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SUBSPACES OF INTERVAL MAPS

RELATED TO THE TOPOLOGICAL ENTROPY

Xiaoxin Fan — Jian Li — Yini Yang — Zhongqiang Yang

Abstract. For a ∈ [0,+∞), the function space E≥a (E>a; E≤a; E<a)
of all continuous maps from [0, 1] to itself whose topological entropies are

larger than or equal to a (larger than a; smaller than or equal to a; smaller

than a) with the supremum metric is investigated. It is shown that the
spaces E≥a and E>a are homeomorphic to the Hilbert space l2 and the

spaces E≤a and E<a are contractible. Moreover, the subspaces of E≤a

and E<a consisting of all piecewise monotone maps are homotopy dense in
them, respectively.

1. Introduction

One of the central topics in the study of infinite-dimensional topology is

the problem which function spaces are homeomorphic to the separable infinite

dimensional Hilbert space l2 or its well-behaved subspaces. The well-known

Anderson–Kadec’s theorem states that the countable infinite product RN of lines

is homeomorphic to l2, see [1], [10]. Using this result, it was proved that the

space of real valued maps of an infinite compact metric space with the supremum

metric is homeomorphic to l2. See [4], [14], [15] for more on this topic. Moreover,

in [6], the authors proved that the function space of real valued maps of an
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infinite countable metric space with the topology of pointwise convergence is

homeomorphic to the subspace c0 =
{

(xn) ∈ RN : lim
n→∞

xn = 0
}

of RN. In

a series of papers, the fourth named author of the present paper and his coauthors

gave a condition for the space of continuous functions from a k-space to I = [0, 1]

with the Fell hypergraph topology to be homeomorphic to the space c0, see

[16]–[19].

In the study of dynamical systems, some function spaces appear naturally.

The group of measure preserving transformations of the unit interval equipped

with the weak topology is homeomorphic to l2 (see [5] and [13]). Recently, in [11]

Kolyada et al. proposed the study of dynamical topology: investigating the topo-

logical properties of spaces of maps that can be described in dynamical terms.

They showed in [11] that the space of transitive interval maps is contractible

and uniformly locally arcwise connected, see also [12] for more detailed results.

In [8], Grinc et al. discussed some topological properties of subspaces of interval

maps related to the periods of periodic points.

In this paper, we will follow the idea in [11] to study subspaces of interval

maps related to the topological entropy. Let I = [0, 1] and C(I) be the collection

of continuous maps on I with the supremum metric d. For each f ∈ C(I), denote

by htop(f) the topological entropy of f . For any a ∈ [0,+∞], let

E≥a = {f ∈ C(I) : htop(f) ≥ a}; E>a = {f ∈ C(I) : htop(f) > a};

E≤a = {f ∈ C(I) : htop(f) ≤ a}; E<a = {f ∈ C(I) : htop(f) < a}.

A map f ∈ C(I) is said to be piecewise monotone if there exist 0 = t0 < t1 <

. . . < tn = 1 such that f |[ti−1,ti] is monotone for every i = 1, . . . , n. Similarly,

we can define a map to be piecewise linear. We use CPM(I) to denote the set of

all piecewise monotone continuous maps on I and

EPM
≤a = E≤a ∩ CPM(I).

The main results of this paper are as follows:

Theorem 1.1. For every a ∈ [0,+∞), both E≥a and E>a are homeomorphic

to l2.

Theorem 1.2. There exists a homotopy H : C(I)× I→ C(I) such that

(a) H0 = idC(I);

(b) htop(Ht(f)) ≤ htop(f) and Ht(f) ∈ CPM(I) for any t ∈ (0, 1) and f ∈
C(I);

(c) H1(f) ≡ 0 for any f ∈ C(I).

Restricting the homotopy in Theorem 1.2 to E≤a and E<a, respectively, we

can obtain the following corollary:
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Corollary 1.3. For every a ∈ [0,+∞], E≤a (E<a, respectively) is con-

tractible and EPM
≤a (EPM

<a , respectively) is homotopy dense in E≤a (E<a, respec-

tively).

The paper is organized as follows. In Section 2, we recall some basic notions

which we will use in the paper. Theorems 1.1 and 1.2 are proved in Sections 3

and 4, respectively.

2. Preliminaries

In this section, we recall some notions and aspects of infinite-dimensional

topology and topological entropy which will be used later.

2.1. Infinite-dimensional topology. In this subsection, we give some con-

cepts and facts on general topology and infinite-dimensional topology. For more

information, we refer the reader to [7], [4], [14], [15].

Let (X, d) be a metric space. We say that

• X is nowhere locally compact if no non-empty open set in X is locally

compact;

• X is an absolute (neighbourhood) retract (A(N)R, briefly) if for every

metric space Y which contains X as a closed subspace, there exists a con-

tinuous map r : Y → X (r : U → X from a neighbourhood U of X) such

that r|X = id;

• X has the strong discrete approximation property (SDAP, briefly) if for

every continuous map ε : X → (0, 1), every compact metric space K and

every continuous map f : K × N → X, there exists a continuous map

g : K × N → X such that {g(K × {n}) : n ∈ N} is discrete in X and

d(f(k, n), g(k, n)) < ε(f(k, n)) for every (k, n) ∈ K × N.

A homotopy on X is a continuous map H : X × I→ X, (x, t) 7→ Ht(x). The

space X is said to be contractible if there exists a homotopy H : X× I→ X such

that H0 = idX and H1 is a constant map. A subset A of X is called homotopy

dense if there exists a homotopy H : X × I → X such that H0 = idX and

Ht(x) ∈ A for every x ∈ X and t ∈ (0, 1].

We will need the following important results in infinite-dimensional topology.

Proposition 2.1 ([14, Theorem 5.2.15]). A metric space is an AR if and

only if it is a contractible ANR.

Theorem 2.2 ([2, 1.2.1 Proposition and Exercise 1.3.4]). Let Y be a homo-

topy dense subspace of X. If X is an ANR (with SDAP) then Y is also an ANR

(with SDAP).
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Theorem 2.3 ([2, 1.1.14 (Characterization Theorem)]). A separable topo-

logically complete metric space is homeomorphic to l2 if and only if it is an AR

with SDAP.

Theorem 2.4 ([2, 5.5.2 Corollary]). A convex subspace X of a separable

Banach space is homeomorphic to l2 if and only if X is topologically complete

and nowhere locally compact.

The following result must be “folklore”, but we can not find a proper reference

and therefore we provide a proof for the completeness.

Proposition 2.5. The function space C(I) is homeomorphic to l2.

Proof. Let C(I,R) be the collection of all continuous maps from I to R
with the standard linear structure and the supremum norm. Then C(I,R) is

a separable Banach space. The space C(I) is a closed and convex subspace of

C(I,R). It is not hard to verify that C(I) is nowhere locally compact. It follows

from Theorem 2.4 that C(I) is homeomorphic to l2. �

Combining the above results, we have the following useful criterion when

a subspace of C(I) is homeomorphic to l2.

Corollary 2.6. A homotopy dense subspace A of C(I) is homeomorphic

to l2 if and only if it is topologically complete and contractible.

Proof. The necessity is clear and we only need to prove the sufficiency. By

Proposition 2.5, C(I) is homeomorphic to l2. So by Theorem 2.3, C(I) is an ANR

with SDAP. Since A is homotopy dense in C(I), it follows from Theorem 2.2 that

A is also an ANR with SDAP. By the assumption we have A is contractible, then

by Proposition 2.1, A is an AR. Finally by Theorem 2.3 again, A is homeomorphic

to l2. �

2.2. Topological entropy. Let X be a compact metric space. Denote by

Cov(X) the family of all open covers of X. For α, β ∈ Cov(X) and f ∈ C(X),

let

N(α) = min

{
n ∈ N : there exist U1, . . . , Un ∈ α such that

n⋃
i=1

Ui = X

}
;

α ∨ β = {U ∩ V : U ∈ α, V ∈ β}, f−1(α) = {f−1(U) : U ∈ α}
and

htop(f, α) = lim
n→∞

logN(α ∨ f−1(α) ∨ . . . ∨ f−n+1(α))

n
.

The topological entropy of a continuous map f : X → X is defined as

htop(f) = sup
{
htop(f, α) : α ∈ Cov(X)

}
.

Let f ∈ C(I). A family {J1, . . . , Jn} of non-degenerate closed intervals is

called an n-horseshoe if
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(1) int(Ji) ∩ int(Jj) = ∅ for all 1 ≤ i < j ≤ n, where int(Ji) is the interior

of Ji in I;

(2) Ji ⊂ f(Jj) for all 1 ≤ i, j ≤ n.

The following result can be easily obtained, see e.g. [3, Proposition VIII.8].

Lemma 2.7. If f ∈ C(I) has an n-horseshoe, then h(f) ≥ log n.

The following result was first proved by Misiurewicz, see e.g. [3, Proposi-

tion VIII.30].

Theorem 2.8. The entropy function htop : C(I) → [0,+∞], f 7→ htop(f) is

lower-semicontinuous.

Corollary 2.9. For every a ∈ [0,+∞), E>a is open and E≥a is a Gδ-set

in C(I).

The convexity of C(I) in the Banach space C(I,R) plays a key role in the

proof of Proposition 2.5. The following examples show that neither E≤a nor E>a
is convex in C(I,R).

Example 2.10. Note that, for every f ∈ C(I), if

f

(
1

2
− x
)

= f

(
1

2
+ x

)
for all x ∈

[
0,

1

2

]
,

then f and 1 − f are topologically conjugate and thus htop(1 − f) = htop(f).

But

htop

(
1

2
f +

1

2
(1− f)

)
= htop

(
1

2

)
= 0.

It follows that E>a is not convex for any a ∈ [0,+∞).

Example 2.11. It is well-known that, for every f ∈ C(I), htop(f) = 0 if

and only if all periods of f are of the form 2n (see e.g. Proposition VIII.34

and Theorem II.14 in [3]). Let f and g be the broken line maps through the

points (0, 1), (1/4, 0), (1, 0) and the points (0, 1/2), (1/4, 0), (1/2, 0), (3/4, 1/2),

(1, 1/2), respectively. Then it is not hard to verify that n is a period for f or g

if and only if n = 1 or 2. It follows that htop(f) = htop(g) = 0. For the convex

combination ϕ = f/2+g/, we have ϕ(0) = 3/4, ϕ(3/4) = 1/4 and ϕ(1/4) = 0. It

follows that 0 is a periodic point with period 3 for ϕ, which implies htop(ϕ) > 0.

This shows that E≤0 is not convex.

3. Proof Theorem 1.1

In this section, we will prove Theorem 1.1. At first, we introduce the box

maps defined in [11]. Define a subset Λ of R5 as follows

Λ =
{

(al, ar, ab, at, as) ∈ R5 : ab < at, al, ar ∈ [ab, at], as ≥ 20
}
.
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For every non-degenerate closed interval K = [a0, a1] and λ = (al, ar, ab, at, as) ∈
Λ, the authors in [11] defined a continuous surjection ξλ : K → [ab, at], which

was called a box map, such that ξλ is piecewise linear with constant slope

as(at − ab)/(a1 − a0), ξλ(a0) = al and ξλ(a1) = ar. We make this construc-

tion both from left and right, ξλ is increasing on the leftmost lap unless al = at
and decreasing on the rightmost one unless ar = at. We choose the meeting

point m to be on the fifth decreasing lap from the left (see Figure 1 for exam-

ple). If the left and right graphs coincide, then there is no well-defined meeting

point, but the graph of ξλ is clear.

Figure 1. K = [0, 20], al = 3, ar = 2, ab = 0, at = 4, as = 20.

Remark 3.1. Let ξλ be a box map on K. If ab = a0 and at = a1, then

there exist closed subintervals J1, . . . , J[as−4] of K with disjoint interiors such

that f(Jj) = K for j = 1, . . . , [as − 4], where [x] is the greatest integer less

than or equal to x. Hence, J1, . . . , J[as−4] form an [as − 4]-horseshoe of ξλ. By

Lemma 2.7, htop(ξλ) ≥ log([as − 4]).

Following the idea in [11], for every α ≥ 20 we first construct a homotopy

H̃α : C(I) × I → C(I) as follows. Fix a function f ∈ C(I). First let H̃α
0 (f) = f .

For t ∈ (0, 1], let s be the largest non-negative integer such that st < 1. We

obtain s+ 1 closed intervals:

Ii = [(i− 1)t, it], i = 1, . . . , s, Is+1 = [st, 1].

In particular, if t = 1, then s = 0 and we have only one closed interval I1 = [0, 1].

For i = 1, . . . , s+1, let αi = max{|Ii|, |f(Ii)|}, where |J | is the length of a closed

interval J , and

aib = max{0,min f(Ii)− 4αi}; ait = min{1,max f(Ii) + 4αi};

ail = f(min Ii); air = f(max Ii).

It is not hard to verify that if Ii ∩ f(Ii) 6= ∅ then

(3.1) Ii ⊂ [aib, a
i
t].

It is clear that λαi = (ail, a
i
r, a

i
b, a

i
t, α) ∈ Λ and then we define H̃α

t (f) on Ii as the

box map ξλαi ∈ C(Ii, I). So Hα
t (f) is well-defined for t ∈ (0, 1]. By Lemma 2.2

of [11], H̃α : C(I)× I→ C(I) is a homotopy. Note that H̃α
0 = idC(I) and for every
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f ∈ C(I), H̃α
1 (f) is the box map on I with the parameter (f(0), f(1), 0, 1, α).

Now we construct another homotopy Ĥα : H̃α
1 (C(I)) × I → C(I). For every

f ∈ C(I) and t ∈ [0, 1] we define Ĥα
t (H̃α

1 (f)) to be the box map on I with

the parameter ((1 − t)f(0), (1 − t)f(1), 0, 1, α). By Lemma 2.1 of [11], Ĥα is

continuous then it is a homotopy. It should be noticed that for every f ∈ C(I),

Ĥα
1 (H̃α

1 (f)) is the box map on I with the parameter (0, 0, 0, 1, α). Finally, we

define a homotopy Hα : C(I)×I→ C(I) by joining Ĥα and H̃α, that is, for every

f ∈ C(I), Hα
t (f) = H̃α

2t(f) for t ∈ [0, 1/2] and Hα
t (f) = Ĥα

2(t−1/2)(H̃
α
1 (f)) for

t ∈ (1/2, 1].

We have the following estimate of the topological entropy of Hα
t (f).

Lemma 3.2. For every t ∈ (0, 1], α ≥ 20 and f ∈ C(I), we have

htop(Hα
t (f)) ≥ log([α− 4]).

Proof. Fix α ≥ 20 and f ∈ C(I). By Remark 3.1, we have htop(Hα
t (f)) ≥

log([α− 4]) for all t ∈ [1/2, 1]. Now assume that t ∈ [0, 12 ). By the construction

of Hα
t , there exists an interval Ii and x0 ∈ Ii such that f(x0) = x0. By the

formula (3.1), we have Ii ⊂ [aib, a
i
t]. Now, by the construction of the box map

on Ii, there exist closed subintervals J1, . . . , J[α−4] of Ii with disjoint interiors

such that Hα
t (f)(Jj) = [aib, a

i
t] for j = 1, . . . , [α − 4]. Then J1, . . . , J[α−4] form

an [α− 4]-horseshoe of Hα
t (f). By Lemma 2.7, htop(Hα

t (f)) ≥ log([α− 4]). �

We summarize the above results as follows.

Proposition 3.3. For every α ≥ 20, there exists a homotopy Hα : C(I)×I→
C(I) such that :

(a) Hα
0 = idC(I);

(b) htop(Hα
t (f)) ≥ log([α− 4]) for t ∈ (0, 1] and for every f ∈ C(I);

(c) Hα
1 (f) is the box map on I with the parameter (0, 0, 0, 1, α).

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix a ∈ [0,+∞) and choose α ∈ [20,+∞) such

that log([α−4]) > a. Let Hα as in Proposition 3.3. Then both E≥a and E>a are

homotopy dense in C(I). Using the homotopies Hα|E≥a×I and Hα|E>a×I, both

E≥a and E>a are contractible. By Corollary 2.9, both E≥a and E>a are topo-

logically complete. Now, using Corollary 2.6, E≥a and E>a are homeomorphic

to l2. �

Corollary 3.4. For every a ∈ [0,+∞), E≥a and E>a are homotopy dense

in C(I). Moreover, E>a ∩ E<+∞ is homotopy dense and open in E<+∞.

Proof. The former was shown in the proof of Theorem 1.1. To show the

latter, we only note that the topological entropy of a piecewise monotone map

is finite (see e.g. [3, Proposition VIII.18]). �
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By Theorem 2.8 and Corollary 3.4, we know that the subspace E+∞ = {f ∈
C(I) : htop(f) = +∞} is a dense Gδ-set in C(I). But the following question

remains open.

Problem 3.5. Is E+∞ homeomorphic to l2?

In Proposition 3.3, for every f ∈ C(I) and t ∈ (0, 1], Hα
t (f) is piecewise

monotone and then it has finite topological entropy. So we can not use the

method in the beginning of this section to construct a proper homotopy to show

that E+∞ is contractible. Another important fact is that there is no continuous

selection of fixed points.

Proposition 3.6. There does not exist a continuous map φ : C(I)→ I such

that φ(f) is a fixed point of f for every f ∈ C(I).

Proof. Suppose that φ : C(I)→ I is such a map. Choose x0∈ I\{0, 1, φ(idI)}.
Let ln : I → I be the broken line map through the points (0, 1/n), (x0, x0) and

(1, 1 − 1/n). Then ln → idI in C(I) as n → ∞. Since ln has a unique fixed

point x0, φ(ln) = x0 6→ φ(idI) as n → ∞. So φ is not continuous, which is

a contradiction. �

4. Proof of Theorem 1.2

In this section we construct the homotopy in Theorem 1.2, which is done by

connecting three homotopies. Inspired by [8] and [9], we introduce the following

concept. Let f and f̄ ∈ C([a, b], I). We say that f̄ is made from f by procedure

of making constant pieces (PMCP, briefly) if there exists a sequence of open

intervals {Un}∞n=1 of [a, b] in the relative topology such that

f |
I\
∞⋃
n=1

Un
= f |

I\
∞⋃
n=1

Un

and f |Un is constant for every n ∈ N. It should be noticed that our definition

here is more general than the one in [8]. We will need the following result which

was proved in [9, Lemma 5].

Lemma 4.1. Let f ∈ C(I). If f is made from f by PMCP, then

htop(f) ≤ htop(f).

For every c ∈ I, the map max{f(x), c} can be thought to be made from f by

PMCP. For every f ∈ C([a, b], I), let

M(f) = max{f(x) : x ∈ [a, b]};

c1(f) = min{x ∈ [a, b] : f(x) = M(f)};

c2(f) = max{x ∈ [a, b] : f(x) = M(f)}.
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Now we define f̃ : [a, b]→ I as follows

f̃(x) =


max{f(t) : a ≤ t ≤ x}, x ∈ [a, c1(f)],

M(f), x ∈ [c1(f), c2(f)],

max{f(t) : x ≤ t ≤ b}, x ∈ [c2(f), b].

First we have the following lemma.

Lemma 4.2. For any f, g ∈ C([a, b], I), we have

(a) f̃ is made from f by PMCP and it is in CPM([a, b], I);

(b) f̃(a) = f(a), f̃(b) = f(b) and f̃([a, b]) ⊂ f([a, b]);

(c) d(f̃ , g̃) ≤ d(f, g);

(d) if c ∈ (a, b) and ε > 0 satisfy either

max f |[a,c] −min f |[a,c] < ε or max f |[c,b] −min f |[c,b] < ε,

that is, the amplitude of f on [a, c] or on [c, b] is smaller than ε, then

d
(
f̃ , f̃ |[a,c] ∪ f̃ |[c,b]

)
< ε.

Proof. Parts (a) and (b) are obvious. We only need to show (c) and (d).

(c) We note that, for any maps h, k : J → I,

(4.1)
∣∣sup{h(x) : x ∈ J} − sup{k(x) : x ∈ J}

∣∣ ≤ sup{|h(x)− k(x)| : x ∈ J}.

It follows that (c) holds in the case [c1(f), c2(f)] ∩ [c1(g), c2(g)] 6= ∅. For the

case [c1(f), c2(f)] ∩ [c1(g), c2(g)] = ∅, without loss of generality, we assume that

c2(f) < c1(g). For x ∈ [a, b] \ [c2(f), c1(g)] using the formula (4.1), we have that

|f̃(x)− g̃(x)| ≤ d(f, g).

If x ∈ (c2(f), c1(g)) and f̃(x) ≥ g̃(x), then

0 ≤ f̃(x)− g̃(x) ≤ f(c2(f))− g(c2(f)) ≤ d(f, g).

If x ∈ (c2(f), c1(g)) and g̃(x) > f̃(x), then

0 < g̃(x)− f̃(x) ≤ g(c1(g))− f(c1(g)) ≤ d(f, g).

Hence (c) holds in the case [c1(f), c2(f)] ∩ [c1(g), c2(g)] = ∅.
(d) Without loss of generality, we assume that max f |[a,c] − min f |[a,c] < ε.

By (b), h = f̃ |[a,c] ∪ f̃ |[c,b] ∈ C([a, b], I).

Case 1. c ∈ [c1(f), c2(f)]. By the assumption, we have M(f) − ε < f(c) ≤
M(f). It follows that

M(f)− ε < f(c) ≤ h(x) ≤M(f) = f̃(x), x ∈ [c1(f), c2(f)].

Hence ∣∣f̃(x)− h(x)
∣∣ < ε, x ∈ [c1(f), c2(f)].
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Moreover, it is trivial that

f̃(x) = h(x) for x ∈ [a, b] \ [c1(f), c2(f)].

Hence d
(
f̃ , h

)
< ε.

Case 2. c ∈ [a, c1(f)]. In this case,

f̃(x) = h(x), x ∈ [c1(f), b].

Moreover, by the assumption in (d),

|f̃(x)− h(x)| < ε, x ∈ [a, c].

Furthermore, for every x ∈ [c, c1(f)],

h(x) = f̃ |[c,b](x) ≤ f̃(x) < f̃ |[c,b](x) + ε = h(x) + ε.

Therefore, d
(
f̃ , h

)
< ε.

Case 3. c ∈ [c2(f), b]. By the assumption, M(f) − ε < f(c) ≤ M(f). It

follows that

(4.2) M(f)− ε < f(c) ≤ f(c2(f |[c,b])) ≤M(f).

Note that

f̃(x) = f̃ |[c,b](x) ≤ f(c2(f |[c,b])), x ∈ [c2(f |[c,b]), b].

Moreover, using this and the formula (4.2), we have

|f̃(x)− h(x)| < ε, x ∈ [a, c2(f |[c,b])].

So in this case we also have d
(
f̃ , h

)
< ε. �

Using the above, we can give the first homotopy.

Lemma 4.3. There exists a homotopy H1 : C(I)× I→ C(I) such that

(a) H1
0 = idC(I);

(b) htop(H1
t (f)) ≤ htop(f) and H1

t (f) ∈ CPM(I) for t ∈ (0, 1] and f ∈ C(I).

Proof. In the same way as in the construction of the homotopy Hα in

Section 3, let H1
0 = idC(I), and for t ∈ (0, 1], let s be the largest non-negative

integer such that st < 1. We can obtain s+ 1 closed intervals:

Ii = [(i− 1)t, it], i = 1, · · · , s, Is+1 = [st, 1].

The integer s and the interval Ii are also denoted by s(t) and Iti if necessary. We

define H1
t such that, for every f ∈ C(I) and i = 1, . . . , s+ 1,

H1
t (f)|Ii = f̃ |Ii .

Using Lemma 4.2 (b), H1 : C(I) × I → C(I) is well-defined. Trivially, it satis-

fies (a). From Lemmas 4.1 and 4.2 (a) it follows that it satisfies (b).
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It remains to verify that H1 : C(I) × I → C(I) is continuous. At first, we

show that H1(f, · ) is continuous for every fixed f ∈ C(I). For every ε > 0, there

exists δ ∈ (0, 1) such that

(4.3) |x1 − x2| < δ implies |f(x1)− f(x2)| < ε

2
.

Now, for every t0 ∈ I, we verify that there exists δ(t0) ∈ (0, δ] such that

(4.4) |t− t0| < δ(t0) implies d(H1(f, t), H1(f, t0)) < ε,

which shows that H1(f, · ) is continuous.

If t0 = 0, we let δ(t0) = δ. For every t ∈ (0, δ) and i, from Lemma 4.2 (b) it

follows that

f̃ |Ii(Ii) ⊂ f(Ii).

Since |Ii| ≤ t < δ, using (4.3), we have |f(Ii)| < ε. Thus (4.4) holds.

If t0 ∈ (0, 1], choose δ(t0) ∈ (0, δ) small enough such that for every t ∈
I ∩ (t0 − δ(t0), t0 + δ(t0)), we have |s(t0) − s(t)| < 2 and (s(t0) + 2)δ(t0) < δ.

Then all points {it, jt0} divide I into closed intervals {Jj}. Let

G =
⋃
f̃ |Jj ∈ C(I).

Then, for every i, It0i is either a union of the two closed intervals in {Jj} or just

a closed interval in {Jj}. If the former holds, then by the choice of δ(t0) and

the formula (4.3), the amplitude of f in one of the two closed intervals is smaller

than ε/2. Using Lemma 4.2 (d), we have that

d
(
H1(f, t0)|

I
t0
i
, G|

I
t0
i

)
<
ε

2
.

If the later holds, then H1(f, t0)|Iti = G|Iti and hence the above formula also

holds. Thus,

d
(
H1(f, t0), G

)
<
ε

2
.

Similarly, we have that

d
(
H1(f, t), G

)
<
ε

2
.

Hence the formula (4.4) holds.

By Lemma 4.2 (c), we can obtain that d(H1(f, t), H1(g, t)) ≤ d(f, g). In

combination with the continuity of H1 on t, we have that H1 : C(I)× I→ C(I)

is jointly continuous. �

The second homotopy we need is the following.

Lemma 4.4. There exists a homotopy H2 : C(I)× I→ C(I) satisfying :

(a) H2
0 = idC(I);

(b) htop(H2
t (f)) ≤ htop(f) and H2

t (CPM(I)) ⊂ CPM(I) for any t ∈ (0, 1] and

f ∈ C(I);

(c) H2
1 (f) is a constant map for any f ∈ C(I).
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Proof. For every f ∈ C(I), let

M(f) = max{f(x) : x ∈ I}, m(f) = min{f(x) : x ∈ I}.

Then M,m : C(I)→ I are continuous. Using them, we can define our homotopy

as follows

H2(f, t)(x) = max{f(x), (M(f)−m(f))t+m(f))}.

Then it is not hard to verify that H2 : C(I) × I → C(I) is continuous and it

satisfies (a) and (c). Moreover, H2(f, t) is made from f by PMCP. It follows

from Lemma 4.1 that H2 also satisfies (b). �

The third homotopy H3 : I2 → I is defined as

H3(s, t) = (1− t)s,

which is a homotopy between the identical map and the constant map 0 in I.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Define H : C(I)× I→ C(I) as

H(f, t) =


H1(f, 3t), t ∈ [0, 1/3),

H2(H1(f, 1), 3t− 1), t ∈ [1/3, 2/3),

H3(H2(H1(f, 1), 1), 3t− 2), t ∈ [2/3, 1].

Since H2(H1(f, 1), 1) is a constant map, the homotopy H is well-defined. Note

that htop(c) = 0 for every constant map c. By Lemmas 4.3 and 4.4, it is easy to

see that H : C(I)× I→ C(I) is the homotopy as required. �

It follows from Corollary 3.4 and Theorem 2.8 that E≤a is nowhere dense

and closed in the space E<+∞. Hence

E<+∞ =
⋃
n∈N

E≤n

is not topologically complete. Therefore, E<+∞ is not homeomorphic to l2. It

is natural to put the following problem:

Problem 4.5. Does there exist a ∈ (0,+∞) such that E<a is homeomorphic

to l2?

For every a ∈ [0,+∞), by Corollary 1.3, we know that E≤a is contractible.

By Theorem 2.8, E≤a is a closed subset of C(I) and hence it is topologically

complete. But the following problem is still open.

Problem 4.6. Is E≤a homeomorphic to l2 for every a ∈ [0,+∞)? In parti-

cular, is E≤0 homeomorphic to l2?
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By Anderson–Kadec’s theorem, l2 is homeomorphic to RN, then it is also

homeomorphic to s = (−1, 1)N. Let

Q = [−1, 1]N,

Σ = {(xn) ∈ Q : sup |xn| < 1},

P≺2∞ = {f ∈ C(I) : there exists n ∈ N such that

the set of periods of f is {2i : 0 ≤ i ≤ n}}.

Using these symbols, we have the following problem:

Problem 4.7. For every a ∈ (0,+∞], does there exist a homeomorphism

h : E≤a → s×Q such that h(E<a) = s×Σ? Does there exist a homeomorphism

h : E≤0 → s×Q such that h(P≺2∞) = s× Σ?
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