REMARKS ON SOME LIMITS APPEARING IN THE THEORY OF ALMOST PERIODIC FUNCTIONS

Kosma Kasprzak

Abstract

In this note we are going to present new short proofs concerning either the existence or the non-existence of some limits appearing in the theory of almost periodic functions. Our proofs are completely different from those presented in the papers [1] and [3].

1. Introduction

In the rich theory of almost periodic functions (see e.g. [6]) problems concerning the evaluation of the limit

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{f(x)}{2+\cos x+\cos (x \sqrt{2})}, \tag{1.1}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is an exponential function or a polynomial (cf. [1] or [3]), quite frequently appear. This is connected to the fact that the function

$$
x \mapsto \frac{1}{2+\cos x+\cos (x \sqrt{2})} \quad \text { for } x \in \mathbb{R}
$$

constitutes a classical example of a function which is either almost periodic in the sense of Levitan (briefly: LAP) or almost periodic with respect to the Lebesgue measure (briefly: μ.a.p.) (see e.g. [4]). In particular, in [1] the authors used the theory of continued fractions to prove that the limit (1.1) is equal to zero if

[^0]$f(x)=e^{\lambda x}$ for $x \in \mathbb{R}(\lambda<0)$. Let us notice that the proof of that fact given in [1] is quite long.

On the other hand, it was proven in [3] that the limit (1.1) remains equal to zero if one replaces the exponential function by a polynomial $x \mapsto x^{-2-\varepsilon}$, $x \in \mathbb{R}^{+}$and $\varepsilon>0$. The proof of that result given in [3] is based on the wellknown Liouville's Theorem (see e.g. [2]). Further, as it was proven in [3], the limit (1.1) does not exist if $f(x)=x^{-2}$ for $x \in \mathbb{R}^{+}$.

In this note we are going to present two short proofs of the fact, that the limit (1.1) is equal to zero if $f(x)=e^{-x}$ for $x \in \mathbb{R}$. Next, we consider a more general case, namely we investigate the limit

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{x^{-2 n+2-\varepsilon}}{2+\cos x+\cos (x \alpha)}, \tag{1.2}
\end{equation*}
$$

where α is an algebraic number of degree n. We also examine the upper limit of the quotient appearing in (1.1), in the case when $f(x)=x^{-2}$ for $x \in \mathbb{R}^{+}$. In that investigation we use the classical Pell equation. At the end of this note we present another short proof of Theorem 7 from [1]. In our proof we extensively use the quinary system.

2. Main results

By $\{x\}$ and $[x]$ we will denote the fractional part and the entier of x, respectively. Now, let us define relations $\gg \lll, \approx$ on the set of real functions admitting positive values.

Definition 2.1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}^{+}$. We say that $f \gg g$ if and only if the following condition holds:

$$
\exists C>0 \quad \exists x_{1} \in \mathbb{R} \quad \forall x>x_{1} \quad f(x) \geq C g(x) .
$$

Obviously, we admit that

$$
f \ll g \text { if and only if } g \gg f .
$$

Finally,

$$
f \approx g \text { if and only if } f \ll g \text { and } f \gg g .
$$

The above definition obviously implies that \approx is an equivalence relation. Moreover, if the limit, lower limit or upper limit of f at infinity is equal to 0 or $+\infty$, then the limit, lower limit or upper limit of g is equal to 0 or $+\infty$, respectively.

In [1, Theorem 6.13] the following result was proven.
Theorem 2.2. It holds:

$$
\lim _{x \rightarrow+\infty} \frac{e^{-x}}{2+\cos x+\cos (x \sqrt{2})}=0
$$

Now we will prove the above result using two various techniques.
Proof 1. Fix $\varepsilon \in(0 ; 2)$. Let it be equal to $2+\cos x+\cos (x \sqrt{2})$ for some $x>0$. Then

$$
\cos x=\varepsilon-\cos (x \sqrt{2})-2 \leq \varepsilon-1
$$

Let $a=\pi-\arccos (\varepsilon-1)$. Then $x \in[2 \pi n+\pi-a, 2 \pi n+\pi+a]$ for some $n \in \mathbb{N}_{0}$. Analogously $x \sqrt{2} \in[2 \pi m+\pi-a, 2 \pi m+\pi+a]$ for some $m \in \mathbb{N}_{0}$. The function $x \mapsto 2+\cos x+\cos (x \sqrt{2})$ takes positive values, but they can be arbitrarily small. Thus, for any constant $M>0$, for small enough $\varepsilon>0$ and for each x fulfilling the equality $2+\cos x+\cos (x \sqrt{2})=\varepsilon$ we have $x \geq M$. Since $a<\pi$, the intervals $[2 \pi n+\pi-a, 2 \pi n+\pi+a]$ and $[2 \pi m+\pi-a, 2 \pi m+\pi+a]$ do not contain any negative numbers, so

$$
\sqrt{2}=\frac{x \sqrt{2}}{x} \in\left[\frac{2 \pi m+\pi-a}{2 \pi n+\pi+a}, \frac{2 \pi m+\pi+a}{2 \pi n+\pi-a}\right]
$$

Let us substitute $k=2 m+1, l=2 n+1, b=a / \pi$. We get:

$$
\sqrt{2} \in\left[\frac{k-b}{l+b}, \frac{k+b}{l-b}\right]
$$

and thus $k-b \leq \sqrt{2}(l+b)$, so $k-l \sqrt{2} \leq b(1+\sqrt{2})$. Analogously, we get $k-l \sqrt{2} \geq-b(1+\sqrt{2})$, so $|k-l \sqrt{2}| \leq b(1+\sqrt{2})$. Therefore

$$
\left|k^{2}-2 l^{2}\right| \leq b(1+\sqrt{2})(k+l \sqrt{2})
$$

The number $k^{2}-2 l^{2}$ is an integer and $k^{2}-2 l^{2} \neq 0$, so $\left|k^{2}-2 l^{2}\right| \geq 1$ and therefore

$$
\begin{equation*}
k+l \sqrt{2} \geq \frac{1}{b(1+\sqrt{2})} \tag{2.1}
\end{equation*}
$$

As ε approaches 0 , numbers a and b (treated as functions of ε) approach 0 , so for sufficiently small $\varepsilon>0$ we have $b<1 /(2(1+\sqrt{2}))$, which implies

$$
k-l \sqrt{2} \geq-b(1+\sqrt{2}) \geq-\frac{1}{2} \geq-\frac{k}{2}
$$

so $5 k / 2 \geq k+l \sqrt{2}$, and, by (2.1), we obtain $k \geq 2 /(5(1+\sqrt{2}) b)$. For $\varepsilon>0$ small enough the number $x \sqrt{2}-(2 \pi m+\pi)$ can be arbitrarily small, so $x \sqrt{2} /(2 \pi m+\pi)$ is arbitrarily close to 1 . Therefore, we get

$$
\begin{aligned}
x & =\frac{x \sqrt{2}}{2 \pi m+\pi} \cdot \frac{\pi}{\sqrt{2}} \cdot(2 m+1) \geq \frac{x \sqrt{2}}{2 \pi m+\pi} \cdot \frac{\pi}{\sqrt{2}} \cdot \frac{2}{5(1+\sqrt{2}) b} \\
& =\frac{x \sqrt{2}}{2 \pi m+\pi} \cdot \frac{\pi}{\sqrt{2}} \cdot \frac{2 \pi}{5(1+\sqrt{2}) a}=\frac{x \sqrt{2}}{2 \pi m+\pi} \cdot \frac{2 \pi^{2}}{5(2+\sqrt{2}) a} \geq \frac{1}{a} .
\end{aligned}
$$

Thus, for a small enough $\varepsilon>0$, we have

$$
\begin{equation*}
\frac{e^{-x}}{2+\cos x+\cos (x \sqrt{2})} \leq \frac{e^{-1 / a}}{\varepsilon}=\frac{e^{-1 / a}}{\cos (\pi-a)+1}=\frac{e^{-1 / a}}{1-\cos a}=: h(\varepsilon) \tag{2.2}
\end{equation*}
$$

Now, let us consider ε as a variable and, consequently, a as a variable depending on ε. Using de l'Hopital's rule we can easily calculate that

$$
\lim _{a \rightarrow 0^{+}} \frac{e^{-1 / a}}{1-\cos a}=0
$$

Fix $\tilde{\epsilon}>0$. Since $\lim _{\varepsilon \rightarrow 0} h(\varepsilon)=0$, there exists an $\varepsilon_{0}>0$ such that $h(\varepsilon)<\widetilde{\epsilon}$ for all $0<$ $\varepsilon<\varepsilon_{0}$. Let ε_{1} be such a positive number, that for $0<\varepsilon<\varepsilon_{1}$ the inequality (2.2) is satisfied. Let $\varepsilon_{2}=\min \left\{\varepsilon_{0} ; \varepsilon_{1}\right\}$. Fix $x>0$. If $2+\cos x+\cos x \sqrt{2}<\varepsilon_{2}$, then, by (2.2), we have

$$
\frac{e^{-x}}{2+\cos x+\cos x \sqrt{2}}<\tilde{\epsilon}
$$

If $2+\cos x+\cos x \sqrt{2} \geq \varepsilon_{2}$, then

$$
\frac{e^{-x}}{2+\cos x+\cos x \sqrt{2}} \leq \frac{e^{-x}}{\varepsilon_{2}}
$$

and since for large enough x the number e^{-x} is arbitrarily small, x for large enough, we have $e^{-x} / \varepsilon_{2} \leq \tilde{\epsilon}$. Finally, for any $\tilde{\epsilon}>0$ for large enough x we have

$$
\frac{e^{-x}}{2+\cos x+\cos x \sqrt{2}}<\widetilde{\epsilon}
$$

and thus

$$
\lim _{x \rightarrow+\infty} \frac{e^{-x}}{2+\cos x+\cos x \sqrt{2}}=0
$$

Proof 2. First, let us notice that

$$
\begin{aligned}
& \sqrt{2+\cos (2 \pi x)+\cos (2 \pi x \sqrt{2})}=\sqrt{1+\cos (2 \pi x)+1+\cos (2 \pi x \sqrt{2})} \\
& \quad=\sqrt{2 \cos ^{2}(\pi x)+2 \cos ^{2}(\pi x \sqrt{2})} \approx|\cos (\pi x)|+|\cos (\pi x \sqrt{2})| \\
& \quad=|\cos (\pi\{x\})|+|\cos (\pi\{x \sqrt{2}\})| \approx\left|\{x\}-\frac{1}{2}\right|+\left|\{x \sqrt{2}\}-\frac{1}{2}\right|=: g(x) .
\end{aligned}
$$

The graphs of the two components of the function g consist of line segments. The first component can have a slope of 1 and -1 , respectively; the second one: $\sqrt{2}$ and $-\sqrt{2}$, respectively. Thus the graph of that function consists of line segments of slopes $1+\sqrt{2} ; 1-\sqrt{2} ;-1+\sqrt{2} ;-1-\sqrt{2}$. Consider the local minima of that function. They must occur in the points of non-differentiability, which are $n / 2$ and $n \sqrt{2} / 4$ for $n \in \mathbb{N}$, because for other points we can find a neighbourhood, which is a line segment of a non-zero slope. We can easily check that there are no minima of the first type, and that minima and maxima of the second type occur alternately. Let $x_{n}=(2 n+1) \sqrt{2} / 4$. Obviously, the function g is continuous and it achieves minima in points x_{n}, so $g(x)$ is greater or equal to the value in one of the two consecutive elements of $\left(x_{n}\right)$, between which lies x. Let us assign to every $x>x_{1}$ the point $f(x)$, so that $f\left(x_{n}\right)=x_{n}$ for all $n \in \mathbb{N}$ and if $x_{n}<x<x_{n+1}$,
the value of $f(x)$ is x_{n} if $g\left(x_{n}\right)<g\left(x_{n+1}\right)$ and x_{n+1} otherwise. Since, as we established, consecutive minima differ by $\sqrt{2} / 2$, so $|f(x)-x| \leq \sqrt{2} / 2$ and thus

$$
\frac{e^{-\pi x}}{|\{x\}-1 / 2|+|\{x \sqrt{2}\}-1 / 2|} \leq \frac{e^{-\pi f(x)} \cdot e^{\pi(f(x)-x)}}{|\{f(x)\}-1 / 2|} \approx \frac{e^{-\pi f(x)}}{|\{f(x)\}-1 / 2|}
$$

Define $2 l+1=2 \sqrt{2} f(x)$ and $k=[f(x)]$, where k and l are treated as functions of x. We can easily see that k and l are integers, and that $k \approx l \approx f$. Thus

$$
\begin{gathered}
\quad\left|\{f(x)\}-\frac{1}{2}\right|=\left|\frac{l \sqrt{2}}{2}+\frac{\sqrt{2}}{4}-\frac{1}{2}-k\right|=\frac{|(2 l+1) \sqrt{2}-2(2 k+1)|}{4} \\
=\frac{1}{4}\left|\frac{2(2 l+1)^{2}-4(2 k+1)^{2}}{(2 l+1) \sqrt{2}+2(2 k+1)}\right| \geq \frac{1}{4}\left|\frac{1}{(2 l+1) \sqrt{2}+2(2 k+1)}\right| \gg \frac{1}{l} \approx \frac{1}{f(x)} .
\end{gathered}
$$

Hence, finally we get

$$
\begin{aligned}
\frac{e^{-\pi x}}{\sqrt{2+\cos (2 \pi x)+\cos (2 \pi x \sqrt{2})}} \approx \frac{e^{-\pi x}}{|\{x\}-1 / 2|+|\{x \sqrt{2}\}-1 / 2|} \\
\leq \frac{e^{-\pi f(x)} \cdot e^{\pi(f(x)-x)}}{|\{f(x)\}-1 / 2|} \approx \frac{e^{-\pi f(x)}}{|\{f(x)\}-1 / 2|} \ll f(x) e^{-\pi f(x)}
\end{aligned}
$$

As x approaches plus infinity, $f(x)$ approaches plus infinity, so

$$
\begin{aligned}
0 & \leq \lim _{x \rightarrow+\infty} \frac{e^{-x}}{2+\cos x+\cos (x \sqrt{2})} \\
& =\left(\lim _{x \rightarrow+\infty} \frac{e^{-\pi x}}{\sqrt{2+\cos (2 \pi x)+\cos (2 \pi x \sqrt{2})}}\right)^{2} \leq\left(\lim _{x \rightarrow+\infty} x e^{-\pi x}\right)^{2}=0
\end{aligned}
$$

which completes the proof.
The following corollary, connected with the limit (1.2), actually is an extension of Corollary 1 from [3] (see also [5]).

Corollary 2.3. If α is an irrational algebraic number of degree n, then

$$
\lim _{x \rightarrow+\infty} \frac{x^{-2 n+2-\varepsilon}}{2+\cos x+\cos (x \alpha)}=0 \quad \text { for any } \varepsilon>0
$$

Proof. We can easily assume that $\alpha>1$ by showing that

$$
\lim _{x \rightarrow+\infty} \frac{x^{-2 n+2-\varepsilon}}{2+\cos x+\cos (x \alpha)}=0 \quad \Leftrightarrow \quad \lim _{u \rightarrow+\infty} \frac{u^{-2 n+2-\varepsilon}}{2+\cos u+\cos (u / \alpha)}=0
$$

Analogously to the above proof we can consider the function

$$
x \mapsto\left|\{x\}-\frac{1}{2}\right|+\left|\{x \alpha\}-\frac{1}{2}\right|
$$

and conclude that its local minima occur at points $x_{m}=(2 m+1) /(2 \alpha)$. Defining the function f as above and letting $k=[f(x)]$ and $2 l+1=2 \alpha f(x)$ we have $k \approx l \approx f$ and we can apply Liouville's Theorem to get

$$
\begin{aligned}
&\left|\{f(x)\}-\frac{1}{2}\right|=\frac{|(2 l+1)-(2 k+1) \alpha|}{2 \alpha} \approx(2 k+1)\left|\frac{2 l+1}{2 k+1}-\alpha\right| \\
&>(2 k+1)^{-n+1} \approx f(x)^{-n+1}
\end{aligned}
$$

Then carrying out similar calculations to the ones in the above proof yields the desired result.

In the following theorem we examine the asymptotic behavior of the function

$$
x \mapsto \frac{x^{-2}}{2+\cos x+\cos (x \sqrt{2})} .
$$

Actually, we are going to prove a generalization of Theorem 4 from [3].
Theorem 2.4. It holds:

$$
0<\limsup _{x \rightarrow+\infty} \frac{x^{-2}}{2+\cos x+\cos (x \sqrt{2})}<+\infty
$$

Proof. Notice that by Definition 2.1 and the second proof of Theorem 2.2 we just need to prove that

$$
0<\limsup _{x \rightarrow+\infty} \frac{x^{-1}}{|\{x\}-1 / 2|+|\{x \sqrt{2}\}-1 / 2|}<+\infty .
$$

We know that

$$
\frac{x^{-1}}{|\{x\}-1 / 2|+|\{x \sqrt{2}\}-1 / 2|} \ll \frac{f(x)^{-1}}{|\{f(x)\}-1 / 2|} \ll f(x) f(x)^{-1}=1
$$

where f is defined as in the second proof of Theorem 2.2. To complete the proof we will indicate a sequence $\left(l_{n}\right)$ for which this function does not approach 0 . Consider the Pell equation $k^{2}-2 l^{2}=-1$. It is well known that it is fulfilled by infinitely many pairs of integers, and considering this equation modulo 4 we easily see that k and l must be odd. Let $\left(l_{n}\right)$ and $\left(k_{n}\right)$ be increasing sequences of positive integers l_{n} and k_{n} appearing in those pairs. Then

$$
\begin{gathered}
\left|\left\{\frac{l_{n}}{2}\right\}-\frac{1}{2}\right|+\left|\left\{\frac{l_{n} \sqrt{2}}{2}\right\}-\frac{1}{2}\right|=\left|\left\{\frac{l_{n} \sqrt{2}}{2}-\frac{k_{n}}{2}+\frac{1}{2}\right\}-\frac{1}{2}\right| \\
=\left|\left\{\frac{1}{2 k_{n}+2 l_{n} \sqrt{2}}+\frac{1}{2}\right\}-\frac{1}{2}\right|=\frac{1}{2 k_{n}+2 l_{n} \sqrt{2}}
\end{gathered}
$$

Thus

$$
\frac{2 l_{n}^{-1}}{\left|\left\{l_{n} / 2\right\}-1 / 2\right|+\left|\left\{l_{n} \sqrt{2} / 2\right\}-1 / 2\right|}=4 \frac{k_{n}}{l_{n}}+4 \sqrt{2}>1
$$

and

$$
1<\limsup _{x \rightarrow+\infty} \frac{x^{-1}}{|\{x\}-1 / 2|+|\{x \sqrt{2}\}-1 / 2|}<+\infty
$$

At the end of this note we are going to present another short proof of Theorem 7 from [1] connected with the limit (1.1).

Theorem 2.5. For every function $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$, every $a \in \mathbb{R}$ and every $\varepsilon>0$, there exists $\alpha \in \mathbb{R}$ such that

$$
|a-\alpha|<\varepsilon \quad \text { and } \quad \limsup _{x \rightarrow+\infty} \frac{f(x)}{2+\cos x+\cos (x \alpha)}=+\infty
$$

Proof. Fix $a \in \mathbb{R}$ and $\varepsilon>0$. We will construct a number α and a sequence $\left(\pi l_{n}\right)$ such that

$$
\lim _{n \rightarrow+\infty} \frac{f\left(\pi l_{n}\right)}{2+\cos \left(\pi l_{n}\right)+\cos \left(\pi l_{n} \alpha\right)}=+\infty
$$

Let $\beta=\sum_{i=1}^{\infty} 5^{-a_{i}}$, where $\left(a_{n}\right)$ is defined recursively as follows: $a_{1}=1$ and a_{i+1} is the smallest integer greater than a_{i} for which

$$
\frac{f\left(\pi 5^{a_{i}}\right)}{2 \pi \cdot 5^{a_{i}-a_{i+1}}}>i .
$$

Such a_{i+1} obviously exists and, since $\left(a_{n}\right)$ is increasing, the series defining β is convergent. Consider the interval $(a-\beta-\varepsilon, a-\beta+\varepsilon)$. It must contain a number of the form $m / 5^{N}$ for some integers m and N (expressions $\left[5^{n}(a-\beta+\varepsilon)\right] / 5^{n}$, while smaller than $a-\beta+\varepsilon$, can be arbitrarily close to it, so for large enough $n \in \mathbb{N}$ they have to be larger than $a-\beta-\varepsilon$). Now, let $\alpha=\beta+m / 5^{N}$. Let us define the sequences $\left(l_{n}\right)$ and $\left(k_{n}\right)$ as $l_{n}=5^{a_{n}}$ and $k_{n}=\left[5^{a_{n}} \cdot \alpha\right]$. Notice that

$$
\sum_{n=i+1}^{\infty} 5^{a_{i}-a_{n}} \leq \frac{1}{5-1}<1
$$

so for $a_{i}>N$ we have

$$
\begin{aligned}
k_{i} & =\left[m \cdot 5^{a_{i}-N}+5^{a_{i}} \cdot \beta\right]=m \cdot 5^{a_{i}-N}+\left[5^{a_{i}} \cdot \beta\right] \\
& =m \cdot 5^{a_{i}-N}+5^{a_{i}-a_{1}}+5^{a_{i}-a_{2}}+\cdots+5^{a_{i}-a_{i}}
\end{aligned}
$$

and since $5^{a_{i}} \beta-\left[5^{\alpha_{i}} \beta\right]>0$, we have

$$
0<l_{i} \alpha-k_{i}=\sum_{j=i+1}^{\infty} 5^{a_{i}-a_{j}}<2 \cdot 5^{a_{i}-a_{i+1}}<1
$$

Furthermore, if $a_{i}>N$, the numbers k_{i} and k_{i+1} have different parity, so one of the sequences $\left(k_{2 n}\right)$ and ($k_{2 n+1}$) contains only odd numbers for large enough $n \in \mathbb{N}$. Thus

$$
\begin{aligned}
\frac{f\left(\pi l_{i}\right)}{2+\cos \left(\pi l_{i}\right)+\cos \left(\pi l_{i} \alpha\right)} & =\frac{f\left(\pi l_{i}\right)}{1-\cos \left(\pi l_{i} \alpha-\pi k_{i}\right)} \\
& >\frac{f\left(\pi l_{i}\right)}{\pi l_{i} \alpha-\pi k_{i}}>\frac{f\left(\pi 5^{a_{i}}\right)}{2 \pi \cdot 5^{a_{i}-a_{i+1}}}>i
\end{aligned}
$$

for the subsequences $\left(k_{2 n}\right)$ and $\left(l_{2 n}\right)$ or $\left(k_{2 n+1}\right)$ and $\left(l_{2 n+1}\right)$ for large enough n. Thus α and one of the sequences $\left(\pi l_{2 n}\right),\left(\pi l_{2 n+1}\right)$ fulfills desired conditions.

REmark 2.6. In the above proof one could substitute 5 in the definition of β by any odd integer greater than 1 (and consequently use it in the rest of the proof). If we tried substituting it by an even number, e.g. 10 , our l_{n} would be even and $\cos \left(\pi l_{n}\right)$ would be equal to 1 instead of -1 .

Remark 2.7. Let us notice that the substitution $f(x)=e^{-x}$ in Theorem 2.5 and the application of Corollary 2.3 leads to a commonly known fact concerning the existence of transcendental numbers. Indeed, since $e^{x} \gg x^{a}$ for any $a \in \mathbb{R}$, any number α satisfying

$$
\limsup _{x \rightarrow+\infty} \frac{e^{-x}}{2+\cos x+\cos (x \alpha)}=+\infty
$$

also satisfies

$$
\limsup _{x \rightarrow+\infty} \frac{x^{-n+1-\varepsilon}}{2+\cos x+\cos (x \alpha)}=+\infty
$$

and so, from Corollary 2.3, we obtain that α is not an algebraic number of degree n for any $n \in \mathbb{N}$, which means that α is a transcendental number. Then Theorem 2.5 implies that the set of all transcendental numbers is dense in real numbers.

Moreover, let us notice that if the sequence $\left(a_{n+1} / a_{n}\right)_{n \in \mathbb{N}}$ is unbounded for some increasing sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of positive integers, then using Liouville's Theorem we can easily prove that $\sum_{i=1}^{\infty} 5^{-a_{i}}$ is a transcendental number. Let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be any sequence such that $e_{n} \in\{0,1\}$ for all $n \in \mathbb{N}$. It is well-known that the set of all such sequences is uncountable. If we then define $a_{n}=(n+1)!+e_{n}$ then it can be easily checked that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of integers, $a_{n+1} / a_{n}>n$ and that the numbers $\sum_{i=1}^{\infty} 5^{-a_{i}}$ are distinct for different sequences $\left(e_{n}\right)_{n \in \mathbb{N}}$. This implies that the set of all transcendental numbers is uncountable.

Acknowledgements. I would like to thank my teacher prof. D. Bugajewski for the introduction to the topic discussed in the paper and for comments, which essentially improved the paper.

I would also like to thank the referees for all their comments and suggestions, which allowed me to improve the quality of this note.

References

[1] D. Bugajewski and A. Nawrocki, Some remarks on almost periodic functions in view of the Lebesgue measure with applications to linear differential equations, Ann. Acad. Sci. Fenn. Math. 42 (2017), 809-836.
[2] G. M. Hardy and E. M. Wright, An Introduction to the Number Theory, 4th ed., Clarendon Press, 1971.
[3] A. Nawrocki, Diophantine approximations and almost periodic functions, Demonstr. Math. 50 (2017), 100-104.
[4] A. Nawrocki, On some applications of convolution to linear differential equations with Levitan almost periodic coefficients, Topol. Methods Nonlinear Anal. 50 (2017), no. 2, 489-512
[5] A. Nawrocki, On Some Generalizations of Almost Periodic Functions and Their Applications, Ph.D. thesis, AMU in Poznań, 2017 (unpublished, in Polish).
[6] S. Stoiński, Almost Periodic Functions, Scientific Publisher AMU, Poznań, 2008 (in Polish).

Manuscript received November 11, 2018

Kosma Kasprzak
The 38th Jan Nowak-Jeziorański Secondary School in Poznań Małoszyńska 38
60-176 Poznań, POLAND
E-mail address: kosma.kasprzak@wp.pl

[^0]: 2010 Mathematics Subject Classification. Primary: 42A75; Secondary: 41A10.
 Key words and phrases. Almost periodic functions; asymptotic behavior of functions; algebraic numbers; transcendental numbers; Pell's equation, quinary system.

