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NODAL SOLUTION FOR A PLANAR PROBLEM

WITH FAST INCREASING WEIGHTS

Giovany M. Figueiredo — Marcelo F. Furtado — Ricardo Ruviaro

Abstract. In this paper we prove the existence of a sign-changing solutions

for the equation

−∆u−
1

2
(x · ∇u) = f(u), x ∈ R2,

where f has exponential critical growth in the sense of the Trudinger–Moser

inequality. In the proof we apply variational methods.

1. Introduction

Consider the nonlinear heat equation

vt −∆v = |v|p−1v on (0,∞)× RN .

If we try to find solutions of the form v(t, x) = t−1/(p−1)u(t−1/2x), a straightfor-

ward calculation shows that u : RN → R needs to satisfy

−∆u− 1

2
(x · ∇u) =

1

p− 1
u+ |u|p−1u in RN .

Solutions v with the above profile are called self-similar solutions (see [15],

and [8]). Besides providing qualitative properties like global existence, blow-up
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and asymptotic behavior (see e.g. [15], [17], [16]), self-similar solutions (or self-

similar variables) are important because they preserve the PDE scaling and so

carry simultaneously information about small and large scale behaviors.

For higher dimensions N ≥ 3, there are results concerning the above equation

and its variants obtained by replacing the right-hand side of the equality by more

general nonlinearities f(u) (see [2], [8], [21], [20], [7], [14], [9] and references

therein). In a large class of such results the authors used variational techniques,

in such way that the range of the power p is limited from above by the critical

Sobolev exponent 2N/(N − 2).

In this paper we are interested in the 2-dimensional case, namely the problem

(P) −∆u− 1

2
(x · ∇u) = f(u), x ∈ R2,

where f is such that

(f0) f ∈ C1(R,R);

(f1) there exists α0 > 0 such that

lim
|s|→+∞

f(s)

eαs2
=

0 if α > α0,

+∞, if α < α0.

This means that f has critical growth. As it is well known, in dimension two this

concept is related with the so callled Trudinger–Moser inequality which appears

in the pioneer works [19], [24]. After then, there is a vast literature concerning

this kind of critical inequalities. We refer to [10], [1], [11] for bounded domains

and to [5], [22], [23] for entire space case. When dealing with the operator

u 7→ ∆u+ (1/2)(x · ∇u) we need a new Trudinger–Moser type inequality which

was estbalished in [13]. There, afer noticing that

div(K(x)∇u) = K(x)

[
∆u+

1

2
(x · ∇u)

]
, for K(x) := e|x|

2/4, x ∈ R2,

the authors introduced the set X as being the closure of the infinitely differ-

entiable radial functions with compact support C∞c,rad(R2) with respect to the

norm

‖u‖ :=

(∫
R2

K(x)|∇u|2 dx
)1/2

.

As we shall see in Section 2, the space X has nice properties. In particular, it is

well defined the functional I ∈ C1(X,R) given by

I(u) :=
1

2
‖u‖2 −

∫
K(x)F (u) dx, where F (t) :=

∫ t

0

f(τ) dτ ,

and its critical points are weak solutions of (P).

We say that a nonzero critical point w ∈ X of I is a least energy solution if

I(w) = min
u∈N

I(u),
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where N := {u ∈ X : u 6= 0, I ′(u)u = 0}.
Since we are looking for nodal solutions, instead of the above manifold, we

consider the Nehari nodal set

M := {u ∈ N : u± 6= 0, I ′(u±)u± = 0},

where u+(x) := max{u(x), 0} and u−(x) := min{u(x), 0}, for all x ∈ R2. The

main objective is to guarantee that the minimum c := min
u∈M

I(u) is achived at

a solution w ∈ X. Notice that the set M contains all sign-changing radial

solutions of (P ) and therefore the minimum point w is called least energy nodal

solution.

In the first result we consider the (subcritical) power-type case and prove the

following:

Theorem 1.1. Suppose that p > 2 and f(t) = |t|p−2t. Then the problem (P)

possesses a least energy nodal solution wp ∈ X such that

cp := min
u∈M

I(u) =

(
1

2
− 1

p

)∫
R2

K(x)|wp|p dx.

The existence of nodal solutions for a power-type concave/convex nonline-

arity was obtained in [26] via a fiber map approach. Here, we use a different

technique by adapting some ideas from [3] (see also [6]). Actually, it holds for

more general nonlinearities with critical (or subcritical) growth. Hence, for our

second result, besides (f0)–(f1) we suppose that

(f2) there holds

lim
t→0

f(t)

t
= 0;

(f3) there exists θ > 2 such that

0 < θF (t) ≤ f(t)t, for all t 6= 0;

(f4) the map t→ f(t)/|t| is increasing in R\{0};
(f5) there exist

p > 2 and τ >

[
cp

(
2θ

θ − 2

)
α

4π

](p−2)/2
such that f(t)t ≥ τ |t|p, for all t ∈ R.

The main result of this paper can be stated as follows:

Theorem 1.2. Suppose that f satisfies (f0)–(f5). Then the problem (P) pos-

sesses a least energy nodal solution.

Condition (f3) is the well-known Ambrosetti–Rabinowitz condition which

guarantees that Palais–Smale sequences are bounded. Since f has critical growth,
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this boundedness is not sufficient to get compactness for the functional. Actu-

ally, it is important to use some abstract inequalities proved in [13] as well as

the technical condition (f5). Roughly speaking, it assures that Palais–Smale se-

quences have small norm and therefore some standard arguments can be applied

to recover compactness. The monotonicity condition (f4) is used to prove some

projections properties on the Nehary nodal set M.

The main results of this paper complement those of [12], [13], [26] since we

deal with a different class of nonlinearities and we find a nodal solution. They

also complement the aforementioned works which study self-similar solutions for

the nonlinear heat equation since we consider here the 2-dimensional case.

The paper is organized as follows. In the next section, we present the va-

riational setting of the problem and prove our first theorem. In Section 3 we

prove that minimizers of the functional I on M are critical points. In the final

Section 4, we prove Theorem 1.2.

2. Variational framework and the proof of Theorem 1.1

Throughout the paper we write
∫
u instead of

∫
R2 u(x) dx. In order to present

the functional space to deal with our problem we consider C∞c,rad(R2) the space

of infinitely differentiable radial functions with compact support and denote by

X the closure of C∞c,rad(R2) with respect to the norm

‖u‖ :=

(∫
K(x)|∇u|2

)1/2

.

For each s ≥ 2, we also consider the weighted Lebesgue space LsK(R2) of all the

measurable functions u : R2 → R such that

‖u‖s :=

(∫
K(x)|u|s

)1/s

<∞.

According to [13, Lemma 2.1] the space X is compactally embedded into the

Lebesgue spaces LsK(R2) for any s ∈ [2,∞). Moreover, the following version of

the Trudinger–Moser inequality holds:

Theorem 2.1. We have that K(x)|u|q(eβu2 − 1) ∈ L1(R2) for any q ≥ 2,

u ∈ X and β > 0. Moreover, if ‖u‖ ≤ M and βM2 < 4π, then there exists

C = C(M,β, q) > 0 such that∫
R2

K(x)|u|q(eβu
2

− 1) dx ≤ C(M,β, q).

Proof. See [13, Theorem 1.1 and Corollary 1.2]. �

Let α > α0 be given by (f1) and q ≥ 1. By using the critical growth of f we

obtain

lim
|t|→+∞

f(t)

|t|q−1(eαt2 − 1)
= 0.
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This and (f2) imply that, for any given ε > 0, there exists Cε > 0 such that

(2.1) max{|f(t)t|, |F (t)|} ≤ ε|t|2 + Cε|t|q
(
eαt

2

− 1
)
, for all t ∈ R.

This inequality with q = 2 and Theorem 2.1 imply that the functional

I(u) :=
1

2

∫
K(x)|∇u|2 dx−

∫
K(x)F (u) dx, for all u ∈ X,

is well defined. By using standard calculations we conclude that I ∈ C1(X,R)

with the derivative given by

I ′(u)v =

∫
K(x)(∇u · ∇v) dx−

∫
K(x)f(u)v dx, for all u, v ∈ X

and therefore the critical points of I are weak solutions of (P).

Lemma 2.2. Suppose that f satisfies (f0)–(f3). Then, there exists ρ > 0 scuh

that, for any u ∈ N , ‖u‖ ≥ ρ and

I(u) ≥
(

1

2
− 1

θ

)
‖u‖2.

Proof. If u ∈ N , it follows from (f3) that

I(u) = I(u)− 1

θ
I ′(u)u ≥

(
1

2
− 1

θ

)
‖u‖2.

Suppose, by contradiction, that there exists a sequence (un) ⊂ N such that

‖un‖ → 0. We may assume that, for some β < 4π, there holds α‖un‖2 < β.

By setting vn := un/‖un‖, we can use (2.1) with q > 2 and the embbeding

X ↪→ L2
K(R2) to get

‖un‖2 =

∫
K(x)f(un)un

≤ ε
∫
K(x)u2n + Cε‖un‖q

∫
K(x)|vn|q

[
e4π‖un‖2|vn|2 − 1

]
≤ εC1‖un‖2 + Cε‖un‖q

∫
K(x)|vn|q

[
eβ|vn|

2

− 1
]
,

for some constant C1 > 0. Since ‖vn‖ = 1, it follows from Theorem 2.1 that

(1− εC1) ≤ Cε‖un‖q−2C(1, β, q).

If ε > 0 is small, the above inequality and q > 2 contraditcs ‖un‖ → 0. �

In what follows we prove that the set M is nonempty.

Lemma 2.3. Suppose that f satisfies (f0)–(f2) and (f5). Then, for any u ∈ X
such that u± 6= 0, there exist tu, su > 0 such that

I ′(tuu
+ + suu

−)u+ = I ′(tuu
+ + suu

−)u− = 0.

Consequently, tuu
+ + suu

− ∈M.
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Proof. Given q > 2, it follows from I ′(tu+ +sv−)(tu+) = I ′(tu+)(tu+) and

(2.1) that

I ′(tu+ + sv−)(tu+) ≥ t2

2
‖v+‖2 − t2

2
ε

∫
K(x)(v+)2

− tqCε
∫
K(x)(v+)q(eα(tv

+)2 − 1).

Recalling that X ↪→ L2
K(R2) and using Theorem 2.1, we obtain C1 > 0 and

C2 = C2(ε, ‖v+‖, q) > 0 such that

I ′(tu+ + su−)(tu+) ≥ t2

2
(1− εC1)‖v+‖2 − C2t

q‖v+‖q,

for any 0 ≤ t <
√

(4π)/(2α‖v+‖2). By picking ε > 0 small and using q > 2, we

obtain t∗ > 0 such that

(2.2) I ′(tu+ + su−)(tu+) > 0, for all s ≥ 0, t ∈ [0, t∗].

On the other hand, by integrating the inequality in (f5), we conclude that

(2.3) F (t) ≥ τ

p
|t|p, for all t ∈ R.

Hence,

I ′(tu+ + su−)(tu+) ≥ t2

2
‖v+‖2 − τ t

p

p

∫
K(x)(v+)p.

Recalling that p > 2 we obtain t∗ > t∗ such that

(2.4) I ′(tu+ + su−)(tu+) < 0, for all s ≥ 0, t ∈ [t∗,+∞).

In the same way, starting from I ′(tu+ + su−)(su−) = I ′(su−)(su−), we obtain

s∗ > s∗ > 0 such that

I ′(tu+ + su−)(su−) > 0, for all t ≥ 0, s ∈ [0, s∗],

I ′(tu+ + su−)(su−) < 0, for all t ≥ 0, s ∈ [s∗,+∞).

The result follows from the above inequalities, (2.2)–(2.4) and a version of the

Intermediate Value Theorem proved by Miranda in [18].

We are ready to present the proof of our first main result.

Proof of Theorem 1.1. Supose that f(t) = |t|p−2t. Then the associated

functional is

Ip(u) :=
1

2
‖u‖2 − 1

p

∫
K(x)|u|p, u ∈ X.

Let Np and Mp be the Nehari manifold and the Nehari nodal set of Ip, respec-

tively, and set

cp := min
u∈Mp

Ip(u).

We are going to show that cp is attained in a (least energy) nodal solution of the

problem (P).
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Let (un) ⊂ Mp be such that Ip(un) → cp. By Lemma 2.2, (un) is bounded

in X and, up to a subsequence, un ⇀ u weakly in X. Moreover, since the map

w 7→ w± is continuous from Ls(R2) to Ls(R2) (see [6, Lemma 2.3]), we also have

that u±n ⇀ u± weakly in X. By Lemma 2.2, we have that

ρ ≤ ‖u±n ‖2 =

∫
K(x)|u±n |p.

Taking the limit and recalling that the embedding X ↪→ LpK(R2) is compact,

we conclude that
∫
K(x)|u±|p ≥ ρ > 0 and therefore u± 6= 0. We can now use

Lemma 2.3 to obtain tu, su > 0 such that wp := tuu
+ + suu

− ∈ Mp. By using

the weak convergence and the compact embedding again we get

cp ≤ Ip(wp) ≤ lim inf
n→+∞

Ip(un) = cp.

Moreover,

cp = Ip(wp)−
1

p
I ′p(wp)wp =

(
1

2
− 1

p

)∫
K(x)|wp|p.

It remains to prove that wp is a critical point of Ip. This will be done in the

next section (see Proposition 3.2) in a more general setting. �

3. The deformation argument

For each u ∈ X with u± 6= 0, let us consider hu : R+ × R+ → R given by

hu(t, s) := I(tu+ + su−), for all (t, s) ∈ R+ × R+

and denote by Φu : R+ × R+ → R2 its gradient, that is,

Φu(t, s) :=
(
Φu1 (t, s),Φu2 (t, s)

)
=
(
I ′(tu+ + su−)u+, I ′(tu+ + su−)u−

)
,

for every (t, s) ∈ R+ × R+.

The next result is a version of [3, Lemma 2,1] and states that, when dealing

with the Nehari nodal set, the map hu has the same properties of the usual fiber

maps.

Lemma 3.1. Suppose that f satisfies (f0)–(f2) and (f4). If u ∈M, then

hu(t, s) < hu(1, 1) = I(u), for all (s, t) ∈ (R+ × R+) \ {(1, 1)}.

Moreover, det(Φu)′(1, 1) > 0.

Proof. Let u ∈M and notice that 0 = I ′(u)u± = I ′(u+ + u−)u±. Hence,

Φu(1, 1) =

(
∂hu

∂t
(1, 1),

∂hu

∂s
(1, 1)

)
= (0, 0)

and we conclude that (1, 1) is a critical point of hu. Given t, s ≥ 0, we infer from

(2.3) that

hu(t, s) ≤ t2

2
‖u+‖2 +

s2

2
‖u−‖2 − tp

p
τ

∫
K(x)|u+|p − sp

p
τ

∫
K(x)|u−|p.
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Since p > 2, it follows that

lim
|(t,s)|→+∞

hu(t, s) = −∞,

and therefore hu attains its maximun value at some point (t, s) ∈ R+ × R+.

We first prove that t, s > 0. Suppose, by contradiction, that s = 0. Thus,

I ′(tu+)tu+ = 0, or equivalently,

‖u+‖2 =

∫
K(x)f(tu+)

t
u+.

This and I ′(u+)u+ = 0 provides∫
{u>0}

K(x)

[
f(tu+)

tu+
− f(u+)

u+

]
(u+)2 = 0,

and it follows from (f4) that t = 1. Since Lemma 2.2 provides I(u−) > 0, we get

hu(t, 0) = hu(1, 0) = I(u+) < I(u+) + I(u−) = I(u) = hu(1, 1),

which is absurd because (t, 0) is a global maximum point. The same argument

proves that t > 0.

Since (1, 1) and (t, s) are both critical points of hw, we have that I ′(tu+)tu+ =

I ′(su−)su− = 0 and I ′(u+)u+ = I ′(u−)u− = 0. Hence, we can argue as above

to conclude that t = s = 1.

In order to check that det(Φu)′(1, 1) > 0, we first notice that

(Φu)′(t, s) =

(
g′1(t) 0

0 g′2(s)

)
,

where

g1(t) := Φu1 (t, s) = I ′(tu+)u+ = t‖u+‖2 −
∫
K(x)f(tu+)u+,

and g2(s) := Φu2 (t, s). Since u+ ∈ N , it follows from the definition of g1(t) and

(f4) that

g′1(1) = ‖u+‖2 −
∫
K(x)f ′(u+)(u+)2 =

∫
K(x)

[
f(u+)u+ − f ′(u+)(u+)2

]
< 0.

Analagously g′2(1) < 0, and therefore we conclude that

det(Φu)′(1, 1) = g′1(1)g′2(1) > 0. �

We now use a deformation argument to show that the set M is a natural

constraint for the functional I. The proof is adapted from [4, Proposition 3.1].

Proposition 3.2. Suppose that f satisfies (f0)–(f2) and (f4). If w ∈ M is

such that

(3.1) I(w) = c := min
u∈M

I(u),

then I ′(w) = 0.
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Proof. Suppose, by contradiction, that the result is false. Then, there exist

δ, λ > 0 such that ‖I ′(v)‖ > λ whenever ‖v − w‖ < 3δ. Setting g(t, s) :=

tw+ + sw−, we can use Lemma 3.1 to obtain D ⊂ R2 such that (1, 1) ∈ D and

(3.2) α := max
(t,s)∈∂D

I(g(t, s)) = max
(t,s)∈∂D

hw(t, s) < c.

For ε < min{(c − α)/2, λδ/8} and S := Bδ(w), it follows from [25, Lemma 2.3]

that there exists η ∈ C([0, 1]×X,X) verifying

(i) η(1, u) = u, if u 6∈ I−1([c− 2ε, c+ 2ε]);

(ii) η(1, Ic+ε ∩ S) ⊂ Ic−ε;
(iii) I(η(1, u)) ≤ I(u), for any u ∈ X.

By Lemma 3.1, (ii) and (iii) it follows that

(3.3) max
(t,s)∈D

I(η(1, g(t, s))) < c.

It follows from the definition of Φw and w ∈ M that Φw(t, s) = 0 if, and only

if, (t, s) = (1, 1) ∈ D. Thus, from the definition of the Brouwer degree and

Lemma 3.1, we get

deg(Φw, D, 0) = sgn det(Φw)′(1, 1) = 1.

We set h(t, s) := η(1, g(t, s)),

(3.4) Ψ(t, s) := (t−1I ′(h(t, s))h(t, s)+, s−1I ′(h(t, s))h(t, s)−)

and notice that, by the choice of ε > 0, (3.2) and (i), we have that that g = h

on ∂D. So, the definition of Φw and (3.4) imply that Φw = Ψ on ∂D, from which

we obtain

deg(Ψ, D, 0) = deg(Φw, D, 0) = 1.

Thus, there exists (t, s) ∈ D such that h(t, s) ∈M, which contradicts (3.3). This

contradiction proves that I ′(w) = 0 and we conclude the proof. �

4. Proof of Theorem 1.2

We devote this section to the proof of our second main result. The main idea

is to consider the minimization problem defined in (3.1). The first step of the

proof is obtaining an estimative of the number c.

Lemma 4.1. Suppose that f satisfies (f0)–(f2) and (f5). Then the numer c

defined in (3.1) satisfies

c ≤ cp
τ2/(p−2)

,

where cp > 0 comes from Theorem 1.1.
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Proof. Let wp ∈ X be the solution given by Theorem 1.1. Since w± 6= 0,

by Lemma 2.3, we obtain twp
, swp

> 0 such that twp
w+
p + swp

w−p ∈ M. Hence,

by (2.3) and I ′p(w
±
p )w±p = 0, we get

c ≤ I(twp
w+
p + swp

w−p )

≤
t2wp

2
‖w+

p ‖2 +
s2wp

2
‖w−p ‖2 −

τ

p
tpwp

∫
K(x)|w+

p |p −
τ

p
spwp

∫
K(x)|w−p |p

=

[
t2wp

2
− τ

tpwp

p

]∫
K(x)|w+

p |p +

[
s2wp

2
− τ

spwp

p

]∫
K(x)|w−p |p

≤ max
s≥0

[
s2

2
− τ s

p

p

] ∫
K(x)|wp|p.

Recalling the value of cp given in the statement of Theorem 1.1, a straightforward

calculation provides

c ≤ max
s≥0

[
s2

2
− τ s

p

p

](
1

2
− 1

p

)−1
cp ≤

cp
τ2/(p−2)

,

and we have done. �

It can be proved that any function u ∈ X decays as |x|−1/2e−|x|2/8 at infinity.

Hence, we have the following techical result whose proof can be found in [13,

Lemma 4.4]:

Lemma 4.2. Suppose G ∈ C(R,R) satisfies

G(t) ≤ c1t4(eαt
2

− 1), for all t ∈ R,

with c1, α > 0. Then there exists c2, c3 > 0 such that, for any radial function

u ∈ X and R > 1, there holds∫
BR(0)c

K(x)G(u) dx ≤ c2
R
‖u‖4(eαc

2
3‖u‖

2

− 1).

In our next result, we use the above lemma to obtain a compactness property

for sequences with small norm in X.

Lemma 4.3. Suppose that f satisfies (f0)−(f2). If (un) ⊂ X and there exists

0 < δ < (4π)/α such that

lim sup
n→+∞

‖un‖2 < δ,

then, up to a subsequence, un ⇀ u weakly in X,

lim
n→+∞

∫
K(x)F (un) =

∫
K(x)F (u),(4.1)

lim
n→+∞

∫
K(x)f(un)un =

∫
K(x)f(u)u.(4.2)
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Proof. The first statement is a direct consequence of the boundedness of

(un) in X. We shall prove (4.1) since the other convergence follows in the same

way. For any given ε > 0 and R > 0, we can use (2.1) with q = 4 and Lemma 4.2

to get∫
BR(0)c

K(x)F (un) dx ≤ ε
∫
K(x)|un|2 +

c2
R
‖un‖4

(
eαc

2
3‖un‖2 − 1

)
≤ c4ε+

c5
R
,

from which we conclude that

(4.3) lim sup
R→+∞

∫
BR(0)c

K(x)F (un) dx ≤ c4ε.

In order to estimate the integral in the ball we recall that, since the em-

bedding X ↪→ L2
K(R2) is compact, there exists ψ2 ∈ L2(BR(0)) such that, for

almost every x ∈ BR(0), there holds

K(x)F (un) ≤ K(x)|un|2 + c6K(x)|un|
(
eα|un|2 − 1

)
≤ ψ2(x)2 + c7|un|eα|un|2 ,

where we have used (2.1) with ε = q = 1. We now claim that

gn(x) := |un|eα|un|2 → |u|eα|u|
2

,

stongly in L1(BR(0)). If this is true, it follows from the pointwise convergence

F (un(x)) → F (u(x)) almost everywhere in BR(0), the last inequality and the

Lebesgue Theorem that

lim
n→+∞

∫
BR(0)

K(x)F (un) dx =

∫
BR(0)

K(x)F (u) dx.

Since R > 0 is arbitrary, this and (4.3) imply (4.1).

It remains to check that gn converges in L1(BR(0)). For any s > 1, we have

that (
eα|un|2

)s
≤ eαsδ(u

2
n/‖un‖2), for a.e. x ∈ BR(0).

Since δ < (4π)/α, we can pick s > 1 sufficiently close to 1 in such way that

αsδ < 4π. Thus, it follows from the above inequality and the classical Trudin-

ger–Moser inequality (see [19], [24]) that the sequence
(
eαu

2
n

)
is bounded in

Ls(BR(0)). Since we also have pointwise convergence, we may assume that

eαu
2
n ⇀ eαu

2

weakly in Ls(BR(0)).

If we denote by s′ > 1 the conjugated exponent of s, we have that |un| → |u| in

Ls(BR(0)) for any s > 1. These two convergences and Hölder’s inequality imply

that gn strongly converges to |u|eα|u|2 in L1(BR(0)). �

We are ready to present the proof of the main result of this paper.
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Proof of Theorem 1.2. Let (un) ⊂ M be such that I(un) → c as n →
+∞. Since I ′(un)un = 0, it follows from (f3) that

c+ on(1) = I(un)− 1

θ
I ′(un)un ≥

(
1

2
− 1

θ

)
‖un‖2.

Hence, we infer from Lemma 4.1 that

lim sup
n→+∞

‖un‖2 ≤
(

2θ

θ − 2

)
c ≤

(
2θ

θ − 2

)
cp

τ2/(p−2)
.

By (f5),

τ >

[
cp

(
2θ

θ − 2

)
α

4π

](p−2)/2
and therefore we conclude that lim sup

n→+∞
‖un‖2 < 4π/α. So, we can use Lemma 4.3

to obtain u ∈ X such that (4.1)–(4.2) hold.

As in the proof of Theorem 1.1, we have that u±n ⇀ u± weakly in X. Re-

calling that (u±n ) ⊂ N , we can use the last inequality, Lemmas 2.2 and 4.3 to

conclude that

ρ ≤ ‖u±n ‖2 =

∫
K(x)f(u±n )u±n + on(1) =

∫
K(x)f(u±)u±,

and therefore u± 6= 0. By Lemma 2.3, there exist tu, su > 0 such that w :=

tuu
+ + suu

− ∈M. From (4.1) and Lemma 3.1 we get

c ≤ I(w) = I(tuu
+ + suu

−) ≤ lim inf
n→+∞

I(tuu
+
n + suu

−
n ) ≤ lim inf

n→+∞
I(u+n + u−n ) = c,

and therefore the infimum of I over M is attained at w ∈ M. Proposition 3.2

implies that w is a least energy nodal solution of (P). �
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