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REMARKS ON SOME LIMITS APPEARING IN THE THEORY

OF ALMOST PERIODIC FUNCTIONS

Kosma Kasprzak

Abstract. In this note we are going to present new short proofs concerning

either the existence or the non-existence of some limits appearing in the

theory of almost periodic functions. Our proofs are completely different
from those presented in the papers [1] and [3].

1. Introduction

In the rich theory of almost periodic functions (see e.g. [6]) problems con-

cerning the evaluation of the limit

(1.1) lim
x→+∞

f(x)

2 + cosx+ cos(x
√

2)
,

where f : R→ R is an exponential function or a polynomial (cf. [1] or [3]), quite

frequently appear. This is connected to the fact that the function

x 7→ 1

2 + cosx+ cos(x
√

2)
for x ∈ R

constitutes a classical example of a function which is either almost periodic in the

sense of Levitan (briefly: LAP) or almost periodic with respect to the Lebesgue

measure (briefly: µ.a.p.) (see e.g. [4]). In particular, in [1] the authors used

the theory of continued fractions to prove that the limit (1.1) is equal to zero if
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f(x) = eλx for x ∈ R (λ < 0). Let us notice that the proof of that fact given

in [1] is quite long.

On the other hand, it was proven in [3] that the limit (1.1) remains equal

to zero if one replaces the exponential function by a polynomial x 7→ x−2−ε,

x ∈ R+ and ε > 0. The proof of that result given in [3] is based on the well-

known Liouville’s Theorem (see e.g. [2]). Further, as it was proven in [3], the

limit (1.1) does not exist if f(x) = x−2 for x ∈ R+.

In this note we are going to present two short proofs of the fact, that the

limit (1.1) is equal to zero if f(x) = e−x for x ∈ R. Next, we consider a more

general case, namely we investigate the limit

(1.2) lim
x→+∞

x−2n+2−ε

2 + cosx+ cos(xα)
,

where α is an algebraic number of degree n. We also examine the upper limit

of the quotient appearing in (1.1), in the case when f(x) = x−2 for x ∈ R+.

In that investigation we use the classical Pell equation. At the end of this note

we present another short proof of Theorem 7 from [1]. In our proof we extensively

use the quinary system.

2. Main results

By {x} and [x] we will denote the fractional part and the entier of x, re-

spectively. Now, let us define relations �, �, ≈ on the set of real functions

admitting positive values.

Definition 2.1. Let f, g : R → R+. We say that f � g if and only if the

following condition holds:

∃C > 0 ∃x1 ∈ R ∀x > x1 f(x) ≥ Cg(x).

Obviously, we admit that

f � g if and only if g � f.

Finally,

f ≈ g if and only if f � g and f � g.

The above definition obviously implies that ≈ is an equivalence relation.

Moreover, if the limit, lower limit or upper limit of f at infinity is equal to 0

or +∞, then the limit, lower limit or upper limit of g is equal to 0 or +∞,

respectively.

In [1, Theorem 6.13] the following result was proven.

Theorem 2.2. It holds:

lim
x→+∞

e−x

2 + cosx+ cos(x
√

2)
= 0.
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Now we will prove the above result using two various techniques.

Proof 1. Fix ε ∈ (0; 2). Let it be equal to 2 + cosx + cos(x
√

2) for some

x > 0. Then

cosx = ε− cos(x
√

2)− 2 ≤ ε− 1.

Let a = π− arccos(ε− 1). Then x ∈ [2πn+ π− a, 2πn+ π+ a] for some n ∈ N0.

Analogously x
√

2 ∈ [2πm+ π − a, 2πm+ π + a] for some m ∈ N0. The function

x 7→ 2+cosx+cos(x
√

2) takes positive values, but they can be arbitrarily small.

Thus, for any constant M > 0, for small enough ε > 0 and for each x fulfilling

the equality 2 + cosx+ cos(x
√

2) = ε we have x ≥M . Since a < π, the intervals

[2πn+ π − a, 2πn+ π + a] and [2πm+ π − a, 2πm+ π + a] do not contain any

negative numbers, so

√
2 =

x
√

2

x
∈
[

2πm+ π − a
2πn+ π + a

,
2πm+ π + a

2πn+ π − a

]
.

Let us substitute k = 2m+ 1, l = 2n+ 1, b = a/π. We get:

√
2 ∈

[
k − b
l + b

,
k + b

l − b

]
and thus k − b ≤

√
2(l + b), so k − l

√
2 ≤ b(1 +

√
2). Analogously, we get

k − l
√

2 ≥ −b(1 +
√

2), so |k − l
√

2| ≤ b(1 +
√

2). Therefore

|k2 − 2l2| ≤ b(1 +
√

2)(k + l
√

2).

The number k2−2l2 is an integer and k2−2l2 6= 0, so |k2−2l2| ≥ 1 and therefore

(2.1) k + l
√

2 ≥ 1

b(1 +
√

2)
.

As ε approaches 0, numbers a and b (treated as functions of ε) approach 0, so

for sufficiently small ε > 0 we have b < 1/(2(1 +
√

2)), which implies

k − l
√

2 ≥ −b
(
1 +
√

2
)
≥ −1

2
≥ −k

2
,

so 5k/2 ≥ k+ l
√

2, and, by (2.1), we obtain k ≥ 2/
(
5(1 +

√
2)b
)
. For ε > 0 small

enough the number x
√

2−(2πm+π) can be arbitrarily small, so x
√

2/(2πm+ π)

is arbitrarily close to 1. Therefore, we get

x =
x
√

2

2πm+ π
· π√

2
· (2m+ 1) ≥ x

√
2

2πm+ π
· π√

2
· 2

5(1 +
√

2)b

=
x
√

2

2πm+ π
· π√

2
· 2π

5(1 +
√

2)a
=

x
√

2

2πm+ π
· 2π2

5(2 +
√

2)a
≥ 1

a
.

Thus, for a small enough ε > 0, we have

(2.2)
e−x

2 + cosx+ cos(x
√

2)
≤ e−1/a

ε
=

e−1/a

cos(π − a) + 1
=

e−1/a

1− cos a
=: h(ε).
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Now, let us consider ε as a variable and, consequently, a as a variable de-

pending on ε. Using de l’Hopital’s rule we can easily calculate that

lim
a→0+

e−1/a

1− cos a
= 0.

Fix ε̃ > 0. Since lim
ε→0

h(ε) = 0, there exists an ε0 > 0 such that h(ε) < ε̃ for all 0 <

ε < ε0. Let ε1 be such a positive number, that for 0 < ε < ε1 the inequality (2.2)

is satisfied. Let ε2 = min{ε0; ε1}. Fix x > 0. If 2 + cosx + cosx
√

2 < ε2, then,

by (2.2), we have

e−x

2 + cosx+ cosx
√

2
< ε̃.

If 2 + cosx+ cosx
√

2 ≥ ε2, then

e−x

2 + cosx+ cosx
√

2
≤ e−x

ε2
,

and since for large enough x the number e−x is arbitrarily small, x for large

enough, we have e−x/ε2 ≤ ε̃. Finally, for any ε̃ > 0 for large enough x we have

e−x

2 + cosx+ cosx
√

2
< ε̃

and thus

lim
x→+∞

e−x

2 + cosx+ cosx
√

2
= 0. �

Proof 2. First, let us notice that√
2 + cos(2πx) + cos(2πx

√
2) =

√
1 + cos(2πx) + 1 + cos(2πx

√
2)

=

√
2 cos2(πx) + 2 cos2(πx

√
2) ≈ |cos(πx)|+ |cos(πx

√
2)|

= |cos(π{x})|+ |cos(π{x
√

2})| ≈
∣∣∣∣{x} − 1

2

∣∣∣∣+

∣∣∣∣{x√2} − 1

2

∣∣∣∣ =: g(x).

The graphs of the two components of the function g consist of line segments. The

first component can have a slope of 1 and −1, respectively; the second one:
√

2

and −
√

2, respectively. Thus the graph of that function consists of line segments

of slopes 1 +
√

2; 1−
√

2; −1 +
√

2; −1−
√

2. Consider the local minima of that

function. They must occur in the points of non-differentiability, which are n/2

and n
√

2/4 for n ∈ N, because for other points we can find a neighbourhood,

which is a line segment of a non-zero slope. We can easily check that there are no

minima of the first type, and that minima and maxima of the second type occur

alternately. Let xn = (2n+ 1)
√

2/4. Obviously, the function g is continuous and

it achieves minima in points xn, so g(x) is greater or equal to the value in one of

the two consecutive elements of (xn), between which lies x. Let us assign to every

x > x1 the point f(x), so that f(xn) = xn for all n ∈ N and if xn < x < xn+1,
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the value of f(x) is xn if g(xn) < g(xn+1) and xn+1 otherwise. Since, as we

established, consecutive minima differ by
√

2/2, so |f(x)− x| ≤
√

2/2 and thus

e−πx

|{x} − 1/2|+ |{x
√

2} − 1/2|
≤ e−πf(x) · eπ(f(x)−x)

|{f(x)} − 1/2|
≈ e−πf(x)

|{f(x)} − 1/2|
.

Define 2l + 1 = 2
√

2f(x) and k = [f(x)], where k and l are treated as functions

of x. We can easily see that k and l are integers, and that k ≈ l ≈ f . Thus∣∣∣∣{f(x)} − 1

2

∣∣∣∣ =

∣∣∣∣ l√2

2
+

√
2

4
− 1

2
− k
∣∣∣∣ =
|(2l + 1)

√
2− 2(2k + 1)|

4

=
1

4

∣∣∣∣2(2l + 1)2 − 4(2k + 1)2

(2l + 1)
√

2 + 2(2k + 1)

∣∣∣∣ ≥ 1

4

∣∣∣∣ 1

(2l + 1)
√

2 + 2(2k + 1)

∣∣∣∣� 1

l
≈ 1

f(x)
.

Hence, finally we get

e−πx√
2 + cos(2πx) + cos(2πx

√
2)
≈ e−πx

|{x} − 1/2|+ |{x
√

2} − 1/2|

≤ e−πf(x) · eπ(f(x)−x)

|{f(x)} − 1/2|
≈ e−πf(x)

|{f(x)} − 1/2|
� f(x)e−πf(x).

As x approaches plus infinity, f(x) approaches plus infinity, so

0 ≤ lim
x→+∞

e−x

2 + cosx+ cos(x
√

2)

=

(
lim

x→+∞

e−πx√
2 + cos(2πx) + cos(2πx

√
2)

)2

≤
(

lim
x→+∞

xe−πx
)2

= 0,

which completes the proof. �

The following corollary, connected with the limit (1.2), actually is an exten-

sion of Corollary 1 from [3] (see also [5]).

Corollary 2.3. If α is an irrational algebraic number of degree n, then

lim
x→+∞

x−2n+2−ε

2 + cosx+ cos(xα)
= 0 for any ε > 0.

Proof. We can easily assume that α > 1 by showing that

lim
x→+∞

x−2n+2−ε

2 + cosx+ cos(xα)
= 0 ⇔ lim

u→+∞

u−2n+2−ε

2 + cosu+ cos(u/α)
= 0.

Analogously to the above proof we can consider the function

x 7→
∣∣∣∣{x} − 1

2

∣∣∣∣+

∣∣∣∣{xα} − 1

2

∣∣∣∣
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and conclude that its local minima occur at points xm = (2m+ 1)/(2α). Defi-

ning the function f as above and letting k = [f(x)] and 2l+ 1 = 2αf(x) we have

k ≈ l ≈ f and we can apply Liouville’s Theorem to get∣∣∣∣{f(x)} − 1

2

∣∣∣∣ =
|(2l + 1)− (2k + 1)α|

2α
≈ (2k + 1)

∣∣∣∣ 2l + 1

2k + 1
− α

∣∣∣∣
� (2k + 1)−n+1 ≈ f(x)−n+1.

Then carrying out similar calculations to the ones in the above proof yields the

desired result. �

In the following theorem we examine the asymptotic behavior of the function

x 7→ x−2

2 + cosx+ cos(x
√

2)
.

Actually, we are going to prove a generalization of Theorem 4 from [3].

Theorem 2.4. It holds:

0 < lim sup
x→+∞

x−2

2 + cosx+ cos(x
√

2)
< +∞.

Proof. Notice that by Definition 2.1 and the second proof of Theorem 2.2

we just need to prove that

0 < lim sup
x→+∞

x−1

|{x} − 1/2|+ |{x
√

2} − 1/2|
< +∞.

We know that

x−1

|{x} − 1/2|+ |{x
√

2} − 1/2|
� f(x)−1

|{f(x)} − 1/2|
� f(x)f(x)−1 = 1,

where f is defined as in the second proof of Theorem 2.2. To complete the proof

we will indicate a sequence (ln) for which this function does not approach 0.

Consider the Pell equation k2 − 2l2 = −1. It is well known that it is fulfilled

by infinitely many pairs of integers, and considering this equation modulo 4 we

easily see that k and l must be odd. Let (ln) and (kn) be increasing sequences

of positive integers ln and kn appearing in those pairs. Then∣∣∣∣{ ln2
}
− 1

2

∣∣∣∣+

∣∣∣∣{ ln√2

2

}
− 1

2

∣∣∣∣ =

∣∣∣∣{ ln√2

2
− kn

2
+

1

2

}
− 1

2

∣∣∣∣
=

∣∣∣∣{ 1

2kn + 2ln
√

2
+

1

2

}
− 1

2

∣∣∣∣ =
1

2kn + 2ln
√

2
.

Thus
2l−1n

|{ln/2} − 1/2|+ |{ln
√

2/2} − 1/2|
= 4

kn
ln

+ 4
√

2 > 1

and

1 < lim sup
x→+∞

x−1

|{x} − 1/2|+ |{x
√

2} − 1/2|
< +∞. �
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At the end of this note we are going to present another short proof of Theo-

rem 7 from [1] connected with the limit (1.1).

Theorem 2.5. For every function f : R→ R+, every a ∈ R and every ε > 0,

there exists α ∈ R such that

|a− α| < ε and lim sup
x→+∞

f(x)

2 + cosx+ cos(xα)
= +∞.

Proof. Fix a ∈ R and ε > 0. We will construct a number α and a sequence

(πln) such that

lim
n→+∞

f(πln)

2 + cos(πln) + cos(πlnα)
= +∞.

Let β =
∞∑
i=1

5−ai , where (an) is defined recursively as follows: a1 = 1 and ai+1

is the smallest integer greater than ai for which

f(π5ai)

2π · 5ai−ai+1
> i.

Such ai+1 obviously exists and, since (an) is increasing, the series defining β is

convergent. Consider the interval (a−β−ε, a−β+ε). It must contain a number

of the form m/5N for some integers m and N (expressions [5n(a− β + ε)]/5n,

while smaller than a − β + ε, can be arbitrarily close to it, so for large enough

n ∈ N they have to be larger than a − β − ε). Now, let α = β + m/5N . Let us

define the sequences (ln) and (kn) as ln = 5an and kn = [5an · α]. Notice that
∞∑

n=i+1

5ai−an ≤ 1

5− 1
< 1,

so for ai > N we have

ki = [m · 5ai−N + 5ai · β] = m · 5ai−N + [5ai · β]

= m · 5ai−N + 5ai−a1 + 5ai−a2 + · · ·+ 5ai−ai

and since 5aiβ − [5αiβ] > 0, we have

0 < liα− ki =

∞∑
j=i+1

5ai−aj < 2 · 5ai−ai+1 < 1.

Furthermore, if ai > N , the numbers ki and ki+1 have different parity, so one

of the sequences (k2n) and (k2n+1) contains only odd numbers for large enough

n ∈ N. Thus

f(πli)

2 + cos(πli) + cos(πliα)
=

f(πli)

1− cos(πliα− πki)

>
f(πli)

πliα− πki
>

f(π5ai)

2π · 5ai−ai+1
> i

for the subsequences (k2n) and (l2n) or (k2n+1) and (l2n+1) for large enough n.

Thus α and one of the sequences (πl2n), (πl2n+1) fulfills desired conditions. �



814 K. Kasprzak

Remark 2.6. In the above proof one could substitute 5 in the definition of

β by any odd integer greater than 1 (and consequently use it in the rest of the

proof). If we tried substituting it by an even number, e.g. 10, our ln would be

even and cos(πln) would be equal to 1 instead of −1.

Remark 2.7. Let us notice that the substitution f(x) = e−x in Theorem 2.5

and the application of Corollary 2.3 leads to a commonly known fact concerning

the existence of transcendental numbers. Indeed, since ex � xa for any a ∈ R,

any number α satisfying

lim sup
x→+∞

e−x

2 + cosx+ cos(xα)
= +∞

also satisfies

lim sup
x→+∞

x−n+1−ε

2 + cosx+ cos(xα)
= +∞

and so, from Corollary 2.3, we obtain that α is not an algebraic number of

degree n for any n ∈ N, which means that α is a transcendental number. Then

Theorem 2.5 implies that the set of all transcendental numbers is dense in real

numbers.

Moreover, let us notice that if the sequence (an+1/an)n∈N is unbounded

for some increasing sequence (an)n∈N of positive integers, then using Liouville’s

Theorem we can easily prove that
∞∑
i=1

5−ai is a transcendental number. Let

(en)n∈N be any sequence such that en ∈ {0, 1} for all n ∈ N. It is well-known that

the set of all such sequences is uncountable. If we then define an = (n+ 1)! + en
then it can be easily checked that (an)n∈N is an increasing sequence of integers,

an+1/an > n and that the numbers
∞∑
i=1

5−ai are distinct for different sequences

(en)n∈N. This implies that the set of all transcendental numbers is uncountable.

Acknowledgements. I would like to thank my teacher prof. D. Bugajewski

for the introduction to the topic discussed in the paper and for comments, which

essentially improved the paper.

I would also like to thank the referees for all their comments and suggestions,

which allowed me to improve the quality of this note.

References

[1] D. Bugajewski and A. Nawrocki, Some remarks on almost periodic functions in view

of the Lebesgue measure with applications to linear differential equations, Ann. Acad. Sci.

Fenn. Math. 42 (2017), 809–836.

[2] G. M. Hardy and E. M. Wright, An Introduction to the Number Theory, 4th ed.,

Clarendon Press, 1971.

[3] A. Nawrocki, Diophantine approximations and almost periodic functions, Demonstr.

Math. 50 (2017), 100–104.



Limits of Some Almost Periodic Functions 815

[4] A. Nawrocki, On some applications of convolution to linear differential equations with

Levitan almost periodic coefficients, Topol. Methods Nonlinear Anal. 50 (2017), no. 2,

489–512

[5] A. Nawrocki, On Some Generalizations of Almost Periodic Functions and Their Appli-

cations, Ph.D. thesis, AMU in Poznań, 2017 (unpublished, in Polish).

[6] S. Stoiński, Almost Periodic Functions, Scientific Publisher AMU, Poznań, 2008 (in
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Ma loszyńska 38
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