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EFFECT OF EXTERNAL POTENTIALS

IN A COUPLED SYSTEM

OF MULTI-COMPONENT INCONGRUENT DIFFUSION

Yanheng Ding — Tian Xu

Abstract. This work is devoted to investigations of some interesting as-

pects of a multi-component Reaction-Diffusion system of the form

∂tz = D∆xz +M(x)z +W (x)|z|p−2βz, z : R× RN → R2K , N ≥ 2

where M , W are external potential functions, D and β are matrices of dif-
fusion coefficients and coupling constants respectively. When the diffusion

rate is small, we show that the geometric shapes of the external potential

functions will influence the multiplicity of solutions to the system. It is also
of interest to know that, for z = (u, v), we shall deal with standard diffusion

coefficients Du > 0 and the incongruent diffusion coefficients Dv < 0 which
has generally been overlooked in the study of Reaction–Diffusion systems.

1. Introduction

1.1. Some backgrounds and previous results. A system of Reaction–

Diffusion (RD) equations comprises of reaction terms and diffusion terms, i.e.

the typical form is as follows:

(1.1) ∂tz = divx
(
D∇xz

)
+M(x)z + f(x, z)
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where z(t, x) ∈ Rm, m > 1, is a state variable and describes density or con-

centration of multi-component substances, populations at position x ∈ RN at

time t. The first term on the right hand side describes the “diffusion”, in-

cluding D as a matrix of diffusion coefficients Dij (the diagonal elements of

D describe the main-term diffusion rate and the off-diagonal elements express

the the cross-terms diffusion which was suggested firstly in 1932 see [21]). Cre-

ation and killing in the reaction process (birth, death, etc) are described by the

scalar field M(x) which could be a matrix-valued function, and the nonlinear

part, f(x, z) is smooth function f : RN × Rm → Rm called reaction kinetics

and describes processes that really “change” the present z, i.e. coupling actions,

chemical reactions, not just diffusion in the space.

Being one of the major transport processes in liquids RD processes, especially

in multi-component systems, have attracted increasing attention from the scien-

tific community in recent years as investigators have begun to seek insights into

the fascinating patterns that occur in living organisms, in ecological systems, in

geochemistry and in physicochemical systems. The rapid growth of the field of

systems biology has further contributed to interest in RD systems (1.1). Unfor-

tunately, multi-component diffusion is more complicated than is often realized.

In general, systems of RD equations allow for much more complex behavior than

a scalar RD equation does. For example, a ternary system (two solutes in a

solvent) may has four coefficients in the diffusion matrix, not just two. And the

diffusion coefficients can be large or small and be positive or negative, thus hav-

ing a substantial effect on flows of matter. Meanwhile, the interacting reaction

terms are of interest and lead to interesting behavior. For instance, oscillating

phenomena can evolve – as these oscillations can spread in space via diffusion

and instabilities may develop spatial phenomena like pattern formation can be

observed. Here for a detailed survey, we would refer the readers to [18].

On the macroscopic level, fluxes of chemical components (species) are due to

convection and molecular fluxes, where the latter essentially refers to diffusive

transport. The almost exclusively employed constitutive “law” to model diffusive

fluxes within continuum mechanical models is Fick’s law (which requires positive

diffusion coefficients), stating that the flux of a chemical component is propor-

tional to the gradient of the concentration of this species, directed opposite to the

gradient. This leads to positive coefficients Dii in D, however, thermodynamic

conditions do not require the diagonal of D to be positive. Contrary to popular

belief, there are systems with negative Dii for a particular choice of the solvent

component. Typical example is acetic acid + chloroform with water being cho-

sen as solvent, a totally unexpected result is the negative chloroform main term

diffusion coefficient, that is a negative D22 value (see [17], [25] for the chemical

details). This behavior has been interpreted as a thermodynamic effect caused
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by the diffusion of salted-out chloroform down the water concentration gradient

produced by the chloroform gradient under conditions of constant acetic acid

concentration.

Our current work is motivated exactly by the unusual phenomenon of neg-

ative main term diffusion. Let us consider the multi-component nonlinear RD

system (1.1) in the situation z = (u, v) ∈ R2K , some K ≥ 1, and

(1.2) D =

(
Du ∗
∗ Dv

)
= ε2J , where J =

(
id 0

0 −id

)
and ε > 0 being a parameter characterizing the pace of the diffusion process

(for simplicity we have ignored the cross-term diffusions). To the best of our

knowledge negative main term diffusion, the phenomenon in which one species

to be driven from lower to higher concentrations, has generally been neglected in

the study of RD systems, only a few results are available so far. An early work

of Brézis and Nirenberg [6] considered the 2-component coupled system

(1.3)

{
∂tu = ∆xu− v5 + f(x),

∂tv = −∆xv − u3 + g(x),
in (0, T )× Ω,

where Ω ⊂ RN is a bounded domain and f, g ∈ L∞(Ω). Subject to the boundary

conditions u(t, x) = v(t, x) = 0 on (0, T ) × ∂Ω and u(0, x) = v(T, x) = 0 on Ω,

the authors obtained a solution (u, v) with u ∈ L4 and v ∈ L6 of (1.3) by

using Schauders fixed point theorem. And in [8], Clément, Felmer and Mitidieri

considered the problem (with a Fujita-type nonlinearity, see [11], [12])

(1.4)

{
∂tu = ∆xu+ |v|q−2,

∂tv = −∆xv − |u|p−2u,
in (−T, T )× Ω,

where Ω is a smoothly bounded domain in RN , and N/(N + 2) < 1/p+ 1/q < 1.

By variational arguments, they proved that there exists T0 > 0 such that for

each T > T0, (1.4) has at least one positive solution satisfying the 0-boundary

condition: u(t, · )|∂Ω = 0 = v(t, · )|∂Ω for all t ∈ (−T, T ), and the periodicity

condition: u(−T, · ) = u(T, · ), v(−T, · ) = v(T, · ). Moreover, by passing to the

limit as T →∞, they showed that (1.4) has at least one positive solution defined

on R× Ω satisfying the 0-boundary condition and

lim
t→∞

u(t, x) = lim
t→∞

v(t, x) = 0 uniformly in x ∈ Ω.

For later developments, we would mention that Bartsch and Ding [3] investigated

the following 2K-component system

(1.5)

{
∂tu = ∆xu− V (x)u+ ∂vH(x, u, v),

∂tv = −∆xv + V (x)v − ∂uH(x, u, v),
in R× RN .
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In [3], the authors established a proper variational framework and proved the

existence and multiplicity of solutions of homoclinic type to (1.5) under appro-

priate conditions on the nonlinearities (see also [9]). All the above mentioned

systems have constant diffusion coefficients, and if denoted by z = (u, v), they

all have the form

∂tz = J∆xz +M(x)z + f(x, z)

with different types of creation and killing field M and reaction kinetics f .

For the case where the diffusion is parameterized by ε, a very recent paper [10]

considered exactly the system (1.1) with D being defined in (1.2) and the creation

and killing field being specified as

M(x) =

(
−id −V (x)

V (x) id

)

for some bounded function V : RN → R. In [10], the authors prove that there

must be a solution concentrating around the local minimums of the scalar po-

tential V (x) for small diffusion coefficients. This provides a natural and intrinsic

characterization of the pattern generalizing dependence on the varying parame-

ters and the spatial distributions of chemical potentials.

In this paper, we are interested in the following aspects which have not been

dealt with before and are new in the case of RD systems. Namely we intend

(1) to apply concentration and rescaling techniques to non-autonomous non-

linearities, and in particular to characterize the concentration phenome-

non in terms of the different potential functions;

(2) to show that the presence of a field M and a non-autonomous nonlinear-

ity f give better information concerning the existence of a solution, i.e.

they can provide multiplicity result to problem (1.1).

1.2. Specific models and main results. In this paper we study the evo-

lution of patterns in solutions of a singularly perturbed RD system, and the

simplest model is the following:

(1.6) ∂tz = D∆xz +M(x)z +W (x)|z|p−2βz, z : R× RN → R2K ,

for N ≥ 2, K ≥ 1, where D is defined in (1.2) with ε > 0 being a small parameter,

2 < p < 2(N + 2)/N , the external potential M is defined by one of the following

form

(1.7) M(x) =

(
−id− V (x) 0

0 id + V (x)

)
or M(x) =

(
−id −V (x)

V (x) id

)
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with V : RN → R bounded (possibly, sign-changing) and W : RN → R is positive,

and β is a coupling matrix defined by

β =

(
0 id

−id 0

)
.

Let us introduce, for r ≥ 1, the Banach space

Br
(
R× RN ,R2K

)
:= W 1,r

(
R, Lr

(
RN ,R2K

))
∩ Lr

(
R,W 2,r

(
RN ,R2K

))
equipped with the norm

(1.8) ‖z‖Br :=

(∫∫
R×RN

(
|z|r + |∂tz|r + |∆xz|r

)
dx dt

)1/r

,

and in the sequel when no confusion can arise, we will use Br for short. By

variational frameworks as developed by [3] and [10], we consider (1.6) in the

function space E := [B2, L2]1/2 which is an interpolation space between B2

and L2
(
R × RN ,R2K

)
. We point out here that this space embeds into the

corresponding Lq-spaces for 2 ≤ q ≤ 2(N + 2)/N . It is easy to see that (1.6) is

subcritical in the sense that p is smaller than the critical embedding exponent.

In order to gain further insight into the effect of potential functions on the

concentrating process and the multiplicity of solutions, we will deal with the

following more general class of RD system with critical growth, namely

(1.9) ∂tz = D∆xz+M(x)z+
(
W (x)|z|p−2 +Q(x)|z|4/N

)
βz, (t, x) ∈ R×RN .

Of course, (1.9) reduces to (1.6) when Q is identically zero. Associated to (1.9),

let us introduce the following problem

(1.10) ∂tz = J∆xz − (J + βων)z +
(
λ|z|p−2 + κ|z|4/N

)
βz

where ν ∈ (−1, 1), λ > 0, κ ≥ 0 and ω is in one of the following form (accordingly

to M(x))

ων = ν or ων =

(
0 ν

ν 0

)
.

This equation appears as the limit equation for (1.9).

Let us remark that systems (1.9) and (1.10) can be viewed as infinite-

dimensional Hamiltonian systems of the form

β
dz

dt
= ∇H(z),

where H is some energy functional on a real Hilbert space H ⊂ L2(RN ,R2K),

and the matrix β can be regarded as a skew-symmetric operator. Such an inter-

esting feature of these problems makes variational method applicable, especially,

the techniques developed for variational problems with strongly indefinite struc-

ture can be employed.
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Now, let us state our main results. To be more precisely, we shall apply the

global variational arguments, described in Section 3, to define the minimal energy

(or ground state energy) associated to (1.10) as γ(ων , λ, κ). Roughly speaking,

γ(ων , λ, κ) is a positive function, and is increasing in the factor ν and decreasing

in the factors λ and κ. To relate (1.9) with γ(ων , λ, κ), let us introduce the

function c0 : RN → R as

c0(y) := γ(ωV (y),W (y),Q(y)).

By letting

ν∞ := lim inf
|x|→∞

V (x), λ∞ := lim sup
|x|→∞

W (x), κ∞ := lim sup
|x|→∞

Q(x)

and

c∗ = min
y∈RN

c0(y), C =
{
y ∈ RN : c0(y) = c∗

}
,

our main theorem can be formulated as

Theorem 1.1. Assume the matrix M is of the form given in (1.7), p ∈
(2, 2(N + 2)/N) and V , W , Q are bounded, Hölder continuous functions on RN

satisfying

(A1) ‖V ‖L∞ < 1, inf
x∈RN

W (x) > 0 and Q(x) ≥ 0 for all x.

There exits a constant κ̂ > 0 such that if ‖Q‖L∞ < κ̂ and

(A2) there exists x0 ∈ RN such that Q(x0) = max
x∈RN

Q(x) and

ν∞ ≥ ν0 := V (x0), λ∞ ≤ λ0 := W (x0), κ∞ ≤ Q(x0)

with one of the first two inequalities being strict,

then RD system (1.9) possesses at least θ distinct solutions zkε , k = 1, . . . , θ for

small ε > 0, where θ is the largest integer such that

(1.11) θ <

(
1 + ν∞
1 + ν0

)(4−N(p−2))/(2(p−2))(
λ0

λ∞

)2/(p−2)

.

Moreover, among these solutions, z1
ε lies in the ground state energy level and has

the following properties:

(a) |z1
ε(t, · )| has exactly one global maximum point at some xε with

lim
ε→0

dist(xε,C ) = 0,

lim
R→∞
ε→0

‖z̃ε(t, · )‖L∞(RN\BεR(xε)) = 0 uniformly for t ∈ R;

(b) the rescaled function wε(t, x) = zε(t, εx + xε) converges as ε → 0 uni-

formly to a ground state solution z : R× RN → R2K of

∂tz = J∆xz +M(y0)z +
(
W (y0)|z|p−2 +Q(y0)|z|4/N

)
βz.
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Remark 1.2. (a) A possible explicit formula for the constant κ̂ could be

defined in terms of the factors ‖V ‖L∞ and inf W ; see (5.1). It satisfies κ̂ →
c(p) > 0 as ‖V ‖L∞ → 0. Thus we do allow critical growth in the nonlinear

part but the function Q cannot be too large. It is an interesting open problem

whether this restriction on Q can be removed.

(b) Assumptions p ∈
(
2, 2(N + 2)/N) and (A2) imply that

L(ν0, ν∞, λ0, λ∞, p) :=

(
1 + ν∞
1 + ν0

)(4−N(p−2))/(2(p−2))(
λ0

λ∞

)2/(p−2)

> 1.

This suggests that (1.9) has at least one solution. We can always find a function

W to make the ratio λ0/λ∞ large and, hence, there are examples showing that

(1.9) has a very large number of solutions. We would like to mention here that

assumption (A2) inherited a similar spirit of [23], and it makes the variational

structure of (1.9) satisfy a variant of Palais–Smale condition.

(c) Concerning the number of solutions in Theorem 1.1, for the case that

L(ν0, ν∞, λ0, λ∞, p) is an integer, we have θ = L(ν0, ν∞, λ0, λ∞, p)−1. And hence

the choice of θ is slightly different from the function of taking the integer part of

L(ν0, ν∞, λ0, λ∞, p). Moreover, we can see from the statement of Theorem 1.1

that the number θ is irrelevant to the function Q. And hence the number of

solutions is dominated by the functions V and W .

As a consequence of Theorem 1.1, we obtain the following corollary for the

subcritical equation (1.6).

Corollary 1.3. Under the hypotheses of Theorem 1.1 and assuming Q va-

nishes identically the RD system (1.6) possesses at least θ distinct solutions zkε ,

k = 1, . . . , θ for small ε > 0, where θ is the integer in (1.11). Moreover, among

these solutions, z1
ε lies in the ground state energy level and has the following

properties:

(a) |z1
ε(t, · )| has exactly one global maximum point at some xε with

lim
ε→0

dist(xε,C ) = 0,

lim
R→∞
ε→0

‖z̃ε(t, · )‖L∞(RN\BεR(xε)) = 0 uniformly for t ∈ R;

(b) the rescaled function wε(t, x) = zε(t, εx + xε) converges as ε → 0 uni-

formly to a ground state solution z : R× RN → R2K of

∂tz = J∆xz +M(y0)z +W (y0)|z|p−2βz.

Remark 1.4. In terms of V , W and Q, the assumptions (A2) is sufficient

conditions to guarantee c0(x0) < lim sup
|y|→∞

c0(y), and hence, C is a compact set

in RN . Without loss of generality, throughout this paper, we may always make
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the assumption that x0 = 0 ∈ RN . We emphasize that (A2) can be replaced by

other sufficient conditions, for example,

(a) ν∞ = sup
RN

V , λ∞ = inf
RN

W , Q ≡ constant.

(b) Denoted by

g(x) =
Q(x)

W (x)4/(N(p−2))
and µ∞ := lim sup

|x|→∞
g(x),

there exists x0 ∈ RN such that g(x0) = max
x∈RN

g(x) and

ν∞ ≥ ν0 := V (x0), λ∞ ≤ λ0 := W (x0), µ∞ ≤ g(x0)

with one of the first two inequalities being strict.

If V and W are not constants, then each of the above conditions (a), (b) is a

sufficient condition to guarantee c0(x0) < lim sup
|y|→∞

c0(y).

Remark 1.5. The nonlinearity of power functions was considered firstly by

H. Fujita in his classical papers [11], [12] on Cauchy problems for a single RD

equation; and such nonlinearity also plays an important role in the analysis

of steady-state solutions to RD equations (see a series of remarkable papers of

Ni and Takagi [19], [20], and with Lin [15]). Here in this work, we focus on

(1.6) and (1.9) as multi-component versions of nonlinear problems in Fujita’s

type. It is quite natural that, in the case Q ≡ 0, the set C is defined as the

“middle ground” between minima of V and maxima of W . Indeed, as one will

see in Section 3, minimum points of c0( · ) coincides with minimum points of the

function V (x)(N+4)/2+2/(p−2)/W (x)2/(p−2) provided that M(x) is of the first

form in (1.7). As a consequence, if V is constant, then C coincides with the

global maxima set of the potential W . And conversely, if W is constant, then C

is the set of global minima of the function V . However, in the general case (M(x)

is of the second form in (1.7), and Q 6≡ 0), it is impossible to have an explicit

formula for c0(y), and hence we cannot explicitly characterize the location of

concentration of minimal energy solutions in term of the functions V , W and Q.

The proof of Theorem 1.1 will use variational techniques. Since we are

working on the unbounded domain R × RN , we will employ the concentration-

compactness argument explored in [16]. It consists in finding a suitable energy

threshold for the energy functional of (1.9) such that the Palais–Smale condi-

tion holds below this threshold, constructing different minimax levels and then

showing these minimax levels are indeed below the energy threshold. We em-

phasize here that, in the usual concept, the energy threshold tricks are well

adapted for the study of variational problems in geometry and physics where

lack of compactness occurs. The most notorious example is Yamabe’s problem.

Here, due the Hamiltonian structure of the RD system, we note that it is not
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easy to obtain compactness in view of the critical growth of the nonlinearity

even in finding the energy threshold. To overcome this, we will need a delicate

analysis for the limit problem (1.10) on the ground state energy level and use

the concentration-compactness principle to control the factor Q in the critical

growth.

To obtain multiple solutions of the problem, the main ingredient is to make

use of the invariance of (1.9) under some group actions, for instance the multi-

plication by ±1 and the translation in time-coordinate will not change a solution

to (1.9). This kind of invariance will lead us to build a pseudo-index theory for

the associated functional. More precisely, the number of solutions is related to

the frequency that the pseudo-index changes, see an abstract setting in Theo-

rem 2.11.

The remainder part of the paper is organized as follows. Section 2 is devoted

to introduce some notations and to briefly recall some preliminary results such

as the linking geometry and a Lyapunov–Schmidt type reduction. An abstract

theorem regarding the multiplicity of critical points for strongly indefinite func-

tionals is also introduced, and the proof will be postponed to Appendix B. In

Section 3, we investigate the associated autonomous problem (1.10). This study

allows us to show the role played by the critical factor κ at the ground state

energy level. The Palais–Smale condition, which does not hold in general case

since we allow critical growth, will then be studied in Section 4. Here we per-

form the crucial criterion for compactness in terms of a energy threshold. Next,

in Section 5, we provide the main components of our proof. The first part is

the analysis on the concentration behavior of the ground state energy solution

for (1.9). In the second part we build a finite-dimensional linking argument

to construct specific minimax schemes which can be applied to (1.9) such that

these minimax levels stay below the energy threshold. The proof will be then

completed by applying our abstract theorem in Section 2. Finally, for the sake

of completeness, in the Appendix A we collect some regularity results which are

used in the paper.

2. Notation, known results and main ingredients

In this section we establish some preliminary results which are needed for

the proof of our main theorems. Given V , W and Q as in the previous section,

we consider the RD system

(2.1) ∂tz = D∆xz +M(x)z +
(
W (x)|z|p−2 +Q(x)|z|4/N

)
βz

with coefficients D defined in (1.2) and M(x) being of the form (1.7).
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For a clearer expression let us set

J0 =

(
0 id

id 0

)
,

and by noting that D = ε2J , we shall consider the scaling x→ εx so that (2.1)

equivalently transforms as

(2.2) ∂tz = J∆xz +Mε(x)z +
(
Wε(x)|z|p−2 +Qε(x)|z|4/N

)
βz

with Mε(x) = M(εx), Wε(x) = W (εx) and Qε(x) = Q(εx). Remark that

β−1 = −β, hence if denoted by L = −β∂t + J0(−∆x + 1) and V(x) = either

V (x) or V (x)J0, we have (2.2) to be rewritten as

(2.3) L z + Vε(x)z = Wε(x)|z|p−2z +Qε(x)|z|4/Nz for z(t, x) ∈ R2M

where obviously we have used Vε(x) = V(εx).

In what follows, we will focus on the equivalent system (2.3), and, throughout

the paper we make use of the following notations: for 1 ≤ q ≤ ∞ we set Lq :=

Lq(R × RN ,R2K), and by | · |q we denote the usual Lq-norm, and particularly

denoted by ( · , · )2 the usual L2-inner product.

Considering the differential operator L acts on the Hilbert space L2, it is

quite standard to see that L is a self-adjoint operator with domain

D(L ) = B2 := W 1,2
(
R, L2

(
RN ,R2K

))
∩ L2

(
R,W 2,2

(
RN ,R2K

))
.

Let σ(L ) and σe(L ) be respectively the spectrum and essential spectrum of

L , we have σ(L ) = σe(L ) = R \ (−1, 1) (cf. [9, Lemma 8.7]). And as a direct

consequence, L2 possesses the orthogonal decomposition:

(2.4) L2 = L+ ⊕ L−, z = z+ + z−,

so that L is positive definite (resp. negative definite) in L+ (resp. L−).

In order to construct the energy functionals whose critical points are the

solutions of (2.3), we introduce E := D(|L |1/2) (which is the form domain of L)

be equipped with the inner product

〈z1, z2〉 =
(
|L |1/2z1, |L |1/2z2

)
2

and the induced norm ‖z‖ = 〈z, z〉1/2, where |L | and |L |1/2 denote respectively

the absolute value of L and the square root of |L |. Since σ(L ) = R \ (−1, 1),

one has

(2.5) |z|22 ≤ ‖z‖2 for all z ∈ E.

As an interpolation space between B2 and L2, E (being a Hilbert space) has the

decomposition

E = E+ ⊕ E−, where E± = E ∩ L±
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which is orthogonal with respect to both ( · , · )2 and 〈 · , · 〉. We write z = z++z−

for z ∈ E according to this decomposition. Remarkably, this decomposition of

E induces also a natural decomposition of Lq for every q ∈ (1,+∞):

Proposition 2.1. Let E+ ⊕E− be the decomposition of E according to the

positive and negative part of σ(L ). Then, set E±q := E± ∩ Lq for q ∈ (1,∞),

there holds

Lq = clq E
+
q ⊕ clq E

−
q

with clq denoting the closure in Lq. More precisely, there exists dq > 0 for every

q ∈ (1,∞) such that

dq|z±|q ≤ |z|q for all z ∈ E ∩ Lq.

In Lq’s (for q 6= 2), by ⊕ we mean the topologically direct sum. Before

proving Proposition 2.1 we would like to introduce the following definition for

Multipliers (see [24, Chapter 4]) which plays an important role in our arguments.

Definition 2.2. Let m be a bounded measurable function on Rn, we asso-

ciate a linear operator Tm on L2∩Lq by (Tmu)̂(ξ) = m(ξ) û(ξ) where û denotes

the Fourier transform of u. We say that m is a multiplier for Lq (1 ≤ q ≤ ∞) if

whenever u ∈ L2 ∩Lq then Tmu ∈ Lq (notice it is automatically in L2), and Tm
is bounded, that is,

(2.6) |Tmu|q ≤ C · |u|q, u ∈ L2 ∩ Lq (with C independent of u).

Observe that if (2.6) is satisfied, and p <∞, then Tm has a unique bounded

extension to Lq, which again satisfies the same inequality.

Proof of Proposition 2.1. First we remark that in this context, the

spatial domain is R×RN . Now recall the definitions for the matrices β and J0,

let us study L := −β∂t + J0(−∆x + 1). It is a differential operator with real

constant coefficients. In the Fourier domain ξ = (ξ0, . . . , ξN ), it becomes the

operator of multiplication by the matrix:

L̂ (ξ) =

(
0 A(ξ)

A(ξ) 0

)
with A(ξ) =

(
iξ0 + 1 +

N∑
k=1

ξ2
k

)
· id.

Here “id” denotes the K ×K identity matrix.

Denoted by λ(ξ) =

√
ξ2
0 +

(
1 +

N∑
k=1

ξ2
k

)2

. By classical calculus, we have that

L̂ (ξ) has two eigenvalues: ±λ(ξ). Now, denote P± the projections on E with

kernel E∓. We see that in the Fourier domain, P± are multiplication operators

by bounded smooth matrix-valued functions of ξ:

(P+z)̂(ξ) =
1

2λ(ξ)

(
λ(ξ) A(ξ)

A(ξ) λ(ξ)

)(
û

v̂

)
,
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(P−z)̂(ξ) =
1

2λ(ξ)

(
λ(ξ) −A(ξ)

−A(ξ) λ(ξ)

)(
û

v̂

)
.

Here we have used the notation z = (u, v) and ẑ = (û, v̂).

In order that P± are multipliers for Lq, we need to use the Marcinkiewicz

multiplier theorem on R × RN (see [24, Chapter 4, Theorem 6′]). A direct cal-

culation shows that, for each 0 < k ≤ N + 1, there holds∣∣∣∣∂k
(
A(ξ)/λ(ξ)

)
∂ξi1 . . . ∂ξik

∣∣∣∣ ≤ B
k∏
j=1

|ξij |
for some constant B > 0.

And hence, as an immediate consequence, P± are multipliers for Lq for all

q ∈ (1,∞). This implies that P± are continuous with respect to the Lq-norms.

By noting that P±(E∓) = {0}, one easily sees that P± extend to continuous pro-

jections on Lq (still denoted by P±) with P±(clqE
∓
q ) = {0}. And this completes

the proof. �

The embedding from E into Lq’s can be concluded in the following lemma.

Lemma 2.3 (see e.g. [9]). E is continuously embedded in Lq for q ∈ [2,

2(N + 2)/N ] if N ≥ 2, and compactly embedded in Lqloc for q ∈ [1, 2(N + 2)/N)

if N ≥ 2.

On E we consider the functionals Φε and Φ0 defined by

Φε(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
Vε(x)z · z dt dx−Ψε(z),

Φ0(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
V(0)z · z dt dx−Ψ0(z),

where the nonlinear part is defined by

Ψε(z) =
1

p

∫∫
Wε(x)|z|p dt dx+

1

2∗

∫∫
Qε(x)|z|2

∗
dt dx,

Ψ0(z) =
W (0)

p

∫∫
|z|p dt dx+

Q(0)

2∗

∫∫
|z|2

∗
dt dx,

(for simplicity, we set 2∗ = 2(N + 2)/N for the critical exponent and we shall

omit the integration set R × RN in the integrals). By virtue of Lemma 2.3, it

is not difficult to check Φε is 2-times Frechét differentiable on E and that its

critical points correspond to the solutions of (2.3).

In order to study further the minimal energy level of Φε, let us recall some

known facts on a Lyapunov–Schmidt type reduction. Such reduction technique

depends on the convexity of the nonlinearities, specifically, it requires that the

second order derivative of Φε is negative definite on E−. And by the anti-

coercion and concavity properties of Φε|E− , we can define `ε : E+ → E− to be
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the bounded reduction map correspondingly such that, for any u ∈ E+,

Φε
(
z + `ε(z)

)
= max
w∈E−

Φε(z + w).

And denote Iε(z) = Φε
(
z + `ε(z)

)
, we shall call (`ε, Iε) : E+ × E+ → E− × R

the reduction couple associated to Φε on E+ (for details we refer to [1], [10]).

Then, it is all clear that Iε ∈ C2(E+,R) and critical points of Iε and Φε are in

one-to-one correspondence via the injective map z 7→ z + `ε(z) from E+ to E.

Now, on E+, let us introduce

(2.7) Nε =
{
z ∈ E+ \ {0} : I ′ε(z)[z] = 0

}
.

The following lemmas collect the properties Φε and Iε have when the assumptions

of our theorems hold.

Lemma 2.4. Φε possesses the linking structure:

(a) There are r, ρ > 0, both independent of ε, such that Φε|B+
r
≥ 0 and

Φε|S+
r
≥ ρ, where

B+
r = Br ∩ E+ = {z ∈ E+ : ‖z‖ ≤ r},

S+
r = ∂B+

r = {z ∈ E+ : ‖z‖ = r}.

(b) For any finite dimensional subspace M ⊂ E+, there exist constants

C = CM > 0 and R = RM > 0, both independent of ε, such that

sup Φε(M ⊕ E−) < C and sup Φε(M ⊕ E− \BR) < 0.

Lemma 2.5. Palais–Smale sequence for Φε is bounded independent of the

choice for ε > 0.

Lemma 2.6. For all ε > 0, Nε is a smooth manifold; and there exist θ > 0

independent of ε such that, for any z ∈ Nε,

‖z‖ ≥ θ and Iε(z) ≥ θ.

Moreover, critical points of Iε constrained on Nε are free critical points of Iε
in E+.

Lemma 2.7. Let cε, c0 denote the minimax levels of Φε and Φ0 deduced by

the linking structure:

cε = inf
e∈E+\{0}

sup
z∈Re⊕E−

Φε(z) and c0 = inf
e∈E+\{0}

sup
z∈Re⊕E−

Φ0(z).

Then we have

(a) cε = inf
z∈Nε

Iε(z);

(b) cε ≤ c0 + oε(1) as ε→ 0 provided that c0 is attained.
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The above listed results could be referred as geometric properties which are

basically derived from the formulation of Φε and Proposition 2.1. A general

discussion of the properties of Φε and its reduction couple (`ε, Iε) in an abstract

setting can be found in [10, Section 4].

Remark 2.8. It is worth pointing out that Nε is the graph of a C1 function

mε defined on S+
1 by

mε(z) = tε(z)z for z ∈ S+
1 ,

tε(z) being the unique positive number which realizes the maximum of the func-

tion t 7→ Iε(tz) and that tε : S+
1 → R is a C1 function. It can be also seen

that

Nε =
{
tε(z)z : z ∈ E+ \ {0}, 0 < tε(z) <∞

}
.

For the sake of a multiplicity result, let us consider a critical point theorem

involving strongly indefinite character. And before stating our abstract result,

let first remark that Φε (being as a even functional) not only admits the group

action of Z2 (i.e. the multiplication by ±1) but also the group action of the

time-axis translation. This is due to the fact that the RD system (2.1) or (2.3)

is invariant by translations in time (the coefficients in the RD systems are time-

independent). Hence, Φε is invariant under the action of R, a noncompact Lie

group.

In the sequel, we will write it briefly by G -invariant if a functional Φ admits

a action of some group G . Recall that a sequence {zn} ⊂ E is called to be a

(PS)c-sequence for a functional Φ ∈ C1(E,R) if Φ(zn) → c and Φ′(zn) → 0.

We remark that if Φ is G -invariant then {gnzn} is also a (PS)c-sequence for any

{gn} ⊂ G provided that {zn} is a (PS)c-sequence. And for any two elements z1

and z2, by G -distinct we mean z1 6= gz2 for all g ∈ G .

Definition 2.9. We say that a G -invariant functional Φ ∈ C1(E,R) satisfies

the G -(PS)c-condition if every (PS)c-sequence has a subsequence which converges

after an accordingly G -action:

Φ(zn)→ c

Φ′(zn)→ 0

}
⇒ gnzn → z ∈ E along a subsequence for some {gn} ⊂ G .

For the abstract setting, let us consider a splitting E = X ⊕ Y of E into

complete subspaces X and Y with associated projectors PX and P Y . We write

zX := PXz and zY := P Y z for z ∈ E. In addition to the norm topology we

need the topology T on E which is the product of the norm topology in X

and the weak topology in Y . In particular, zn
T−→ z provided that zXn → zX

and zYn ⇀ zY . On bounded subsets of E the topology T coincides with the

metrizable topology considered by Bartsch and Ding [4] and for Hilbert spaces

by Kryszewski and Szulkin [13]. And denoted by Tw∗ the weak∗-topology of E∗.
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For a functional Φ and real numbers a, b we write Φb := {z ∈ E : Φ(z) ≤ b},
Φa := {z ∈ E : Φ(z) ≥ a} and Φba := Φb ∩ Φa. The following assumptions will

be needed.

(Φ1) Φ ∈ C1(E,R), Φ: (E, T )→ R is upper semi-continuous, and Φ′ : (Φa, T )

→ (E∗, Tw∗) is continuous for every a ∈ R.

(Φ2) There exists r > 0 with ρ := inf Φ(SXr ) > Φ(0) = 0 where SXr := {z ∈ X :

‖z‖ = r}.
(Φ3) There exists a finite dimensional subspace X0 ⊂ X and R > r such

that for E0 := X0 ⊕ Y and B0 := {z ∈ E0 : ‖z‖ ≤ R} there holds

d := sup Φ(E0) < ∞ and sup Φ(E0 \ B0) < inf Φ(BX
r ), where BX

r :=

{z ∈ X : ‖z‖ ≤ r}.
In the case in which Φ is even, i.e. Φ admits a Z2-action, let us introduce the

notations as was introduced in [4, 9]: for c ∈ R, denoted byM(Φc) the collection

of maps h : Φc → E satisfying

(i) h is T -continuous and odd;

(ii) h(Φa) ⊂ Φa for all a ∈ [ρ, d ];

(iii) each z ∈ Φc has a T -open neighbourhood O ⊂ E such that (id−h)(O∩Φc)

is contained in a finite dimensional linear subspace.

Then a pseudo-index of Φc can be defined by

(2.8) ψ(c) := min
{

gen(h(Φc) ∩ SXr ) : h ∈M(Φc)
}
∈ N ∪ {∞}

where gen( · ) denotes the classical Z2-genus.

Let us emphasize here the situation that Φ may admits a group action of G

in addition to the Z2-action is a considerable issue in our abstract settings. If

G is a compact group, then a generalized index theory can be employed as was

introduced by Rabinowitz [22] (see also [2] for related material). However, in

general, the group G may be noncompact and quotient space E/G will no longer

be a linear space or a manifold. Therefore classical results can not be applied.

One way to treat such G × Z2-invariant problem is to separate these two group

actions. For such, in the sequel, let us introduce the following concept.

Definition 2.10. Let E be a Hilbert space (or a Banach space) associated

with a group action of G ×Z2. We say that G is separated with respect to Z2 if

and only if, for all closed Z2-invariant subset A ⊂ E, the G -orbit G (A) := {gz :

g ∈ G , z ∈ A} is closed and gen(A) = gen(G (A)).

Let us remark that, for a separated G -action, there holds G (z1) ∩ G (z2) = ∅
for any G -distinct elements z1 and z2. Hence, for a closed Z2-invariant subset

A, G (A) is the disjoint union of all the G -orbits of its elements.

Then our general existence result comes as follows:
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Theorem 2.11. Let Φ be a even functional satisfying (Φ1)–(Φ3). If Φ also

admits another separated group action for some noncompact group G and satisfies

the G -(PS)c-condition for every c ∈ [ρ, d ]. Then Φ has at least n := dimX0 pairs

of G -distinct critical points. In particular, if Φ has only finitely many G -distinct

critical points in Φdρ, then

(2.9) ci = inf{c : ψ(c) ≥ i} ∈ [ρ, d ], i = 1, . . . , n

are critical values satisfying ρ ≤ c1 < . . . < cn ≤ d.

Remark 2.12. Theorem 2.11 generalizes Theorem 4.6 of [4] (see also [9,

p. 31]) in the sense that Φ is allowed to carry a G -invariant property for some

noncompact group action. This generalization permits us to treat such as RD

systems of the form (2.1). Setting X = E+ and Y = E−, it follows from the

definition, Proposition 2.1 and Lemma 2.4 that the functional Φε is even and

satisfies (Φ1)–(Φ3). And it is also evident that the group action of time-axis

translation is separated with respect to Z2-action. We postpone the proof of

Theorem 2.11 to Appendix B.

Remark 2.13. Theorem 2.11 holds true for more general classes of symme-

tries, typical example is Φ admits a group action of G × G where G is some

compact group and G is separated. Typical examples of G include the case

of a finite group such as Zp for a prime number p and a compact Lie group

such as S1, SU(2), et al. In all these cases, there exists an index i : {A ⊂ E :

A is G-invariant} → N ∪ {∞} for G-action satisfying the monotonicity, sub-

additivity, super-variance as well as a dimension property: i(F \{0}) = c ·dimF

for any finite-dimensional G-invariant linear subspace F ⊂ E. We refer the read-

ers to [2], [5], [7] for a discussion of group actions, index theories, examples and

applications.

3. Variational framework for superlinear systems

In what follows, we consider weak solutions to the equation

(3.1) L z + ωz = λ|z|p−2z + κ|z|4/Nz on R× RN

belonging to the class B2 with ω being a 2K × 2K symmetric constant matrix

with its eigenvalues σ(ω) ⊂ (−1, 1), λ > 0 and κ ≥ 0. As before, let us introduce

the associated functional

Φ(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
ωz · z dt dx− λ

p
|z|pp −

κ

2∗
|z|2

∗

2∗

on E = E+⊕E−. Denote by (`, I) the reduction couple for Φ and let N = {u ∈
E+ \ {0} : I ′(u)[u] = 0}. Then, by the same arguments used in [1], [10], we get

that N is a smooth manifold of codimension 1 in E+, and N is diffeomorphic

to S+
1 by a C1 diffeomorphism. Particularly, the function t 7→ I(tu) attains its
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unique critical point t = t(u) > 0 for each u ∈ E+ \ {0}, and t : S+
1 → R is a C1

function. If denoted by

γ(ω, λ, κ) ≡ inf
e∈E+\{0}

sup
u∈Re⊕E−

Φ(u),

it can be also seen that γ(ω, λ, κ) = inf
N
I > 0. We will write γ(ω, λ) for simplicity

in the case when κ ≡ 0.

The main result of this section is the following:

Proposition 3.1. Let ν(ω) = min{ν : ν ∈ σ(ω)} and set ν∗ = min{ν(ω), 0}.
Then γ(ω, λ, κ) is attained provided that

(3.2) (1 + ν∗)
−(N+2)/2 · κN/2 · γ(ω, λ, κ) <

S(N+2)/2

N + 2

where S denotes the best constant for the embedding E ↪→ L2∗ .

This proposition yields information about the competing effect of ω and λ

against κ. In the case κ vanishes, (3.2) is satisfied automatically, and hence

γ(ω, λ) is always attained. Before proving Proposition 3.1, we begin with some

preliminary materials. Let us first consider the following functional

Fω : E \ {0} → R, z 7→ 1

|z|22∗

(
‖z+‖2 − ‖z−‖2 +

∫∫
ωz · z dt dx

)
,

and the minimax scheme

Tω = inf
z∈E+\{0}

sup
w∈E−

Fω(z + w).

Denoted by F : L2 → L2 the Fourier transform, then in Fourier domain ξ =

(ξ0, . . . , ξN ) we have

‖z‖2 =

∫∫ (
ξ2
0 +

(
1 +

N∑
k=1

ξ2
k

)2)1/2

|Fz(ξ)|2 dξ.

Remark that S denotes the best constant for the embedding E ↪→ L2∗ , i.e.

S|z|22∗ ≤ ‖z‖22, and that ν(ω) is the smallest eigenvalue of ω, we soon infer that,

for any z ∈ E+ \ {0},

sup
w∈E−

Fω(z + w) ≥ Fω(z) =
1

|z|22∗

(
‖z‖2 +

∫∫
ωz · z dt dx

)

≥ 1

|z|22∗

∫∫ [(
ξ2
0 +

(
1 +

N∑
k=1

ξ2
k

)2)1/2

+ ν(ω)

]∣∣Fz(ξ)
∣∣2 dξ.
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Taking into account that

inf
|ξ|>0

(
ξ2
0 +

(
1 +

N∑
k=1

ξ2
k

)2)1/2

+ ν(ω)

(
ξ2
0 +

(
1 +

∑N

k=1
ξ2
k

)2)1/2
=

{
1 if ν(ω) ≥ 0,

1 + ν(ω) if ν(ω) < 0,

we have

(3.3) Tω ≥ (1 + ν∗)S with ν∗ = min{ν(ω), 0}.

Next, let us consider the equation

(3.4) L z + ωz = |z|4/Nz on R× RN

and the corresponding functional

Φ̂(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
ωz · z dt dx− 1

2∗
|z|2

∗

2∗

on E = E+ ⊕ E−. Denote by (̂̀, Î) the reduction couple for Φ̂ and set N̂ =

{u ∈ E+ \ {0} : Î ′(u)[u] = 0}. We have N̂ is a smooth manifold of codimension

1 in E+, and N̂ is diffeomorphic to S+
1 by a C1 diffeomorphism. Particularly,

the function t 7→ Î(tu) attains its unique critical point t̂ = t̂(u) > 0 for each

u ∈ E+ \ {0}. It is also standard to see that γ̂ω := inf
N̂
Î > 0, and in particular,

we have

Lemma 3.2. Tω =
(
(N + 2)γ̂ω

)2/(N+2)
.

Proof. We sketch the proof as follows: Let z ∈ E+ \ {0} be fixed, and set

πz( · ) = Fω(z + · ), then elementary calculation shows that any critical point

w ∈ E− for πz satisfies π′′z (w)[η, η] < 0 for all η ∈ E−. Hence, πz has a unique

critical point in E− which realize its maximum (if there exists).

For any z ∈ N̂ , we have

‖z‖2 −
∥∥̂̀(z)∥∥2

+

∫∫
ω ·
(
z + ̂̀(z)) · (z + ̂̀(z)) dt dx− ∣∣z + ̂̀(z)∣∣2∗

2∗
= 0,

and hence πz
(̂̀(z)) =

∣∣z + ̂̀(z)∣∣2∗−2

2∗
. Moreover, it is standard to check that

π′z
(̂̀(z))[w] = 0 for all w ∈ E−. Thus, we have

∣∣z+ ̂̀(z)∣∣2∗−2

2∗
= max
w∈E−

πz(w), i.e.̂̀(z) is the unique critical point for πz.

Now, using the fact Fω(z) = Fω(tz) for all z ∈ E and t > 0, we can conclude

Tω = inf
z∈S+

1

sup
w∈E−

Fω(z + w) = inf
z∈N̂

sup
w∈E−

Fω(z + w)

= inf
z∈N̂

∣∣z + ̂̀(z)∣∣2∗−2

2∗
= inf
z∈N̂

(
(N + 2)Î(z)

)2/(N+2)
=
(
(N + 2)γ̂ω

)2/(N+2)

as is desired. For further reference, we mention that the uniqueness of ̂̀(z) as

critical point for πz also implies that ̂̀(tz) = t̂̀(z) for all z ∈ E+ \ {0}. �
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Now, we give the proof of the proposition.

Proof of Proposition 3.1. We only give the proof when κ > 0 since it

is much easier for the case κ = 0. Let {zn} ⊂ N be a minimizing sequence for

I. It is no difficult to check that {wn = zn + `(zn)} is bounded in E. Then by

Lion’s result (see [16]) it follows that {wn} is either vanishing or non-vanishing.

If {wn} is non-vanishing then we are done, so let us assume contrarily that

{wn} is vanishing. Then |wn|s → 0 for all s ∈ (2, 2∗). And thus we have

κN/2Φ(wn) = Φ̂
(
κN/4wn

)
+ on(1) ≤ Φ̂(ŵn) + on(1) ≤ κN/2Φ(wn) + on(1),

where we used the notation ŵn := t̂nun+ ̂̀(t̂nun) with t̂n = t̂(un) being bounded

and such that t̂nun ∈ N̂ (the last inequality comes from the fact that ̂̀(tz) =

t̂̀(z) guarantees {ŵn} is vanishing).

By the above observation, and Φ(wn) = I(zn) = γ(ω, λ, κ) + on(1), we easily

deduce from Lemma 3.2 and (3.3) that

κN/2 · γ(ω, λ, κ) + on(1) = Φ̂(ŵn)

≥ γ̂ω =
1

N + 2
T (N+2)/2
ω ≥ (1 + ν∗)

(N+2)/2S
(N+2)/2

N + 2
,

which contradict to (3.2). Therefore we have {wn} is non-vanishing, and this

ends the proof. �

Recalling the notations introduced in the previous section, let us go back

to our model problems by denoting ων the constant matrix ν · id or νJ0, and

consider

(3.5) L z + ωνz = λ|z|p−2z + κ|z|4/Nz on R× RN

with the associated functional

Φνλκ(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
ωνz · z dt dx−

λ

p
|z|pp −

κ

2∗
|z|2

∗

2∗

and minimal energy γ(ων , λ, κ). We then end this section by concluding

Lemma 3.3. Let ν1, ν2 ∈ (−1, 1), λ1, λ2 > 0 and κ1, κ2 ≥ 0. If min{ν2 − ν1,

λ1 − λ2, κ1 − κ2} ≥ 0 and either (ων1 , λ1, κ1) or (ων2 , λ2, κ2) satisfies (3.2),

then γ(ων1 , λ1, κ1) ≤ γ(ων2 , λ2, κ2). And, if in additional max{ν2 − ν1, λ1 − λ2,

κ1 − κ2} > 0, then γ(ων1 , λ1, κ1) < γ(ων2 , λ2, κ2).

Proof. We only prove the second statement.

Case 1. ων = ν · id. As mentioned before, let us introduce the reduction

couple (`j , Ij) for Φνjλjκj , j = 1, 2, and mj : S+ → Nj , j = 1, 2, to be the C1

diffeomorphism between S+ := {z ∈ E+ : ‖z‖ = 1} and Nj := {z ∈ E+ \ {0} :

I ′j(z)[z] = 0}.
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Let z ∈ S+ be arbitrary; then we have

γ(ων1 ,λ1, κ1) ≤ I1
(
m1(z)

)
(3.6)

≤ I2
(
m1(z)

)
+
ν1 − ν2

2

∣∣m1(z) + `1(m1(z))
∣∣2
2

− λ1 − λ2

p

∣∣m1(z) + `1(m1(z))
∣∣p
p
− κ1 − κ2

2∗
∣∣m1(z) + `1(m1(z))

∣∣2∗
2∗

≤ I2
(
m2(z)

)
+
ν1 − ν2

2

∣∣m1(z) + `1(m1(z))
∣∣2
2

− λ1 − λ2

p

∣∣m1(z) + `1(m1(z))
∣∣p
p
− κ1 − κ2

2∗
∣∣m1(z) + `1(m1(z))

∣∣2∗
2∗
.

If (ων2 , λ2, κ2) satisfies (3.2), then it is clear that γ(ων2 , λ2, κ2) is achieved. Now,

we can fix z ∈ S+ be such that I2
(
m2(z)

)
= γ(ων2 , λ2, κ2), by (3.6) we have

γ(ων1 , λ1, κ1) ≤ γ(ων2 , λ2, κ2) +
ν1 − ν2

2

∣∣m1(z) + `1(m1(z))
∣∣2
2

− λ1 − λ2

p

∣∣m1(z) + `1(m1(z))
∣∣p
p
− κ1 − κ2

2∗
∣∣m1(z) + `1(m1(z))

∣∣2∗
2∗
.

Therefore, by max{ν2 − ν1, λ1 − λ2, κ1 − κ2} > 0, we have γ(ων1 , λ1, κ1) <

γ(ων2 , λ2, κ2).

Otherwise if (ων1 , λ1, κ1) satisfies (3.2), then let us consider a sequence

{zn} ⊂ S+ such that

I2
(
m2(zn)

)
→ γ(ων2 , λ2, κ2).

Then the sequence {m2(zn)} is bounded. If {m2(zn)} is vanishing, as was argued

in Proposition 3.1, we have

γ(ων1 , λ1, κ1) <
((1 + ν1∗)S)(N+2)/2

κ
N/2
1 (N + 2)

≤ ((1 + ν2∗)S)(N+2)/2

κ
N/2
2 (N + 2)

≤ γ(ων2 , λ2, κ2),

where νj∗ = min{νj , 0} for j = 1, 2. And hence the proof is completed.

Case 2. ων = νJ0. In this situation, let us consider the scaling transform

t 7→ (1 + ν)t, x 7→
√

1 + ν x. Then system (3.5) is equivalent to

L z =
λ

1 + ν
|z|p−2z +

κ

1 + ν
|z|4/Nz

with the minimal energy denoted by γ(ων , λ, κ). Remark that, by the scaling

transformation, we always have

(3.7) γ(ων , λ, κ) = (1 + ν)(N+4)/2γ(ων , λ, κ).

At this stage, we can go back to Case 1, and the monotonicity of γ will directly

imply our desired conclusion for γ(ων , λ, κ) which completes the proof. �
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Remark 3.4. Lemma 3.3 provides a criterion for checking (3.2). Indeed,

since κ ≥ 0, we always have γ(ων , λ, κ) ≤ γ(ων , λ). Hence, we can set an upper

bound for κ as

κ̂(ν, λ) =
((1− |V |∞)S)(N+2)/N

((N + 2)γ(ων , λ))2/N

such that (ων , λ, κ) satisfies (3.2) provided that 0 ≤ κ < κ̂(ν, λ). Furthermore,

we can assert form the relations (3.6) and (3.7) that κ̂(ν, λ) is decreasing in ν and

increasing in λ. And hence for fixed ν ∈ (−1, 1) and λ > 0, let κ ∈ [0, κ̂(ν, λ)),

then the triple (ων′ , λ
′, κ) will satisfy (3.2) provided that ν′ ≤ ν and λ′ ≥ λ.

4. Palais–Smale condition

In order to apply the abstract multiplicity result stated in Theorem 2.11,

we need Φε to satisfy a compactness condition. However, due to the non-

compactness of the Sobolev embedding E ↪→ L2∗

loc, it is not difficult to see that

such a condition is not fulfilled in general. Nevertheless, recalling Φε admits a

group action of the time-axis translation and denoting such action by G := R,

we can recover the compactness in the sense of G -(PS)c-condition holds below

some energy threshold, which related to the minimal energy “at infinity”. For

ease of notation, let us set κ = max
x∈RN

Q(x). Then, inspired by the priori bound

κ̂(ν, λ) for the factor κ in Remark 3.4, our compactness result can be stated as

follows.

Proposition 4.1. Assume (A1) and (A2). Suppose that κ < κ̂(ν∞, λ∞).

Then, for any ε > 0, the functional Φε satisfies G -(PS)c-condition in the sublevel

{z ∈ E : Φε(z) < γ∞}, where γ∞ := γ(ων∞ , λ∞, κ).

Let us mention here that for the case Q vanishes identically we can infer that

(ων∞ , λ∞) satisfies (3.2) automatically, and hence Φε will satisfy the G -(PS)c-

condition with no more additional assumptions except c < γ∞(ων∞ , λ∞). Before

proving Proposition 4.1, let us remark that the following lemma will be the key

ingredient in the proofs.

Proof of Proposition 4.1. To begin with, let c < γ∞ and let {zn} be

a Palais–Smale sequence for Φε at level c, namely

Φε(zn) = c+ on(1), Φ′ε(zn) = on(1).

By Lemma 2.5, {zn} is bounded (independent of ε). Remark that, for any

{gn} ⊂ G , the time-axis translated sequence {gnzn} is also a (PS)c-sequence.

Hence, up to a subsequence, it has a associated weak limit z ∈ E and we have

to prove that gnzn → z in E for some {gn} ⊂ G .

Without loss of generality, for arbitrary {gn} ⊂ G , let us denote zn :=

gnzn and z to be its weak limit (here and subsequently, one should always keep
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in mind that such weak limit will change correspondingly when {gn} is replaced

by other elements). For simplicity, we set ζn = zn − z, then ζn ⇀ 0 in E and

‖z±n ‖2 = ‖z±‖2 + ‖ζ±n ‖2 + on(1). By using the Brézis–Lieb type result (see for

example [26]), we have∫∫
Wε(x)|zn|p dt dx =

∫∫
Wε(x)|z|p dtdx+

∫∫
Wε(x)|ζn|p dt dx,

and ∫∫
Qε(x)|zn|2

∗
dtdx =

∫∫
Qε(x)|z|2

∗
dtdx+

∫∫
Qε(x)|ζn|2

∗
dtdx.

Thus,

(4.1) Φε(zn) = Φε(z) + Φε(ζn) + on(1),

and

Φ′ε(zn)[zn] = Φ′ε(z)[z] + Φ′ε(ζn)[ζn] + on(1).

Obviously, Φ′ε(z) = 0. Therefore, Φ′ε(ζn)[ζn] = on(1).

Claim 4.2. Φ′ε(ζn)→ 0 as n→∞.

In fact, let ϕ ∈ E with ‖ϕ‖ ≤ 1 be arbitrary. We have

Φ′ε(zn)[ϕ] = 〈z+
n , ϕ

+〉 − 〈z−n , ϕ−〉+

∫∫
Vε(x)zn · ϕdt dx−Ψ′ε(zn)[ϕ](4.2)

= 〈ζ+
n + z+, ϕ+〉 − 〈ζ−n + z−, ϕ−〉

+

∫∫
Vε(x)(ζn + z) · ϕdt dx−Ψ′ε(ζn + z)[ϕ]

= 〈ζ+
n , ϕ

+〉 − 〈ζ−n , ϕ−〉+ 〈z+, ϕ+〉 − 〈z−, ϕ−〉

+

∫∫
Vε(x)ζn · ϕdt dx+

∫∫
Vε(x)z · ϕdt dx

−
∫∫

Wε(x)|ζn|p−2ζn · ϕdt dx−
∫∫

Wε(x)|z|p−2z · ϕdt dx

−
∫∫

Qε(x)|ζn + z| 4N (ζn + z) · ϕdt dx+ on(‖ϕ‖).

Here the estimate for the subcritical part∫∫
Wε(x)|zn|p−2zn ·ϕ−

∫∫
Wε(x)|ζn|p−2ζn ·ϕ−

∫∫
Wε(x)|z|p−2z ·ϕ = on(‖ϕ‖)

follows from a standard argument. To estimate the last integral in (4.2), we set

ψn := |ζn + z|4/N (ζn + z)− |ζn|4/Nζn − |z|4/Nz.

It is not difficult to see that exists a constant C > 0 independent of n such that

|ψn| ≤ C|ζn|4/N · |z|+ C|ζn| · |z|4/N .
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Then, using the Egorov theorem on any bounded domains, we have∫∫
|ψn| · |ϕ| dt dx = on(‖ϕ‖) as n→∞.

And hence,

Φ′ε(zn)[ϕ] = Φ′ε(ζn)[ϕ] + Φ′ε(z)[ϕ] + on(‖ϕ‖) = Φ′ε(ζn)[ϕ] + on(‖ϕ‖)

where we have used the fact Φ′ε(z) = 0. The above estimation shows Φ′ε(ζn)→ 0

as n→∞ as was claimed.

Now to show that ‖ζn‖ → 0 as n → ∞, the concentration compactness

argument will be used.

Claim 4.3. There exists a sequence {gn} ⊂ G such that {ζn} is vanishing.

Assuming Claim 4.3 for the moment, we have ζn → 0 in Lq for q ∈ (2, 2∗).

And it follows from Claim 4.2 that

‖ζn‖2+

∫∫
Vε(x)ζn·(ζ+

n −ζ−n ) dt dx =

∫∫
Qε(x)|ζn|4/Nζn·(ζ+

n −ζ−n ) dt dx+on(1).

By noting that |V |∞ < 1, we immediately obtain that

(1− |V |∞)‖ζn‖2 ≤
(∫∫

Qε(x)|ζn|2
∗
dt dx

)(N+4)/(2(N+2))

·
(∫∫

Qε(x)|ζ+
n − ζ−n |2

∗
dt dx

)1/2∗

+ on(1).

It should be pointed out that, since Q(x) ≤ κ := maxQ, there holds(∫∫
Qε(x)|z|2

∗
dt dx

)2/2∗

≤ κ2/2∗ · S−1 · ‖z‖2, for all z ∈ E

where S is the best constant for the embedding E ↪→ L2∗ . Then, we deduce

(4.3) (1− |V |∞) · S · κ−2/2∗ ≤
(∫∫

Qε(x)|ζn|2
∗
dt dx

)4/(2(N+2))

+ on(1)

provided that ζn 6→ 0 in L2∗ . On the other hand, by (4.1) and Claim 4.2, we

have

γ(ων∞ , λ∞, κ) = γ∞ > Φε(ζn)− 1

2
Φ′ε(ζn)[ζn]

=
1

N + 2

∫∫
Qε(x)|ζn|2

∗
dt dx+ on(1)

as n→∞. Thus, by (4.3), we can get

γ(ων∞ , λ∞) ≥ γ(ων∞ , λ∞, κ) >

(
(1− |V |∞)S

)(N+2)/22

N + 2
· κ−N/2

which contradicts to the fact κ < κ̂(ν∞, λ∞). Therefore, we have ζn → 0 in L2∗

and the compactness for {zn} follows.
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Now it remains to prove Claim 4.3. Suppose, contrary to our claim, that

the G -dependent sequence {ζn} is non-vanishing for any {gn} ⊂ G . Then there

exists (tn, xn) ∈ R× RN and R, δ > 0 such that∫ tn+R

tn−R

∫
BR(xn)

|ζn|2 dt dx ≥ δ.

Without loss of generality we can assuming {tn} is bounded, and hence we have

|xn| → ∞ as n → ∞ since ζn → 0 in L2
loc. At this point, let us assume

Vε(xn) → ν̃, Wε(xn) → λ̃ and Qε(xn) → κ̃ as n → ∞. Consider the translated

functions z̃n(t, x) = ζn(t, x + xn), it follows that z̃n ⇀ z0 in E where z0 is

a non-trivial solution to

L z + ων̃z = λ̃|z|p−2z + κ̃|z|4/Nz.

And then, we can argue similarly as in (4.1) to obtain

γ(ων∞ , λ∞, κ) > c ≥ Φε(ζn) ≥ Φν̃λ̃κ̃(z̃n) + on(1) ≥ γ
(
ων̃ , λ̃, κ̃

)
+ on(1).

Since we have ν̃ ≥ ν∞, λ̃ ≤ λ∞ and κ̃ ≤ κ, the above inequality becomes absurd.

This completes the proof. �

5. Proof of the mian results

Now, we are ready to prove our main results. We emphasize here that,

according to the threshold found in Proposition 4.1, we only need to check the

minimax levels introduced in Section 2 are below γ∞ := γ(ων∞ , λ∞, κ). Since

V , W , Q are functions on RN , according to Remark 3.4, we can precisely fix Q

in a range as

(5.1) 0 ≤ Q(x) < κ̂
(
|V |∞, inf W

)
, for all x ∈ RN .

Note that κ̂
(
|V |∞, inf W

)
≤ κ̂(ν∞, λ∞), we have (ωV (y),W (y),Q(y)) satisfies

(3.2) for all y ∈ RN .

5.1. The minimal energy solution. Let us first go back to Lemma 2.7,

and we can find cε is the minimal energy level for Φε and, particularly, c0 =

γ(ωV (0),W (0),Q(0)). Note that it is not difficult to see that c0 is attained

and hence we have cε ≤ c0 + oε(1). By noting that γ(ωV (0),W (0),Q(0)) <

γ(ων∞ , λ∞, κ) due to Lemma 3.3, we thus conclude that Φε will satisfy the G -

(PS)-condition at level cε for all small ε > 0 thanks to Proposition 4.1. And

therefore, we shall have the existence of a critical point for Φε which lies in the

minimal energy level associated to the equation (2.3).

Let us remark here that if zε is a minimal energy solution to (2.3), then

taking into account that the energy estimate 0 < cε ≤ c0 + oε(1), it is possible

to prove that the family {zε} has a concentration behavior. We will divide this

proof into three steps.
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Step I. For y ∈ RN being fixed arbitrarily, let us set V yε (x) = Vε(x + y/ε),

W y
ε (x) = Wε(x + y/ε) and Qyε(x) = Qε(x + y/ε). Then, we have V yε (0) =

V (y), W y
ε (0) = W (y) and Qyε(0) = Q(y). Now, let us consider the transformed

equation

(5.2) L z + Vyε (x)z = W y
ε (x)|z|p−2z +Qyε(x)|z|4/Nz

where Vyε (x) = either V yε (x) or V yε (x)J0. Denoted by Φyε the associated energy

functional to (5.2) and Φy0 the energy functional defined correspondingly by V (y),

W (y) and Q(y), let us set

cε(y) = inf
e∈E+\{0}

sup
z∈Re⊕E−

Φyε(z) and c0(y) = inf
e∈E+\{0}

sup
z∈Re⊕E−

Φy0(z).

As was mentioned at the beginning of this section, we can immediately conclude

the fact that c0(y) = γ(ωV (y),W (y),Q(y)) is always attained. Then, repeated

application of Lemma 2.7 enables us to have cε(y) ≤ c0(y) + oε(1) for each

y ∈ RN .

Since a trivial verification would show that

cε(y) = inf
e∈E+\{0}

sup
z∈Re⊕E−

Φyε(z) ≡ inf
e∈E+\{0}

sup
z∈Re⊕E−

Φε(z) = cε

for all y ∈ RN , we thus have actually have that

cε ≤ min
y∈RN

c0(y) + oε(1) = min
y∈RN

γ(ωV (y),W (y),Q(y)) + oε(1).

Step II. Due to the fact that the family {zε} is bounded and non-vanishing,

let us choose (tε, xε) ∈ R× RN and R, δ > 0 be such that∫ tε+R

tε−R

∫
BR(xε/ε)

|zε|2 dt dx ≥ δ.

Set wε(t, x) = zε(t + tε, x + xε/ε), we then have wε become a minimal energy

solution to the equation

(5.3) L z + Vxε
ε (x)z = W xε

ε (x)|z|p−2z +Qxε
ε (x)|z|4/Nz.

Suppose now V (xε) → V∞, W (xε) → W∞ and Q(xε) → Q∞ as ε → 0. By the

Hölder continuity, we then have

V xε
ε (x)→ V∞, W xε

ε (x)→W∞, Qxε
ε (x)→ Q∞ as ε→ 0

uniformly on bounded sets of x. Remark that, if by w we denote the weak limit of

wε, then we immediately have w 6= 0. And hence, a multiplication by compactly

supported functions in (5.3) will generally imply us that w solves

L z + ωV∞z = W∞|z|p−2z +Q∞|z|4/Nz
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with its critical level being estimated by

ΦV∞W∞Q∞(w) =

(
1

2
− 1

p

)
W∞|w|pp +

(
1

2
− 1

2∗

)
Q∞|w|2

∗

2∗

≥ γ(ωV∞ ,W∞,Q∞) ≥ min
y∈RN

γ(ωV (y),W (y), Q(y)).

On the other hand, by Fatou’s lemma and Step I, we have(
1

2
− 1

p

)
W∞|w|pp +

(
1

2
− 1

2∗

)
Q∞|w|2

∗

2∗

≤ lim inf
ε→0

(
1

2
− 1

p

)∫∫
W xε
ε (x)|wε|p dt dx+

(
1

2
− 1

2∗

)∫∫
Qxε
ε (x)|wε|2

∗
dt dx

= lim inf
ε→0

cε(xε) = lim inf
ε→0

cε ≤ lim sup
ε→0

cε ≤ min
y∈RN

γ(ωV (y),W (y),Q(y)).

Therefore, we can conclude

(5.4) lim
ε→0

cε = lim
ε→0

c0(xε) = min
y∈RN

γ(ωV (y),W (y),Q(y)).

Remark that by the Hölder continuity of V , W and Q, jointly with a similar es-

timate like (3.6), we deduce that γ(ωV ( · ),W ( · ),Q( · )) is also Hölder continuous.

Hence γ(ων∞ , λ∞, κ) > γ(ωV (0),W (0),Q(0)) = c0 implies {xε} is bounded in RN .

And due to

c0(y) = γ(ωV (y),W (y),Q(y)) > min
y∈RN

γ(ωV (y),W (y),Q(y))

provided that dist(y,C ) > 0, thus we conclude lim
ε→0

dist(xε,C ) = 0 from (5.4).

Actually, by (5.4) and the Brézis–Lieb type result, we also get |wε−w|2∗ → 0

and then |w±ε − w±|2∗ → 0 by Proposition 2.1. And using w±ε − w± as test

functions in (5.3), we finally get wε → w in E as ε→ 0.

Step III. According to Step II, let us assume without loss of generality that

xε → y0 ∈ C as ε → 0. Then we have V (xε) → V (y0), W (xε) → W (y0) and

Q(xε)→ Q(y0) as ε→ 0 and w solves the limit equation

(5.5) L z + V(y0)z = W (y0)|z|p−2z +Q(y0)|z|4/Nz, where V(y0) = ωV (y0).

Hence, by (5.3), we have

L (wε − w) = W xε
ε (x)|wε|p−2wε −W (y0)|w|p−2w +Qxε

ε (x)|wε|4/Nwε
−Q(y0)|w|4/Nw −

(
Vxε
ε (x)wε − V(y0)w

)
.

Using the fact wε → w in E and the uniform L∞ estimate (see Appendix,

Lemma A.2), it is easy to check that |L(wε−w)|2 → 0 as ε→ 0. And therefore,

we have wε → w in B2 as ε→ 0.

Next, let us remark that: for wε = (w1
ε , w

2
ε) : R× RN → R2K solves (5.5), if

denoted by ŵε(t, x) =
(
w1
ε(t, x), w2

ε(−t, x)
)
, it is clear that ŵε satisfies a equation
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of the form

∂tŵε −∆xŵε + ŵε = f̂ε(t, x) in R× RN .

By virtue of Lemma A.2, we have f̂ε ∈ Lq for all q ≥ 2. And according to the

interpolation theory, we infer that wε → w in Br for all q ≥ 2. So, we get

f̂ε → f̂0 in Lq for some f0 and all q ≥ 2. Then an trivial application of [10,

Corollary A.4] would show that |ŵε(t, x)| → 0 uniformly as |(t, x)| → ∞, which

yields the uniformly decay property of {wε}.
By collecting all the results proved in Steps I–III, we actually proved that

z̃ε(t, x) = zε(t, x/ε) is a minimal energy solution to the multi-component incon-

gruent RD system

∂tz = D∆xz +M(x)z +
(
W (x)|z|p−2 +Q(x)|z|4/N

)
βz

for all small ε > 0, and |z̃ε(t, ·)| has a maximum point xε which converge to

a suitable y0 ∈ C . Moreover, we have

lim
R→∞
ε→0

‖z̃ε(t, · )‖L∞(RN\BεR(xε)) = 0.

After a translation in time-axis if necessary, the rescaled functions wε(t, x) =

zε(t, x+xε/ε) will converge in B2 (and hence in Br, r ≥ 2) to a minimal energy

solution of the limit system

∂tz = J∆xz +M(y0)z +
(
W (y0)|z|p−2 +Q(y0)|z|4/N

)
βz,

and this finishes the whole characterization of the asymptotic behavior of the

minimal energy solution to our original problem.

5.2. More distinct solutions. By virtue of Lemma 2.4, in order to show

the existence of other critical points, it is sufficient to construct a finite dimen-

sional subspace X0 ⊂ E+ for Φε such that

(5.6) d := sup Φε(X0 ⊕ E−) < γ∞ = γ(ων∞ , λ∞, κ).

Thus, since the G -(PS)c-condition is satisfied in the sublevel {z ∈ E : Φε(z) <

γ∞}, the change of pseudo-index (2.8) will imply the existence of at least n :=

dimX0 distinct critical points in the energy range (0, d ].

For simplify notation, we set ν0 = V (0), λ0 = W (0) and κ0 = Q(0). Since

we have assumed Q(0) = supx∈RN Q(x), we get κ0 = κ. In what follows, let us

consider

L z + ων∞z = λ∞|z|p−2z + κ|z|4/Nz,

L z + ων0z = λ0|z|p−2z + κ0|z|4/Nz,

with the minimal energy γ(ων∞ , λ∞, κ) and γ(ων0 , λ0, κ0), respectively. And for

a clear expression, let us rewrite the above equations as

(5.7) −β∂tz + J0(−∆x)z + (J0 + ων∞)z = λ∞|z|p−2z + κ|z|4/Nz
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and

(5.8) −β∂tz + J0(−∆x)z + (J0 + ων0)z = λ0|z|p−2z + κ0|z|4/Nz.

Considering the scaling transform w(t, x) = bz(at,
√
ax) with a, b > 0, we get

that (5.7) is equivalent to

(5.9) −β∂tw + J0(−∆x)w + a · (J0 + ων∞)w =
aλ∞
bp−2

|w|p−2w +
aκ

b4/N
|w|4/Nw

Now, let us take a = (1 + ν0)/(1 + ν∞), b = aN/4 and denote γ̃(ων∞ , λ∞, κ) the

minimal energy for (5.9), then we have

γ̃(ων∞ , λ∞, κ) =
b2

aN/2
γ(ων∞ , λ∞, κ) = γ(ων∞ , λ∞, κ).

Moreover, by the choice of a and b, we also get

(5.10) a · (J0 + ων∞) ≥ (J0 + ων0) for the quadratic part,

and

(5.11)
aλ∞
bp−2

< λ0,
aκ

b4/N
= κ for the nonlinear coefficients.

Here in (5.10), for two matrices A and B, by A ≥ B we mean A−B is positive

definite. Denoted by λ′ = aλ∞/b
p−2, we are then led to the stage to consider

the equation

(5.12) −β∂tw + J0(−∆x)w + (J0 + ων0)w = λ′|w|p−2w + κ|w|4/Nw

and its minimal energy γ(ων0 , λ
′, κ). Comparing (5.8) and (5.12), remark that

we have the relations κ0 = κ and

γ(ων0 , λ, κ) = λ−
2

p−2 · γ
(
ων0 , 1,

κ

λ4/(N(p−2))

)
, for all λ > 0

jointly with (5.10) and (5.11) we soon deduce that

γ(ων∞ , λ∞, κ)

γ(ων0 , λ0, κ0)
=
γ̃(ων∞ , λ∞, κ)

γ(ων0 , λ0, κ0)
≥ γ(ων0 , λ

′, κ)

γ(ων0 , λ0, κ)

=

(
λ0

λ′

)2/(p−2)

·
γ

(
ων0 , 1,

κ

λ′4/N(p−2)

)
γ

(
ων0 , 1,

κ

λ
4/N(p−2)
0

) .
Let us emphasize here that the above estimate become an equality when ων is

in the form of ων = νJ0. Now, let us set n, n′ ∈ N to be the largest integers

satisfying

n <

(
λ0

λ′

)2/(p−2)

and n′ <

(
λ0

λ′

)2/(p−2)

·
γ

(
ων0 , 1,

κ

λ′4/N(p−2)

)
γ

(
ων0 , 1,

κ

λ
4/N(p−2)
0

) ,
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then we can infer from λ′ < λ0 that n ≥ 1. We should remark that n and n′ are

not equal in general because

γ

(
ων0 , 1,

κ

λ′4/N(p−2)

)
< γ

(
ων0 , 1,

κ

λ
4/N(p−2)
0

)
,

which implies n ≥ n′. Nevertheless, we can still conclude from the continuity

of γ in the third variable that: in addition to (5.1), if we consider the function Q

in a properly smaller range then n and n′ will be equal as an invariant constant

with respect to the factor κ. At this moment, there holds

(5.13) γ(ων∞ , λ∞, κ) > n · γ(ων0 , λ0, κ0).

Next, recalling the notations introduced in the previous subsection, let us take

w ∈ E be the minimal energy solution of

L z + V(y0)z = W (y0)|z|p−2z +Q(y0)|z|4/Nz

such that w is also the limit of the rescaled sequence wε defined in Step II. For

r > 0 let us choose a cut-off function ηr : RN → [0, 1] such that ηr(x) ≡ 1 for

|x| ≤ r and ηr(x) ≡ 0 for |x| ≥ r+1. Set wr = ηr ·w, then we have ‖wr−w‖ → 0

as r → ∞, particularly, {wr} is a (PS)-sequence for Φy00 at the minimal energy

level c0(y0) = γ(ωV (y0),W (y0),Q(y0)).

Now, let us take some xr ∈ RN with |xr| = 2(r + 1) and set xrj = (j − 1)xr
for j = 1, . . . , n, where n ∈ N is fixed in (5.13). Define wrj(t, x) = wr(t, x−xrj),
then it is all clear that for r large enough {w+

rj}nj=1 is linearly independent.

Indeed, for constants cj such that

ϕ+ =

n∑
j=1

cjw
+
rj = 0 where ϕ :=

n∑
j=1

cjwrj ,

we can deduce that

0 ≥ −‖ϕ−‖2 +

∫∫
V(y0)ϕ− · ϕ− dt dx

≥ ‖ϕ+‖2 − ‖ϕ−‖2 − |V |∞|ϕ|22

=

n∑
j=1

c2j ·
(
‖w+

rj‖
2 − ‖w−rj‖

2 − |V |∞|wrj |22
)

=
(
‖w+

r ‖2 − ‖w−r ‖2 − |V |∞|wr|22
) n∑
j=1

c2j

which implies cj = 0 for all j thanks to the fact ‖w+
r ‖2 − ‖w−r ‖2 − |V |∞|wr|22

is strictly positive for large r. Having disposed of this preliminary step, we can

now set

Xr
j = Rw+

rj = span{w+
rj} and Xr =

n⊕
j=1

Xr
j .
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Then let xε ∈ RN be the maximum point of wε found in the previous subsection,

by using the Brézis-Lieb type result again, we can obtain

max
z∈Xr⊕E−

Φxε
ε (z) ≤ max

z∈Xr⊕E−
Φy00 (z) + oε(1)(5.14)

≤
n∑
j=1

max
z∈Xr

j⊕E−
Φy00 (z) + or(1) + oε(1)

=

n∑
j=1

max
z∈Xr

1⊕E−
Φy00 (z) + or(1) + oε(1)

= n · γ(ωV (y0),W (y0),Q(y0)) + or(1) + oε(1)

where the first inequality can be derived from the Arzelà–Ascoli theorem (for

related details, we refer the readers to [10, Corollary 4.4]). Therefore, by setting

wrjε(t, x) = wrj(t, x− xε/ε),

Xr
jε = Rw+

rjε = span{w+
rjε} and Xr

ε =

n⊕
j=1

Xr
jε,

we can conclude from (5.13) and (5.14) that, for r0 > 0 fixed large enough, there

exists ε0 > 0 such that X0 := Xr0
ε0 ⊂ E+ satisfies (5.6) for all ε ∈ (0, ε0]. And

then the proof is hereby completed.

Appendix A. Regularity results

We devote this appendix to For this purpose we set Bρ := {x ∈ RN : |x| < ρ}
for any ρ > 0. Recall

Br = W 1,r
(
R, Lr

(
RN ,R2M

))
∩ Lr

(
R,W 2,r

(
RN ,R2M

))
for r ≥ 1

denotes the Banach space equipped with the norm ‖ · ‖Br defined in (1.8) and

Lr := Lr
(
R × RN ,R2M

)
is equipped with the usual Lr norm. The operator L

is defined by L = −β∂t + J0(−∆x + 1) in Section 2. Let us give the following

fundamental result in the study of the system in the form of (2.3). Recall

E := D(|L |1/2) is the Hilbert space equipped with the norm ‖ · ‖. Denote

M2K×2K(R) by the space of all 2K × 2K real matrixes equipped with the usual

vector norm. In order to give our key regularity result for critical nonlinearities,

let us first list the following regularity result for subcritical cases.

Lemma A.1. For N ≥ 2, let M ∈ L∞
(
R × RN ,M2M×2M (R)

)
and H : R ×

RN × R2M → R satisfy

|∇zH(t, x, z)| ≤ |z|+ c|z|p−1

for some c > 0 and p ∈
(
2, 2∗

)
. If z ∈ E is a weak solution to

L z +M(t, x)z = ∇zH(t, x, z),

then z ∈ Br for all r ≥ 2 and ‖z‖Br ≤ C
(
‖M‖∞, ‖z‖, c, p, r

)
.
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The proof of Lemma A.1 can be found in [9] (see Lemma 8.6, p. 149). Now

we are ready to give our key result:

Lemma A.2. For N ≥ 2, let M ∈ L∞
(
R × RN ,M2M×2M (R)

)
and h : R ×

RN × R2M → R satisfy

(A.1) |h(t, x, z)| ≤ c
(
1 + |z|4/N

)
for some c > 0. If z ∈ E is a weak solution to

(A.2) L z +M(t, x)z = h(t, x, z)z, (t, x) ∈ R× RN

then z ∈ L∞ and ‖z‖∞ ≤ C(‖M‖∞, ‖z‖, c). Moreover, z ∈ Br for all r ≥ 2 and

‖z‖Br ≤ C(‖M‖∞, ‖z‖, c, r).

Proof. Our proof starts with the observation that if we have proved z ∈ L∞

then the Br-estimate follows as a direct application of Lemma A.1. For this end,

let us denote Γρ := (−ρ2, ρ2)×Bρ for ρ > 0, and set

Γρ
(−→x ) :=

(
− ρ2 + t, ρ2 + t

)
×Bρ(x) with −→x := (t, x) ∈ R× RN .

Now fix −→x ∈ R × RN , and let ρ ∈ C∞c
(
Γ2

(−→x )) be arbitrary. Choose η ∈
C∞c

(
Γ2

(−→x )) such that η ≡ 1 on supp ρ. We have that, by denoting D = −β∂t+

J0(−∆x),

(A.3) D(ρz) = ρDz +R(ρ, z) = η · ρDz +R(ρ, z),

where R(ρ, z) = −∂tρ · βz −∆xρ · J0z − 2J0∇xρ · ∇xz. Noting that, for a weak

solution z, there holds

Dz = −J0z −M(t, x)z + h(t, x, z)z,

then, we may rewrite (A.3) as

(A.4) R(ρ, z) = L (ρz)− Tz(ρz)

where Tz is a linear multiplier defined by

Tz(w) = η ·
[
−M(t, x) + h(t, x, z)

]
w.

Remark that z ∈ E, we have z ∈ L2 ∩ L2∗ and |∇xz| ∈ L2, and hence R(ρ, z) ∈
L2
(
Γ2

(−→x )). In the sequel, we want to improve this estimate iteratively: We

first begin the proof for N ≥ 3 and assume that we have already obtained

z ∈ Lq
(
Γ2

(−→x )) and R(ρ, z) ∈ Lq
(
Γ2

(−→x )) for some q ∈ [2, (N + 2)/2).

Let us consider the map

Tz : Bq
(
Γ2

(−→x ))→ Lq
(
Γ2

(−→x )),
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then it follows form embedding results for t-anisotropic Sobolev spaces (see [27])

that and the above linear multiplier Tz is well defined and, by using Minkowski’s

and Hölder’s inequalities, the operator norm can be estimated as

‖Tz‖Bq→Lq ≤ C1

(
|z|4/N

L2∗ (B)
+ |B|2/(N+2)

)
for some constant C1 (depends on |M |∞, c, q), where B := supp η. Thus, when

|B| is fixed small enough, we shall assert that L − Tz is invertible. Therefore,

by (A.4), there is a unique solution w ∈ Bq
(
Γ2

(−→x )) to

Lw − Tz(w) = R(ρ, z) in Γ2(−→x )

which vanishes on the boundary of Γ2(−→x ).

On the other hand, we also have a well defined map

Tz : Lq
(
Γ2

(−→x ))→ Bq/(q−1)
(
Γ2

(−→x ))∗.
and the operator norm is estimated as before:

‖Tz‖Lq→(Bq)∗ ≤ C2

(
|z|4/N

L2∗ (B)
+ |B|2/(N+2)

)
.

for some constant C2 (depends on |M |∞, c, q). And thus, for small B, there

exists uniquely w̃ ∈ Lq
(
Γ2

(−→x )) to the equation

(A.5) L w̃ − Tzw̃ = R(ρ, z).

Notice that we have assumed z ∈ Lq
(
Γ2

(−→x )) solves (A.4), hence w̃ = ρz. Using

the embedding Bq
(
Γ2

(−→x )) ↪→ Lq
(
Γ2

(−→x )), we have w ∈ Bq
(
Γ2

(−→x )) is also

a Lq-solution to (A.5). And thus, by the uniqueness, we obtain w = ρz and

ρz ∈ Bq
(
Γ2

(−→x )) provided that B = supp η is small. Since ρ and η arbitrary

(under the assumption that supp η is small and η ≡ 1 on supp ρ), this implies

that z ∈ Bq
(
Γ1

(−→x )). Furthermore, due to the arbitrariness of −→x ∈ R×RN , we

have z ∈ Bqloc

(
R× RN

)
.

Using the embedding result, we obtain z ∈ Lq
′

loc, |∇xz| ∈ Lq
′

loc and R(ρ, z) ∈
Lq
′(

Γ2

(−→x )) for q′ := (N + 2)q/(N + 2− q). Repeating this process, we shall

prove that z ∈ B
(N+2)/2
loc

(
R × RN

)
. It should be point out that, in the itera-

tive process, we have the initial data z, |∇xz| ∈ L2. Therefore, by the interior

estimates (see for example [14]) and B
(N+2)/2
loc

(
R × RN

)
↪→
⋂
q≥2 L

q
loc, we can

conclude that z ∈ L∞ and

‖z‖∞ ≤ C
(
‖M‖∞, ‖z‖, c

)
.

This completes the proof for the case N ≥ 3.

Next, let us assume N = 2. For 1 < q < 2, as argued before, we have

Tz : Bq
(
Γ2

(−→x ))→ Lq
(
Γ2

(−→x ))
is well-defined and its operator norm is estimated as

‖Tz‖Bq→Lq ≤ C1

(
|z|2L4(B) + |B|1/2

)
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for some constant C1 (depends on |M |∞, c, q). And thus, if supp η = B is fixed

small, there exists a unique solution w ∈ Bq
(
Γ2

(−→x )) to the equation

Lw − Tz(w) = R(ρ, z) in Γ2

(−→x )
vanishing on the boundary of Γ2

(−→x ). Meanwhile, we also have

Tz : L4
(
Γ2

(−→x ))→ B4/3
(
Γ2

(−→x ))∗
is well-defined and its operator norm can be estimated as

‖Tz‖L4→(B4/3)∗ ≤ C2

(
|z|2L4(B) + |B|1/2

)
.

for some constant C2 (depends on |M |∞, c, q). Therefore, for small B, there

exists a unique solution w̃ ∈ L4
(
Γ2

(−→x )) to the equation

L w̃ − Tzw̃ = R(ρ, z).

Since we already have z ∈ E ↪→ L4 and R(ρ, z) ∈ L2
(
Γ2

(−→x )), the same con-

clusion can be drawn here that w = ρz = w̃ is a Bq-solution for all q ∈ [ 4
3 , 2).

Therefore, we can conclude z ∈ ∩q≥2L
q
loc. Once this is proved, together with the

interior estimates, we have z ∈ L∞ and hence

‖z‖∞ ≤ C
(
‖M‖∞, ‖z‖, c

)
.

In summary, we are here to complete the proof for all N ≥ 2 by invoking

Lemma A.1. �

Appendix B. Proof of Theorem 2.11

Recall all the notations introduced in Section 2 and, for a subset S ⊂ E and

σ > 0, let us denote the σ-neighbourhood of S as

Uσ(S) :=
{
z ∈ E : inf

w∈S
‖z − w‖ < σ

}
,

we remind the reader the following definition of (PS)-attractor (see [9, Chap-

ter 3]):

Definition B.1. A subset A ⊂ E is said to be a (PS)c-attractor for Φ if any

(PS)c-sequence approaches the σ-neighbourhood of A ∩ Φc+δc−δ for any σ, δ > 0:

Φ(zn)→ c

Φ′(zn)→ 0

}
⇒ zn ∈ Uσ

(
A ∩ Φc+δc−δ

)
for all n suitably large.

And given I ⊂ R, A ⊂ E is said to be a (PS)I-attractor if A is a (PS)c-attractor

for all c ∈ I.

For later arguments we introduce a comparison function ψl : [0, l]→ N∪{∞}:
let l > 0 and

M0(Φl) :=
{
h ∈M(Φl) : h is a homeomorphism from Φl to h(Φl)

}
,
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for c ∈ [0, l], define

ψl(c) := min
{

gen
(
h(Φc) ∩ SXr

)
: h ∈M0(Φl)

}
.

Note that due to M0(Φl) ⊂ M(Φl) ↪→M(Φc) via the restriction h 7→ h|Φc we

have ψ(c) ≤ ψl(c) for all c ∈ [0, l].

Now, we can sketch the proof as follows: If ci ∈ [ρ, d] as was defined in (2.9)

is not a critical value, then for any sufficiently small δ > 0 we have

inf
{
‖Φ′(z)‖ : z ∈ Φci+δ

ci−δ

}
> 0.

By virtue of the Deformation Theorem (a version developed for strongly indefi-

nite functionals can be found in [9, Theorem 3.2]), we can infer the existence of

η ∈ C
(
[0, 1]×Φci+δ,Φci+δ

)
for some δ ∈ (0, δ) such that g := η(1, · ) ∈M(Φci+δ)

and g(Φci+δ) ⊂ Φci−δ. This is impossible since we can deduce that

ψ(ci − δ) = min
{

gen(h(Φci−δ) ∩ SXr ) : h ∈M(Φci−δ)
}

≥ min
{

gen(h ◦ g(Φci+δ) ∩ SXr ) : h ∈M(Φci−δ)
}

≥ min
{

gen(h(Φci+δ) ∩ SXr ) : h ∈M(Φci+δ)
}

= ψ(ci + δ),

and the monotonicity of the Z2-genus implies ψ(ci − δ) = ψ(ci + δ).

If Φ has only finitely many G -distinct critical points in Φdρ, then thanks to

the G -(PS)-condition we have

A :=
{

gz : g ∈ G and z ∈ Φdρ such that Φ′(z) = 0
}

is a (PS)I-attractor with I := [ρ, d]. Moreover, we also have that A /G is the

critical set of Φ in Φdρ which is finite. Hence, we deduce that

inf
{
‖PXz − PXw‖ : z, w ∈ A and PXz, PXw are G -distinct

}
> 0.

For σ > 0 small we then have that Uσ(PXA ) ⊂ X is the union of disjoint σ-

G -orbits around the elements of PXA . This, jointly with the fact the G -action

is separated, implies that gen(Uσ) = gen(Uσ(PXA )) = gen(PXA ) = 1 where

Uσ := Uσ(PXA )×Y . Let η ∈ C
(
[0, 1]×Φd,Φd

)
be a deformation deduced from

Theorem 3.5 a) in [9]. For δ > 0 small enough the map g := η(1, · ) satisfies

g(Φci+δ) ⊂ Φci−δ ∪ Uσ. Let l = d + 1 and choose h0 ∈ M0(Φl) such that

ψl(ci − δ) = gen(h0(Φci−δ) ∩ SXr ). And consequently,

ψl(ci + δ) = min
{

gen(h(Φci+δ) ∩ SXr ) : h ∈M0(Φl)
}

≤ gen(h0 ◦ g(Φci+δ) ∩ SXr ) ≤ gen(h0(Φci−δ ∪ Uσ) ∩ SXr )

≤ gen(h0(Φci−δ) ∩ SXr ) + gen(h0(Uσ))

= gen(h0(Φci−δ) ∩ SXr ) + 1 = ψl(ci − δ) + 1.

It is then immediate that ψl(ci + δ) = ψl(ci − δ) + 1, otherwise one would get

a contradiction to the definition of ci. And finally, the fact ψl(ci) ≥ i implies

ρ ≤ c1 < . . . < cn ≤ d which completes the proof. �
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