywhere,

were obtained in [8], [9]. In [25] the author gave the principle of lower and upper

solutions for the existence of strong solutions without additional constraints on

the jumping-up discontinuities of the nonlinearity.

On the other hand, the existence of periodic solutions in Banach spaces has

been studied in many papers. As applications of general theorems, some of them

dealt with the existence of periodic solutions of the differential inclusions (1.2)

obtained by filling the jumps.

In [6], nonlinear parabolic equations are studied by using the method of

upper and lower solutions, truncation and penalization techniques as well as

results from the theory of operators of monotone type and a fixed point theorem

for set-valued maps defined in ordered metric spaces due to [13]. Deuel and

Hess [10] used the upper and lower solutions method to establish the existence

of periodic solutions for a class of nonlinear parabolic problem.
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In [18] a nonlinear periodic problem with a discontinuous nonmonotone non-

linearity is considered and using a lifting result for operators of type (S+), a ge-

neral surjectivity theorem for operators of monotone type and an auxiliary prob-

lem defined by truncation and penalization, the authors proved the existence of

a solution lying between an upper solution and a lower solution.

The periodic problem in the context of abstract evolution equations was also

addressed by Vrabie [28] and Hirano [15], but they both assumed that the nonlin-

ear perturbation term are sublinear and single-valued. The abstract treatment

for the periodic problems for parabolic equations is also given in [22], which can

cover a wide class of nonlinear heat equations with multivalued perturbations as

well as Navier–Stokes equations.

We mention that problems with maximal monotone terms (unilateral con-

straints), both for finite and infinite dimensional cases, can be found in the book

of Vrabie [27].

The goal of this paper is to adapt and improve the techniques and arguments

developed in [24] in order to apply them to (P) and obtain existence results for

time periodic solutions, which improves some applications given in [22]. Our

approach uses tools from multivalued analysis, together with the theory of non-

linear operators of monotone type and methods from the theory of nonlinear

evolution equations.

We prove two types of existence results: one for large periodic solutions with

any large data, and the other for small periodic solutions with small data. In

both cases, we are concerned with the case where G is upper semicontinuous as

well as the case where G is lower semicontinuous.

This paper is organized as follows. In Section 2, we recall some notations and

basic definitions used in the following sections. In Section 3, we formulate our

main results. Section 4 contains a few auxiliary results and Section 5 is devoted

to the proof of main results. In Section 5, we exemplify the applicability of our

results.

2. Notations and preliminaries

In this section we recall some notations and basic definitions from the non-

linear operator theory and the multivalued analysis which we shall use in the

sequel. For further details we refer to [2], [3], [5], [16] and [24].

Let X and Y be topological spaces and 2Y be the family of all subsets of

Y . A multivalued mapping F : X → 2Y is said to be upper semi-continuous

(u.s.c., for short) on X if for every x0 ∈ X and for each open subset V ⊂ Y

such that F (x0) ⊂ V, there exists a neighbourhood U of x0 such that F (x) ⊂
V for all x ∈ U . A multivalued map F : X → 2Y is said to be lower semi-

continuous (l.s.c., for short) on X if for each x0 ∈ X and for every y0 ∈ F (x0)
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and any neighbourhood V of y0, there exists a neighbourhood U of x0 such that

F (x) ∩ V 6= ∅ for all x ∈ U .

Equivalently, a multivalued map F : X → 2Y is upper semicontinuous (re-

spectively, lower semicontinuous) on X if and only if, the set F−(C) := {x ∈ X :

F (x) ∩ C 6= ∅} (respectively, F+(C) := {x ∈ X : F (x) ⊂ C}) is closed in X for

each closed subset C of Y .

It is well known that if F : X → 2Y is upper semicontinuous on X with closed

values, then its graph Gr(F ) := {(x, y) ∈ X ×Y : y ∈ F (x)} is closed in X ×Y .

Conversely, if F : X → 2Y has a closed graph and if for each x ∈ X, there exists

a neighbourhood U of x such that F (U) :=
⋃
x∈U

F (x) is precompact, then F is

u.s.c. on X.

By a selection of a multivalued map F : X → 2Y we mean any function

f : X → Y such that f(x) ∈ F (x) for all x ∈ X.

Let (M,Σ) be a measurable space. We are particularly interested in the

case where Σ is the σ-algebra L(QT ) of Lebesgue measurable subsets of QT :=

Ω × [0, T ] and M = QT , where T > 0 and Ω ⊆ RN is a given open set, as well

as the case where M = X is a Banach space and Σ := L(QT ) ⊗ B(X), where

L(QT ) ⊗ B(X) is the product σ−algebra on QT × X generated by sets of the

form A×B with A ∈ L(QT ) and B ∈ B(X) with B(X) being the Borel σ-algebra

of X.

Let
(
X, ‖ · ‖X

)
be a separable Banach space. A closed valued multifunction

Ψ: M → 2X is said to be Σ-measurable (or simply, measurable) if, for every

open set U ⊂ X, we have

Ψ−(U) := {ω ∈M : Ψ(ω) ∩ U 6= ∅} ∈ Σ.

It is known that Ψ: M → 2X is measurable if and only if for every x ∈ X, the

map

ω 7→ d(x,Ψ(ω)) := inf{‖z − x‖X : z ∈ Ψ(ω)}

is a measurable R+ = R+ ∪ {∞}-valued function (see [16, Corollary 19, p. 142]).

A multifunction Ψ: M → 2X with nonempty valued is said to be graph measur-

able if

Gr(Ψ) := {(ω, z) ∈M ×X : z ∈ Ψ(ω)} ∈ Σ⊗ B(X).

For multifunctions with closed values, the measurability implies the graph

measurability, while the converse is true if Σ is complete.

Let Y be a Banach space with norm ‖ · ‖Y and F : I := [0, T ] → 2Y be

a multivalued map. Then for 1 ≤ p ≤ ∞ by SpF , we denote the set of all

selections of F which belong to the Lebesgue–Bochner space Lp(I, Y ) that is

SpF = {v ∈ Lp(I, Y ) : v(t) ∈ F (t) a.e. t ∈ I}.



Parabolic Equations with Nonmonotone Multivalued Terms 1079

It is easy to check that for a graph measurable multifunction F : I → 2Y , the

set SpF is nonempty if and only if t 7→ inf{‖x‖Y : x ∈ F (t)} is majorized by

a Lp(Ω)-function (see [16, Lemma 3.2, p. 175]).

In the remaining of this section we collect some definitions and properties

concerning maximal monotone mappings.

Assume that H is a real Hilbert space with inner product ( · , · )H = ( · , · )
and norm ‖ ·‖H . Assume A : H → 2H is a maximal monotone operator. The mi-

nimal section (or minimal selection) of A is the function A0 : H → H satisfying

the following conditions:

A0(x) ∈ A(x) and ‖A0(x)‖H = inf{‖ξ‖H : ξ ∈ A(x)} for all x ∈ D(A).

Recall that, the graph of any maximal monotone operator is demiclosed, that

is, closed in H × Hw, where Hw denote the space H furnished with the weak

topology.

Let ϕ : H → R := R∪{+∞} be a lower semicontinuous convex function. We

say that ϕ is proper if its effective domain

D(ϕ) := {x ∈ H : ϕ(x) < +∞}

is nonempty. The multivalued map ∂ϕ : H → 2H defined by

(2.1) ∂ϕ(x) = {g ∈ H : ϕ(y)− ϕ(x) ≥ (g, y − x)H for all y ∈ H}

is called the subdifferential of ϕ (in the sense of convex analysis).

It is known that if the subdifferential ∂ϕ of a proper lower semicontinuous

convex function ϕ is a maximal monotone operator and

D(∂ϕ) := {x ∈ H : ∂ϕ(x) 6= ∅} ⊂ D(ϕ).

We shall use ∂0ϕ instead of (∂ϕ)0 to denote the minimal section of the maximal

monotone operator ∂ϕ.

3. Main results

Let Ω ⊂ RN be a bounded open subset of RN , T > 0, QT := Ω× [0, T ] and

ΓT := ∂Ω× [0, T ]. For a Banach space X, we denote by Cπ([0, T ];X) the set of

all continuous maps u : [0, T ]→ X such that u(0) = u(T ).

To formulate our main results we introduce some conditions on the multival-

ued map G : QT × R→ 2R:

(GC) (Growth condition) There exist nonnegative numbers k ∈ [0, 1), q ∈
(0, 2∗), Cq ≥ 0 and a function a( · , · ) ∈ L1(QT ) such that

(3.1) |||G(x, t, u)|||2 ≤ |a(x, t)|+ k|∂0φ(u)|2 + Cq|u|2(q−1),
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for all (x, t) ∈ QT and for all u ∈ D(∂φ), where |||G(x, t, u)||| := sup{|ξ| :
ξ ∈ G(x, t, u)} and

(3.2) 2∗ :=


∞ if N = 1 or 2,

2N

N − 2
if N ≥ 3.

(H1
G) (u.s.c. condition) G : QT × R → 2R is a multivalued map with closed

convex values such that:

(a) for almost all (x, t) ∈ QT , G(x, t, · ) : R → 2R is upper semiconti-

nuous,

(b) For each u ∈ R, G( · , · , u) : QT → 2R is L(QT )- measurable.

(H2
G) (l.s.c. condition) G : QT × R → 2R is a multivalued map with closed

values such that:

(a) for almost all (x, t) ∈ QT , G(x, t, · ) : R→ 2R is lower semicontinu-

ous,

(b) G : QT × R→ 2R is L(QT )⊗ B(R)-measurable.

Then our main results are stated as follows.

Theorem 3.1 (Large periodic solution). Let condition (GC) be satisfied with

q = 2 and Cq = C2 < λ2
1(1 − k), where λ1 > 0 is the first eigenvalue of −∆

with domain D(−∆) = H2(Ω) ∩ H1
0 (Ω). Assume further that condition (H1

G)

or (H2
G) is satisfied. Then there exists a solution u ∈ Cπ([0, T ];H1

0 (Ω)) of (P).

More precisely, it holds that

∃ b(x, t) ∈ ∂φ(u(x, t)), ∃ g(x, t) ∈ G(x, t, u(x, t)) such that(3.3)

∂u

∂t
−∆u+ b− g = 0 for a.e. (x, t) ∈ QT ,(3.4)

∂u

∂t
,∆u, b, g ∈ L2

(
0, T ;L2(Ω)

)
.(3.5)

Theorem 3.2 (Small periodic solution). Let condition (GC) be satisfied with

2 < q < 2∗. Assume further that (H1
G) or (H2

G) is satisfied. Then there exists

a (sufficiently small ) number r0 > 0 such that, if ‖a‖1 ≤ r0, then problem (P)

admits a solution u ∈ Cπ
(
[0, T ];H1

0 (Ω)
)

satisfying (3.3)–(3.5). Here

‖a‖1 = sup
0≤t<∞

∫ t+1

t

∣∣ã( · , s)
∣∣
L1(Ω)

ds,

where
∣∣ã( · , s)

∣∣
L1(Ω)

is the zero extension of |a( · , s)|L1(Ω) to [0,∞).

4. Auxiliary results

In this section we assume that Ω is a bounded open subset of RN with

finite Lebesgue measure denoted by |Ω|, N ≥ 1, φ : R → [0,∞] is a proper
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convex and lower semicontinuous function, T > 0, QT := Ω × [0, T ], and H :=

L2(0, T ;L2(Ω)).

We here prepare two kinds of notions for the multivalued maps.

Definition 4.1. Let G : QT × R → 2R be a multivalued mapping. The

multivalued map G̃ : H→2H defined by

(4.1) G̃(u) = {g ∈ H : g(x, t) ∈ G(x, t, u(x, t)) for a.e. (x, t) ∈ QT }

is called the realization of G in H.

Definition 4.2. We say that the realization G̃ of G in H is a.e.-demiclosed

if for any sequence of functions (un)n∈N from QT into R which converges almost

everywhere in QT to a function u : QT → R and for any sequence of functions

(gn)n∈N from QT into R such that gn(x, t) ∈ G(x, t, un(x, t)) for each n ∈ N and

almost all (x, t) ∈ QT , which converges weakly in H to a function g ∈ H, then

one has g ∈ G̃(u), that is,

g(x, t) ∈ G(x, t, u(x, t)) for almost all (x, t) ∈ QT .

Proposition 1 of [24] with x and Ω replaced by (x, t) and QT , respectively as-

sures that condition (H1
G) gives a sufficient condition for the a.e.-demiclosedness

of G̃.

Proposition 4.3. Let (H1
G) be satisfied. Then G̃ : H → 2H defined by (4.1)

is a.e.-demiclosed.

5. Proofs of main results

Let φ : R→ [0,+∞] be a proper lower semicontinuous convex function with

φ(0) = 0 and put

(5.1) ϕ(u) =


1

2

∫
Ω

∣∣∇u(x)
∣∣2 dx+

∫
Ω

φ(u(x)) dx if u ∈ D(ϕ),

+∞ if u ∈ L2(Ω) \D(ϕ),

where

D(ϕ) =

{
u ∈ H1

0 (Ω) : φ̃(u) :=

∫
Ω

φ(u(x)) dx < +∞
}
.

Then ϕ becomes a proper lower semicontinuous convex functional from L2(Ω)

into [0,+∞] and its subdifferential is given by

(5.2) ∂ϕ(u) = −∆u+ ∂φ(u)

with domain

(5.3) D(∂ϕ) = {u ∈ D(ϕ) : u ∈ H2(Ω) ∩H1
0 (Ω),

there exists b ∈ L2(Ω) such that b(x) ∈ ∂φ(u(x)) for a.e. x ∈ Ω}.
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Moreover, for any b ∈ ∂φ(u) such that

(5.4) z = −∆u+ b,

it holds that

(5.5) ‖z‖2L2 ≥ ‖∆u‖2L2 + ‖b‖2L2

whence follows

(5.6) (−∆u, b)L2 ≥ 0 for all b ∈ ∂φ(u) and all u ∈ D(∂ϕ)

(see Lemma 1 in [23]). Then we prepare the following standard result.

Proposition 5.1. For any h ∈ H := L2(0, T ;L2(Ω)), the problem

(P)h


∂u

∂t
(x, t)−∆u(x, t) ∈ −∂φ(u(x, t)) + h(x, t), (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = u(x, T ), x ∈ Ω,

admits a unique solution uh ∈ Cπ([0, T ];H1
0 (Ω)) satisfying

(5.7)
∂uh
∂t

, ∆uh ∈ L2(0, T ;L2(Ω)).

Proof. Since ϕ( · ) is coercive in L2(Ω), i.e. ϕ(u) ≥ λ1‖u‖2L2/2, the existence

of periodic solution uh ∈ Cπ([0, T ];L2(Ω)) is assured by Corollary 3.4 in [5] and

the uniqueness follows from the strict monotonicity of ∂ϕ.

Furthermore the regularity (5.7) assures the absolute continuity of the map-

ping: t 7→ ϕ(u(t)) on [0, T ] (see Lemma 3.3 of [5]), which together with the fact

uh ∈ Cπ([0, T ];L2(Ω)) assures uh ∈ Cπ([0, T ];H1
0 (Ω)). �

Hence, we can well define a multivalued mapping

(5.8)
G : H := L2(0, T ;L2(Ω))→ 2H,

G(h) := {v ∈ H : v(x, t) ∈ G(x, t, uh(x, t)) a.e. (x, t) ∈ QT },

where uh is the solution of (P)h. Here we set

(5.9) |||G(h)|||H := sup{‖v‖H : v ∈ G(h)},

and, for R > 0, put KR := {h ∈ H : ‖h‖H ≤ R}. Then the upper semicontinuity

and the lower semicontinuity of G in Hw, is assured by the following results,

where Hw is the space H := L2(0, T ;L2(Ω)) endowed with the weak topology.

Lemma 5.2. Let G : QT × R→2R satisfy (H1
G) and suppose that there ex-

ists R > 0 such that G maps KR into itself. Then G : KR → 2KR is upper

semicontinuous with respect to the weak topology of H.

Lemma 5.3. Let G : QT × R→2R satisfy (H2
G) and suppose that there ex-

ists R > 0 such that G maps KR into itself. Then G : KR → 2KR is lower

semicontinuous with respect to the weak topology of H.
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Proof of Lemma 5.2. Since KR is a compact subset of Hw, in order to

show the upper semicontinuity of G, it suffices to show that its graph is closed in

Hw ×Hw, as is stated in Section 2. This part is essentially done in Lemma 4.3

of [22] or Lemma 3.1 of [21]. However, for the sake of completeness, we repeat

the same reasoning reflecting the present specific setting.

Let (hn, gn)n∈N be an arbitrary sequence such that hn ⇀ h, gn ⇀ g weakly

in H, hn ∈ KR, gn ∈ G(hn), i.e. gn(x, t) ∈ G(x, t, uhn(x, t)) and uhn(x, t) is the

unique solution of

(5.10)


∂

∂t
uhn

(x, t)−∆uhn
(x, t) ∈ −∂φ(uhn

(x, t)) + hn(x, t), (x, t) ∈ QT ,

uhn
(x, t) = 0, (x, t) ∈ ΓT ,

uhn(x, 0) = uhn(x, T ), x ∈ Ω.

Multiplying (5.10) by zn = −∆uhn
+ bn with bn(x, t) ∈ ∂φ(uhn

(x, t)), we have

(5.11)
d

dt
ϕ(uhn

(x, t)) + ‖zn(t)‖2L2 ≤ ‖hn(t)‖2L2‖zn(t)‖2L2

≤ 1

2
‖zn(t)‖2L2 +

1

2
‖hn(t)‖2L2 .

Since hn ∈ KR, integrating (5.11) over [0, T ], we get by (5.5)

(5.12)

∫ T

0

‖∆uhn(t)‖2L2 dt+

∫ T

0

‖bn(t)‖2L2 dt ≤
∫ T

0

‖zn(t)‖2L2 dt ≤ R2.

Since

‖z‖L2‖u‖L2 ≥ |(z, u)L2 | ≥ ‖Ou‖2L2 ≥
√
λ1‖Ou‖L2‖u‖L2 ,

we get

(5.13) 2λ1ϕ(u) ≤ ‖z‖2L2 for all u ∈ D(∂ϕ) and for all z ∈ ∂ϕ(u).

Hence we find that there exists t0 ∈ [0, T ] such that

(5.14) ϕ(uhn
(t0)) ≤ 1

T

∫ T

0

ϕ(uhn
(t)) dt ≤ 1

2λ1T
R2.

Then integrating (5.11) over [t0, t] with t ∈ [t0, t0 + T ], we obtain

(5.15) sup
0≤t≤T

ϕ(uhn
(t)) +

∫ T

0

‖∆uhn
(t)‖2L2 dt+

∫ T

0

‖bn(t)‖2L2 dt ≤ C0,

where C0 is a constant depending on T , λ1 and R but not on n. Hence we

can derive the boundedness of ‖duhn(t)/dt‖L2(0,T ;L2(Ω)) from the equation and

the pre-compactness of {uhn(t)}n∈N in L2(Ω). Then, by Ascoli’s theorem, there
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exists a subsequence of (uhn
)n∈N, denoted again by (uhn

)n∈N, such that

uhn
→ u strongly in C([0, T ];L2(Ω)) and a.e. in QT ,

∂uhn

∂t
⇀

∂u

∂t
weakly in L2(0, T ;L2(Ω)),

−∆uhn
⇀ −∆u weakly in L2(0, T ;L2(Ω)),

bn ⇀ b ∈ ∂φ(u) weakly in L2(0, T ;L2(Ω)).

Passing to the limit in (5.10), we find that u gives the unique solution of solution

of (P)h. Furthermore, since gn(x, t) ∈ G(x, t, uhn
(x, t)) almost everywhere in QT

and gn ∈ KR, there exists a subsequence of (gn)n∈N, denoted again by (gn)n∈N,

which converges weakly to some g in H.

On the other hand, uhn
→ u almost everywhere in QT . Therefore, by Propo-

sition 4.3 we find that g ∈ G(h).

Since the argument above does not depend on the choice of the subsequences,

we conclude that the original sequence (hn, gn)n∈N converges to (h, g) which

belongs to the graph of G, that implies the closedness of the graph of G in

Hw ×Hw. �

Proof of Lemma 5.3. We repeat almost the same argument as in the proof

of Lemma 10 in [24]. In order to check the lower semicontinuity of G, we have

only to show that for any weakly closed subset C in H,

G+(C) := {h ∈ KR : G(h) ⊂ C}

forms a weakly closed subset ofH. Let C be a weakly closed inH and let (hn)n∈N
be a sequence in G+(C) weakly convergent in H to some h0 ∈ H. To prove that

G+(C) is weakly closed, it suffices to show that g0 ∈ C for any g0 ∈ G(h0). Let

g0 ∈ G(h0), i.e. g0(x, t) ∈ G(x, t, uh0
(x, t)) for almost every (x, t) ∈ QT . Then

we are going to show that g0 ∈ C. For each n ∈ N we define ϕn : QT → R by

ϕn(x, t) = d(g0(x, t), G(x, t, uhn(x, t))) +
ρ(x, t)

n
,

where d(g0(x, t), G(x, t, uhn
(x, t))) = inf{|g0(x, t) − y| : y ∈ G(x, t, uhn

(x, t))}
and ρ(x, t) > 0 almost everywhere in QT , and ‖ρ‖L2(QT ) = 1. Then by virtue

of (b) of (H2
G), we can show that for each n ∈ N, ϕn( · , · ) is a measurable

function, and the multifunction (x, t) 7→ Γn(x, t) where

(5.16) Γn(x, t) := {y ∈ R : |g0(x, t)− y| ≤ ϕn(x, t)} ∩G(x, t, uhn
(x, t))

is also a measurable mapping with nonempty values (see the proof of Lemma 2

in [24]). Then, by the Kuratowski and Ryll-Nardzewski theorem (see Theo-

rem 5.1 in [14]), there exists a measurable selection gn(x, t) of Γn(x, t), i.e.

gn : QT → R is measurable and

(5.17) gn(x, t) ∈ Γn(x, t) for a.e. (x, t) ∈ QT .
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Since Γn(x, t) ⊂ G(x, t, uhn
(x, t)) and G maps KR into itself, (gn)n∈N is bounded

in H. Then there exists a subsequence of (gn)n∈N again denoted by (gn)n∈N
such that

(5.18) (gn)n∈N converges weakly in H to some g0.

On the other hand, since (hn)n∈N is also bounded in H, repeating the same

argument as for (5.15), we obtain the same estimate (5.15) and find that

uhn → uh0 strongly in C([0, T ], L2(QT )) and for a.e. (x, t) ∈ QT , as n→∞.

In particular,

uhn(x, t)→ uh0(x, t) as n→∞ for a.e. (x, t) ∈ QT .

Hence, by virtue of the fact that the lower semicontinuity of u 7→ G(x, t, u)

implies the upper semicontinuity of u 7→ d(v,G(x, t, u)) for every v ∈ H (see

Proposition 2.26, Chapter 1 of [16]), we see that

ϕn(x, t)→ 0 as n→∞ for a.e. (x, t) ∈ QT .

Then, in view of (5.16) and (5.17), we get

(5.19) gn(x, t)→ g0(x, t) as n→∞ a.e. (x, t) ∈ QT .

Then, by virtue of Egorov’s theorem together with (5.18) and (5.19) we get that

g0 = g0 (see the proof of Lemma 10 of [24]). Consequently, (5.18) implies that

(gn)n∈N converges weakly in H to g0. Since gn ∈ G(hn) ⊂ C and C is assumed

to be weakly closed in H, we conclude that g0 ∈ C. �

5.1. Proof of Theorem 3.1. Large periodic solutions. In this sub-

section, we give a proof of Theorem 3.1. To this end we prepare the following

lemma.

Lemma 5.4. Let (GC) be satisfied with q = 2 and Cq = C2 < λ2
1(1 − k),

where λ1 > 0 is the first eigenvalue of −∆. Then there exists R > 0 such that G
maps KR into itself.

Proof. Let h ∈ KR and uh be the unique solution of (P)h whose existence

is assured by Proposition 5.1. Therefore uh satisfies the equation

(5.20)
∂

∂t
uh(x, t)−∆uh(x, t) + bh(x, t) = h(x, t), (x, t) ∈ QT ,

where bh(x, t) ∈ ∂φ(uh(x, t)) for (x, t) ∈ QT . Multiply (5.20) by uh, then we get

1

2

d

dt
‖uh(t))‖2L2 + ‖∇uh(t))‖2L2 + φ̃(uh(x, t)) ≤ ‖h(t)‖L2‖uh(t)‖L2 .

Integration of this over [0, T ] gives∫ T

0

‖∇uh(x, t)‖2L2 dt+

∫ T

0

φ̃(uh(x, t)) dt ≤
∫ T

0

‖h(t)‖L2‖uh(t)‖L2 dt.
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Then, by Poincaré’s inequality, we have

λ1

∫ T

0

‖uh(t)‖2L2 dt ≤
∫ T

0

‖∇uh(x, t)‖2L2 dt(5.21)

≤ λ1

2

∫ T

0

‖uh(x, t)‖2L2 dt+
1

2λ1

∫ T

0

‖h(t)‖2L2 dt.

Hence, we obtain

(5.22)

∫ T

0

‖uh(x, t)‖2L2 dt ≤
R2

λ2
1

.

We next multiply (5.20) by bh(x, t) and we get

d

dt
φ̃(uh(x, t)) + ‖bh(t)‖2L2 ≤

1

2
‖bh(t)‖2L2 +

1

2
‖h(t)‖2L2 ,

where we used the fact that (−∆uh(t), bh(x, t))L2 ≥ 0 (see (5.6)). Then we

obtain

(5.23)

∫ T

0

‖bh(t)‖2L2 dt ≤ R2.

We set now

(5.24) R2 = max

{ ‖a‖L1(QT )

1− k − C2/λ2
1

, 1

}
.

Then we obtain by (GC), (5.9), (5.22), (5.23) and (5.24)

|||G(h)|||2H ≤ ‖a‖L1(QT ) + k‖bh‖2H +C2‖uh‖2H ≤ ‖a‖L1(QT ) +

(
k+

C2

λ2
1

)
R2 ≤ R2

which implies that G maps KR into itself. �

Now we are ready to give a proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose that G satisfies (H1
G) or (H2

G). Then

Lemma 5.4 together with Lemma 5.2 or Lemma 5.3 assures that G maps KR into

itself and G becomes upper semicontinuous or lower semicontinuous multivalued

maps. Then applying the Kakutani-Tikhonov fixed point theorem for G (for

the upper semicontinuous case) or the Schauder-Tikhonov’s fixed point theorem

for a continuous selection g : KR → KR of G whose existence is assured by

Fryszkowski’s theorem [11] (for the lower semicontinuous case), we can obtain

a fixed point h ∈ KR of G (i.e. h ∈ G(h). Then uh gives the desired solution. �

5.2. Proof of Theorem 3.2. Small periodic solutions. In this subsec-

tion, we give a proof of Theorem 3.2. In parallel with Lemma 5.4 we now have

the following:

Lemma 5.5. Let (GC) be satisfied with 2 < q < 2∗. Then there exists a (suf-

ficiently small) number R > 0 such that G maps KR into itself.
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To prove this lemma we use the following result (for a proof, see Lemma 6

of [24]).

Lemma 5.6. If q ∈ (2, 2∗), then for any η > 0, there exists Kq(η) > 0 such

that

(5.25) ‖u‖2(q−1)

L2(q−1) ≤ η ‖∆u‖
2
L2 +Kq(η) ‖∇u‖γL2 ,

for all u ∈ H2(Ω) ∩H1
0 (Ω), where

γ =


2(q − 1) for N = 1, 2 or for N ≥ 3 and q ≤ 2(N − 1)

N − 2
,

2 +
4(q − 2)

2N − (N − 2)q
for N ≥ 3 and q >

2(N − 1)

N − 2
.

Proof of Lemma 5.5. Let h ∈ KR and uh be the solution of (P)h. Then

by (5.21) we can obtain

(5.26)

∫ T

0

‖∇uh(t)‖2L2 dt ≤
1

λ1
R2.

Next, multiplying (5.20) by −∆uh(t) and zh(t) = −∆uh(t) + bh(t), we get

1

2

d

dt
‖∇uh(t)‖2L2 + ‖∆uh(t)‖2L2 ≤ ‖h(t)‖L2‖∆uh(t)‖L2 ,(5.27)

d

dt
ϕ(uh(t)) + ‖zh(t)‖2L2 ≤ ‖h(t)‖L2‖zh(t)‖L2 ,(5.28)

which implies

(5.29)

∫ T

0

‖∆uh(t)‖2L2 dt+

∫ T

0

‖bh(t)‖2L2 dt ≤
∫ T

0

‖zh(t)‖2L2 dt ≤ R2.

Furthermore, let t0 ∈ [0, T ] be such that

‖∇uh(t0)‖L2 = min
0≤t≤T

‖∇uh(t)‖L2 .

Then (5.26) gives

(5.30) ‖∇uh(t0)‖2L2 ≤
1

λ1T
R2.

Then, integrating (5.27) over [t0, t] with t ∈ [t0, t0 + T ], we have

(5.31) ‖∇uh(t)‖2L2 ≤ ‖∇uh(t0)‖2L2 +R2 ≤
(

1

λ1T
+ 1

)
R2,
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for all t ∈ [t0, t0 + T ]. Now we apply Lemma 5.6 with η = k/Cq, and we obtain

by (5.26), (5.29) and (5.31)∫∫
QT

|||G(h)|||2 dx dt(5.32)

≤‖a‖L1(QT ) + k

∫ T

0

‖∂0φ(uh)‖2L2 dt+ Cq

∫ T

0

‖uh‖2(q−1)

L2(q−1) dt

≤‖a‖L1(QT ) + k

∫ T

0

(
‖bh‖2L2 + ‖∆uh‖2L2

)
dt

+ CqKq

(
k

Cq

)∫ T

0

‖∇uh‖γL2 dt

≤‖a‖L1(QT ) + kR2 + CqKq

(
k

Cq

)(
1

λ1T
+ 1

)(γ−2)/2

Rγ−2 1

λ1
R2

≤‖a‖L1(QT ) +

(
k + CqKq

(
k

Cq

)(
1

λ1T
+ 1

)(γ−2)/2
1

λ1
Rγ−2

)
R2.

Here, nothing that γ > 2, we take R and ‖a‖L1(QT ) sufficiently small so that:

CqKq

(
k

Cq

)(
1

λ1T
+ 1

)(γ−2)/2
1

λ1
Rγ−2 ≤ 1

2
(1− k),(5.33)

‖a‖L1(QT ) ≤
1

2
(1− k)R2.(5.34)

Then, (5.32)–(5.34) assure that G maps KR into itself. �

Proof of Theorem 3.2. We can repeat exactly the same arguments as

in the proof of Theorem 3.1. However, in this case, we have to take ‖a‖L1(QT )

sufficiently small so that

‖a‖L1(QT ) ≤
1− k

2

[
λ1(λ1T )(γ−2)/2(1− k)

2CqKq(k/Cq)(λ1T + 1)(γ−2)/2

]2/(γ−2)

. �

6. Examples

In this section we give some examples which can be dealt with in our setting.

6.1. The case where D(φ) = R1. Let β( · ) = ∂φ( · ) be a maximal mono-

tone graph in R1 ×R1 which can be multivalued such that φ(0) = 0 = min
r∈R1

φ(r)

and

(6.1)
∣∣∂0φ(u)

∣∣2 ≥ |u|2(p−1) − C1 for all u ∈ R1, 1 < p <∞, C1 ≥ 0.

We also introduce a class of continuous functions Cp,q by the following: f ∈ Cp,q
if and only if f : R1 → R1 is continuous and satisfy

(6.2) |f(u)|2 ≤ C0 + k0|u|2(p−1) + C0
q |u|2(q−1) for all u ∈ R1,

where 1 < q <∞, C0 ≥ 0, C0
q ≥ 0 and k0 ∈ [0, 1) are constants.
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In the following we consider the case where

(6.3) G(x, t, u) = G0(u) + fe(x, t), with fe ∈ L2(QT ).

6.1.1. The upper semicontinuous case. Take f+
1 , f−1 , f+

2 , f−2 ∈ Cp,q, such

that

f−1 (u) < f−2 (u) for all u ∈ (−∞, 0],

f+
1 (u) < f+

2 (u) for all u ∈ [0,+∞),

f−2 (0) < f+
1 (0),

and define

(6.4) G0(u) =


[
f−1 (u), f−2 (u)

]
if u < 0,[

f+
1 (u), f+

2 (u)
]

if u > 0,[
f−1 (0), f+

2 (0)
]

if u = 0.

Then it is easy to see that G(x, t, u) = G0(u) + fe(x, t) is a closed convex and

upper semicontinuous multivalued function satisfying (H1
G). Note that there is

no continuous selection of G0( · ).
Here we note that f±1 , f

±
2 ∈ Cp,q together with (6.1) and (6.2) implies that,

for any small η > 0, there exists Cη > 0 such that

(6.5) |||G(x, t, u)|||2 ≤ Cη|fe(x, t)|2

+ (1 + η)
[
C0 + k0C1 + k0|∂0φ(u)|2 + C0

q |u|2(q−1)
]

for almost every (x, t) ∈ QT , for all u ∈ R1. Then the existence of periodic

solutions of our equation with (6.1), (6.2) and (6.3) falls into the following two

cases:

(I) Large periodic solutions. We can apply Theorem 3.1 for all of the following

cases, i.e. problem (P) admits a solution satisfying (3.5) for any fe ∈ L2(QT ).

(I1) The case where q < p. Since the Young inequality assures that for any

ε > 0, there exists Cε > 0 such that

(1 + η)C0
q |u|2(q−1) ≤ ε

∣∣∂0φ(u)
∣∣2 + Cε for all u ∈ R1,

G(x, t, u) satisfies (GC) with k = (1 + η)k0 + ε < 1, Cq = 0 and

|a(x, t)| = Cη|fe(x, t)|2 + (1 + η)(C0 + k0C1) + Cε.

(I2) The case where q < 2. Since for any ε > 0, there exists Cε > 0 such that

(1 + η)C0
q |u|2(q−1) ≤ ε|u|2 + Cε for all u ∈ R1,

G(x, t, u) satisfies (GC) with k = k̃ := (1 + η)k0 < 1, q = 2, Cq = C2 = ε <

λ2
1(1− k̃) and

|a(x, t)| = Cη|fe(x, t)|2 + (1 + η)(C0 + k0C1) + Cε.
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(I3) The case where q = 2, p ≤ 2 and C0
2 < λ2

1(1 − k0). G(x, t, u) satisfies

(GC) with k = k̃ = (1 + η)k0 < 1, q = 2, Cq = C2 = (1 + η)C0
2 < λ2

1(1− k̃) and

|a(x, t)| = Cη|fe(x, t)|2 + (1 + η)(C0 + k0C1).

(II) Small periodic solutions. Let 2 < q < 2∗ and let C0, k0C1 and ‖fe‖21
be small enough. Then (P) has a periodic solution satisfying (3.5). In fact,

G(x, t, u) satisfies (GC) with k = (1 + η)k0 < 1, q ∈ (2, 2∗), Cq = (1 + η)C0
q and

|a(x, t)| = Cη|fe(x, t)|2 + (1 + η)(C0 + k0C1).

Then we can apply Theorem 3.2.

6.1.2. The lower semicontinuous case. Let f+, f− ∈ Cp,q and −∞ ≤ r0 <

r1 ≤ +∞ such that f−(u) < f+(u) for all u ∈ (r0, r1) and define

(6.6) G0(u) =


{
f+(u)

}
if r1 ≤ u (when r1 < +∞),{

f−(u)
}

if u ≤ r0 (when −∞ < r0),[
f−(u), f+(u)

]
∩Qn if u ∈ (r0, r1),

where Qn := {q ∈ Q : 10nq ∈ Z} with n sufficiently large so that[
f−(u), f+(u)

]
∩Qn 6= ∅ for all u ∈ (r0, r1).

Then it is easy to see G0( · ) is lower semicontinuous and closed valued (but not

convex valued) and there is no continuous selection of G0( · ).
Note that assumption f± ∈ Cp,q assures (6.5). Then we again obtain two

kinds of results just same as: (I) large periodic solutions and (II) small periodic

solutions, as before.

6.2. The case where D(φ) is precompact. Here we give some examples

for the case where D(φ) is precompact, i.e.

D(φ) = {u ∈ R1 : φ(u) < +∞} ⊂ [a, b] with −∞ < a < b < +∞.

Consider the following typical two examples:

Example 6.1.

(6.7) φ(u) = I[a,b](u) =

0 if u ∈ [a, b],

+∞ otherwise.

Then we have

∂φ(u) = ∂I[a,b](u) =


{0} if u ∈ (a, b),

(−∞, 0] if u = a,

[0,+∞) if u = b,

∅ if u 6∈ [a, b].
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Example 6.2.

(6.8) φ(u) = φh(u) =

h(u) if u ∈ (a, b),

+∞ otherwise,

where h ∈ C1((a, b);R1) is convex and satisfies

lim
u→a+

h(u) = lim
u→b−

h(u) = +∞.

Then we have

∂φ(u) = ∂φh(u) =

{h′(u)} if u ∈ (a, b),

∅ if u /∈ (a, b).

Again define G(x, t, u) by (6.3) together with (6.4) or (6.5). Then since

D(∂I[a,b]) = [a, b] and D(∂φh) = (a, b), G(x, t, u) satisfies (GC) with k = Cq = 0

and

|a(x, t)| = C(|fe(x, t)|2 + 1) for some C > 0,

provided that f±i (i = 1, 2), f± ∈ C(R1;R1). Hence, Theorem 3.1 assures that

(P) admits a solution u satisfying (3.5) for any fe ∈ L2(QT ).
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