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THE LONG-TIME BEHAVIOR

OF WEIGHTED p-LAPLACIAN EQUATIONS

Shan Ma — Hongtao Li

Abstract. In this work we study weighted p-Laplacian equations in
a bounded domain with a variable and generally non-smooth diffusion co-

efficient having at most a finite number of zeroes. The main attention is

focused on the case that the diffusion coefficient a(x) in such equations sat-

isfies the inequality lim inf
x→z

|x− z|−pa(x) > 0 for every z ∈ Ω. We show the

existence of weak solutions and global attractors in L2(Ω), Lq(Ω) (q ≥ 2)

and D1,p
0 (Ω), respectively.

1. Introduction

Let Ω be a bounded smooth domain in Rn (n ≥ 2). We consider weighted

p-Laplacian equations

(1.1)


∂u

∂t
− div(a(x)|∇u|p−2∇u) + f(u) = g in Ω× R+,

u = 0 on ∂Ω× R+,

u(x, 0) = u0 in Ω,
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where 1 < p < n, and f ∈ C1(Ω) satisfying

f ′(s) ≥ −l,(1.2)

C1|s|q − C0 ≤ f(s)s ≤ C2|s|q + C0, q ≥ 2(1.3)

for any s ∈ R. In order to handle applications to media which possibly are

somewhere ‘perfect’ insulators (see [7]) we allow the coefficient a( · ) to vanish

somewhere. Therefore, the problem (1.1) is considered as being degenerated.

The degeneracy of problem (1.1) is studied in the sense that the measurable,

nonnegative diffusion coefficient a(x) is allowed to have at most a finite number

of zeroes at some points, and we assume that a : Ω → R satisfies the following

assumption:

(Hp) a ∈ L1
loc(Ω) and lim inf

x→z
|x− z|−pa(x) > 0, for every z ∈ Ω.

Recently, motivated by [5], where a semilinear degenerate elliptic problem

was studied, the authors in [1]–[3], [9]–[11], [13], [14] considered the existence of

global attractors for some classes of degenerate evolutionary equations under the

assumption that a ∈ L1
loc(Ω), for some α ∈ (0, 2), satisfies

(1.4) lim inf
x→z

|x− z|−αa(x) > 0, for every z ∈ Ω.

Typically, Anh and Ke in [3] have studied the existence of weak solutions and

global attractors for degenerate p-Laplacian equation whenever α ∈ (0, p).

In this paper, we mainly consider degenerate p-Laplacian equation in the

case of α = p, that is, the weighted function a satisfies assumption (Hp). In this

case, D1,p
0 (Ω) (see the definition in Section 2) is compactly embedded only in the

space Lr(Ω) (1 < r < p) but not in L2(Ω) or Lp(Ω) (p ≥ 2), which gives rise the

additional difficulty due to the lack of compactness. Firstly, for the existence of

solutions to our problem, Galerkin method seems so inconvenient to deal with

parabolic equations because the inverse of the prime operator is not always com-

pact in Hilbert space L2(Ω). Secondly, it is well known that if we want to prove

the existence of global attractor in Lp(Ω) we need to verify that the semigroup

associated with (1.1) has some kind of compactness in Lp(Ω). However, there is

no corresponding compact embedding result for this case. Hence, we can obtain

the compact attractor only in Lr(Ω) (1 < r < p) but not L2(Ω) or Lp(Ω) by

uniformly compact methods.

For our problem, we firstly give the corresponding embedding theorem, then

prove the existence of weak solutions based on the singular perturbation method.

Furthermore, we discuss the compact attractors of the weak solutions in L2(Ω)

and Lq(Ω) by use of asymptotic a priori estimate method introduced in [21] and

combining with the existence of absorbing set in D1,p
0 (Ω) which is compactly

embedding only in Lr(Ω) (1 < r < p). Finally, we show the existence of global



Weighted p-Laplacian Equations 687

attractor in D1,p
0 (Ω) by verifying that the semigroup of weak solutions is asymp-

totically compact.

2. Preliminary results

In this section, we introduce some of the basic results on functional spaces,

and then review briefly some necessary concepts and theorems on global attrac-

tors. In order to study problem (1.1) we introduce the weighted Sobolev space

D1,p
0 (Ω) defined as the closure of C∞0 (Ω) in the norm

‖u‖D1,p
0

=

(∫
Ω

a(x)|∇u|p dx
)1/p

.

Next proposition, which is easily proved by using similar arguments as in [3],

refers to continuous and compact inclusion of D1,p
0 (Ω).

Proposition 2.1. Let Ω be bounded domain in Rn (n ≥ 2) and a ∈ L1
loc(Ω)

satisfy (1.4) for some α ∈ (0, p]. Then the following embeddings hold :

(a) D1,p
0 (Ω) is continuously embedded in W

1,pn/(n+α)
0 (Ω);

(b) D1,p
0 (Ω) is continuously embedded in Lp

∗
α(Ω);

(c) D1,p
0 (Ω) is compactly embedded in Lr(Ω) as 1≤r <p∗α=pn/(n− p+ α).

Remark 2.2. p∗α ≥ p when α ∈ (0, p), p∗α = p when α = p, which plays the

role of the critical exponent in the Sobolev embeddings.

In the present paper we only consider the case of α = p, that is, a satisfies

the hypothesis (Hp).
We now review briefly the basic results on the existence of global attractors,

see [4], [6], [15], [18], [21] for more details.

Definition 2.3. Semigroup {S(t)}t≥0 on Banach space X is called asymp-

totically compact if for any bounded sequence {xn}∞n=1 and tn ≥ 0, tn → ∞ as

n→∞, {S(tn)xn}∞n=1 has a convergent subsequence in X.

Theorem 2.4. Let {S(t)}t≥0 be a semigroup on Lp(Ω) (p ≥ 1), which is

a continuous or weak continuous semigroup on Lq(Ω) for some q ≤ p and have

a global attractor in Lq(Ω), where Ω ⊂ Rn is bounded. Then {S(t)}t≥0 has

a global attractor in Lp(Ω) if and only if

(a) {S(t)}t≥0 has a bounded absorbing set B0 in Lp(Ω), and

(b) for any ε > 0 and T = T (ε,B), such that∫
Ω(|S(t)u0|≥M)

|S(t)u0|p dx < ε for any u0 ∈ B and t ≥ T.

Theorem 2.5. Let {S(t)}t≥0 be a semigroup on Lp(Ω) (p ≥ 1) and {S(t)}t≥0

have a bounded absorbing set in Lp(Ω). Then, for any ε > 0 and any bounded

subset B ⊂ Lp(Ω), there exist positive constants T = T (B) and M = M(ε)
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such that m(Ω(|S(t)u0| ≥ M)) ≤ ε for any t ≥ T and u0 ∈ B, where m(e)

(sometimes we also write it as |e|) denotes the Lebesgue measure of e ⊂ Ω and

Ω(|u| ≥M) , {x ∈ Ω | |u(x)| ≥M}.

Theorem 2.6. For any ε > 0, the bounded subset B of Lp(Ω) (p ≥ 1) has

a finite ε-net in Lp(Ω) if there exists a positive constant M = M(ε), which

depends on ε, such that

(a) B has a finite (3M)(q−p)/q(ε/2)p/q-net in Lq(Ω) for some q ≥ 1;

(b)

∫
Ω(|u|≥M)

|u|p dx ≤ 2−(2p+2)/pε for any u ∈ B.

3. Existence and uniqueness of the global solution

In this section, we show the existence and the uniqueness of the global so-

lutions for (1.1). Let D−1,p′(Ω) be the dual space of D−1,p
0 (Ω), where p′ is

the conjugate of p, i.e. 1/p + 1/p′ = 1. We denote ΩT = Ω × [0, T ], V =

Lp(0, T ;D1,p
0 (Ω)) ∩ Lq(ΩT ) and V ∗ = Lp

′
(0, T ;D−1,p′(Ω)) + Lq

′
(ΩT ), respec-

tively, where q′ is the conjugate exponent of q, i.e. 1/q + 1/q′ = 1. For a

convenience, hereafter let ‖ ·‖p be the norm of Lp(Ω) (p ≥ 1), |u| be the modular

(or absolute value) of u, C be the arbitrary positive constant, which may be

different from line to line and even in the same line.

Definition 3.1. A function u(x, t) is called a weak solution of (1.1) on

[0,T] if and only if u ∈ C([0, T ];L2(Ω))∩Lp(0, T ;D1,p
0 (Ω))∩Lq(0, T ;Lq(Ω)) and

u|t=0 = u0 almost everywhere in Ω such that∫
ΩT

(
∂u

∂t
ξ + a|∇u|p−2∇u∇ξ + f(u)ξ

)
dx dt =

∫
ΩT

gξ dx dt

holds for all test functions ξ ∈ V .

The following lemma makes the initial condition in problem (1.1) meaningful.

Lemma 3.2 ([3]). Assume u ∈ V and du/dt ∈ V ∗. Then u ∈ C([0, T ];L2(Ω)).

Let

Lp,au = −div(a(x)|∇u|p−2∇u), u ∈ D1,p
0 (Ω),

Lp,aεu = −div
(
aε(x)

(
|∇uε|2 + ε

)
(p−2)/2∇uε

)
, u ∈ D1,p

0 (Ω).

We now establish the existence and uniqueness of the problem (1.1).

Theorem 3.3. Assume Ω ⊂ Rn is a bounded open domain with smooth

boundary, f satisfies (1.2)–(1.3) and g ∈ L2(Ω). Then, for any u0 ∈ L2(Ω) and

T > 0, there exists a unique solution u of (1.1) which satisfies

u ∈ C([0, T ];L2(Ω)) ∩ Lp(0, T ;D1,p
0 (Ω)) ∩ Lq(ΩT ).

The mapping u0 7→ u(t) is continuous in L2(Ω).
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Proof. For any 0 < ε < 1, we choose uε,0 ∈ C∞c (Ω) such that ‖uε,0‖∞ are

uniformly bounded with respect to ε, and uε,0 → u0 in L2(Ω) as ε→ 0.

Consider the problem

(3.1)


∂uε
∂t
− div

(
aε(x)

(
|∇uε|2 + ε

)
(p−2)/2∇uε

)
+ f(uε) = g in Ω× R+,

uε = 0 on ∂Ω× R+,

uε(x, 0) = uε0 in Ω,

where aε(x) = a(x) + ε for x ∈ Ω.

According to the classical theory on parabolic equations (see for example [4],

[6], [17], [18]), the problem (3.1) admits a unique weak solution

uε ∈ C([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)) ∩ Lq(ΩT ) with

∂u

∂t
∈ L2(ΩT ).

Here uε is called a weak solution of the problem (3.1), if

(3.2)

∫ T

0

∫
Ω

(
∂uε
∂t

ϕ+ aε
(
|∇uε|2 + ε

)(p−2)/2∇uε∇ϕ+ f(uε)ϕ

)
dx dt

=

∫ T

0

∫
Ω

gϕ dx dt,

for ϕ ∈ C∞0 (ΩT ) and uε|t=0 = uε,0 almost everywhere in Ω.

We do some estimates on uε. Multiplying (3.1) by uε and integrating over Ω,

we get

(3.3)
1

2

d

dt
‖uε‖22 +

∫
Ω

aε
(
|∇uε|2 + ε

)(p−2)/2|∇uε|2 +

∫
Ω

f(uε)uε =

∫
Ω

guε dx.

We can use (1.3) and the Hölder inequality to write

(3.4)
1

2

d

dt
‖uε‖22 +

∫
Ω

a(x)|∇uε|p dx+
C1

2

∫
Ω

|uε|q dx ≤ C0|Ω|+
C

2C1
‖g‖22.

where |Ω| =
∫

Ω
dx. The Gronwall inequality implies, for any T ∈ R,

uε is uniformly bounded in L∞(0, T, L2(Ω)) with respect to ε.

Integrating (3.3) and (3.4) both sides between 0 and T and using the Young

inequality, we may get by a standard procedure(see for example [4], [8], [17]

and [18]) that ∫
ΩT

aε

(
|∇uε|2 + ε

)(p−2)/2

|∇uε|2 dx dt ≤ C,∫
ΩT

a|∇uε|p dx dt ≤ C and

∫
ΩT

|uε|q dx dt ≤ C
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with C independent of ε. Noting (1.3), we obtain

‖f(uε)‖q
′

Lq′ (ΩT )
=

∫ T

0

(∫
Ω

|f(uε)|q
′
dx

)
dt

≤ C
∫ T

0

(∫
Ω

(
1 + |uε|q−1

)q′
dx

)
dt ≤ C

∫ T

0

(∫
Ω

1 + |uε|q
′(q−1) dx

)
dt.

So we have that f(uε) is uniform bounded in Lq
′
(0, T ;Lq

′
(Ω)) with respect to ε.

We now extract a weakly convergent subsequence, denoted also by uε for

convenience, with

(3.5)

uε ⇀ u in L2(0, T ;D1,p
0 (Ω)),

uε ⇀ u in Lq(0, T ;Lq(Ω)),

f(uε) ⇀ χ in Lq
′
(0, T ;Lq

′
(Ω)),

Lp,aεuε ⇀ ϑ in Lp
′
(0, T ;D−1,p′(Ω)).

Since f ∈ C(R), it follows that f(uε) ⇀ f(u) in Lq
′
(0, T ;Lq

′
(Ω)).

Now we show that u is a weak solution of problem (1.1). Multiplying (3.1)

by ϕ and let ε→ 0+ to derive∫ T

0

∫
Ω

∂u

∂t
ϕ+ ϑ∇ϕ+ f(u)ϕdx dt =

∫ T

0

∫
Ω

gϕ dx dt for ϕ ∈ C∞0 (ΩT ).

Therefore, to obtain the existence we need only to prove

(3.6)

∫ T

0

∫
Ω

ϑ∇ϕdx dt =

∫ T

0

∫
Ω

a|∇u|p−2∇u∇ϕdx dt, ϕ ∈ C∞0 (ΩT )

for C∞0 (ΩT ) is dense in V . From (3.3) we can obtain∫
ΩT

aε
(
|∇uε|2 + ε

)(p−2)/2|∇uε|2 d xdt

= −
∫

ΩT

∂uε
∂t

uε dx dt−
∫

ΩT

f(uε)uε dx dt+

∫
ΩT

guε dx dt.

Let v ∈ C∞0 (ΩT ). It is obvious that∫ T

0

∫
Ω

aε
((
|∇uε|2 +ε

)
(p−2)/2∇uε−

(
|∇v|2 +ε

)
(p−2)/2∇v

)
· (∇uε−∇v) dx dt ≥ 0.

Therefore,

−
∫

ΩT

∂uε
∂t

uε dx dt−
∫

ΩT

aε
(
|∇uε|2 + ε

)(p−2)/2∇uε∇v dx dt

−
∫

ΩT

a
(
|∇v|2 + ε

)(p−2)/2∇v
(
∇uε −∇v

)
dx dt
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+ ε

∫
ΩT

(
|∇v|2 + ε

)(p−2)/2∇v
(
∇uε −∇v

)
dx dt

−
∫

ΩT

f(uε)uε dx dt+

∫
ΩT

guε dx dt ≥ 0.

Letting ε→ 0+ in the above inequality and noticing that

ε

∣∣∣∣ ∫
ΩT

(
|∇v|2 + ε

)(p−2)/2∇v
(
∇uε −∇v

)
dx dt

∣∣∣∣
≤ ε

∫
ΩT

(
|∇v|2 + ε

)p−2/2|∇v| |∇uε| dx dt+ ε

∫
ΩT

(
|∇v|2 + ε

)p/2
dx dt→ 0

as ε→ 0+, we arrive at

(3.7) −
∫

ΩT

∂u

∂t
u dx dt−

∫
ΩT

ϑ∇v dx dt

−
∫

ΩT

a|∇v|p−2∇v
(
∇u−∇v

)
dx dt−

∫
Ω

f(u)u dx dt+

∫
Ω

gu dx dt ≥ 0.

On the other hand, choosing ϕ = u in (3.2) leads to

(3.8)

∫ T

0

∫
Ω

ϑ∇u dx dt = −
∫

ΩT

∂uε
∂t

uε −
∫ T

0

∫
Ω

f(u)u dx dt+

∫ T

0

∫
Ω

gu dx dt.

Then, it follows from (3.7) and (3.8) that∫ T

0

∫
Ω

(
ϑ− a|∇v|p−2∇v

)
(∇u−∇v) dx dt ≥ 0.

Choosing v = u− λϕ with λ > 0 in the above inequality, we get∫ T

0

∫
Ω

(
ϑ− a|∇(u− λϕ)|p−2

)
∇(u− λϕ)∇ϕdx dt ≥ 0,

which implies by letting λ→ 0+ that∫ T

0

∫
Ω

(
ϑ− a|∇u|p−2∇u

)
∇ϕdx dt ≥ 0.

If we choose λ < 0, we achieve the inequality with opposite sign. Thus∫ T

0

∫
Ω

(
ϑ− a|∇u|p−2∇u

)
∇ϕdx dt = 0,

which lead to (3.6). And then u ∈ C([0, T ];L2(Ω)) follows from Lemma 3.2.

Now we will show that u(0) = u0. Choosing some ϕ ∈ C1([0, T ];D1,p
0 (Ω) ∩

Lq(Ω)) with ϕ(T ) = 0 as a test function and integrating by parts in the t variable

we have∫ T

0

−〈u, ϕ′〉+
〈
− div

(
a(x)|∇u|p−2∇u

)
, ϕ
〉
ds

+

∫ T

0

〈f(u(s)), ϕ〉 ds =

∫ T

0

〈g(x), ϕ〉 ds+ (u(0), ϕ(0)).
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Doing the same in the above approximations, we get∫ T

0

−〈uε, ϕ′〉+
〈
− div(aε(x)

(
|∇uε|2 + ε

)(p−2)/2∇uε), ϕ
〉
ds

+

∫ T

0

〈f(uε(s)), ϕ〉ds =

∫ T

0

〈g(x), ϕ〉+ (uε(0), ϕ(0)).

By taking limits we conclude that∫ T

0

−〈u, ϕ′〉+
〈
− div

(
a(x)|∇u|p−2∇u

)
, ϕ
〉
ds

+

∫ T

0

〈f(u(s)), ϕ〉 ds =

∫ T

0

〈g(x), ϕ〉 ds+ (u0, ϕ(0)),

since uε0 → u0. Thus u(0) = u0.

Finally, we prove the uniqueness and the continuous dependence on u0. Let

u0 and v0 be in L2 and consider w(t) = u(t)− v(t). Then

∂w

∂t
− div(a(x)|∇u|p−2∇u) + div(a(x)|∇v|p−2∇v) + f(u)− f(v) = 0

and w(0) = u0 − v0. Multiplying by w and integrating over Ω gives

1

2

d

dt
‖w‖22 +

〈
− div

(
a(x)|∇u|p−2∇u

)
+ div

(
a(x)|∇v|p−2∇v

)
, u− v

〉
+ 〈f(u)− f(v), u− v〉 = 0.

Using (1.2), we obtain
d

dt
‖w‖2 ≤ l‖w‖22.

Integrating this gives the uniqueness and the continuous dependence on initial

conditions. �

Now we can use these solutions to define a semigroup {S(t)}t≥0 on L2(Ω) by

setting S(t)u0 = u(t), which is continuous on u0 in L2(Ω). In what follows, we

always assume that f satisfies (1.2)–(1.3) and g ∈ L2(Ω), and {S(t)}t≥0 is the

semigroup generated by the weak solutions of (1.1) with initial data u0 ∈ L2(Ω).

4. Existence of global attractors

4.1. Existence of absorbing sets.

Theorem 4.1. The semigroup {S(t)}t≥0 possesses a bounded absorbing set in

L2(Ω), Lq(Ω) and D1,p
0 (Ω) respectively, i.e. for any bounded subset B in L2(Ω),

there exists a constant T (‖u0‖2), such that

‖u(t)‖22 ≤ ρ0 and ‖u(t)‖qq +

∫
Ω

a(x)|∇u(t)|p dx ≤ ρ1,

for all t ≥ T and u0 ∈ B, where u(t) = S(t)u0.
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Proof. Let F (s) =
∫ s

0
f(τ) dτ , from (1.3), we deduce that

C̃1|s|q − k ≤ F (s) ≤ k + C̃2|s|q.

So,

(4.1) C̃1

∫
Ω

|u|q dx− k|Ω| ≤
∫

Ω

F (u) dx ≤ k|Ω|+ C̃2

∫
Ω

|u|q dx.

Multiplying (1.1) by u and integrating over Ω, we get

1

2

d

dt
‖u‖22 +

∫
Ω

a(x)|∇u|p dx+

∫
Ω

f(u)u dx =

∫
Ω

gu dx.

Using (1.3) and the Hölder inequality to deduce that

1

2

d

dt
‖u‖22 +

∫
Ω

a(x)|∇u|p dx+
C1

2

∫
Ω

|u|q dx ≤ 1

2
‖g‖22 + C0|Ω|.

So we have

(4.2)
d

dt
‖u‖22 + C

(∫
Ω

a(x)|∇u|p dx+

∫
Ω

|u|q dx
)
≤ C(‖g‖2, |Ω|).

Noticing that q ≥ 2, we deduce

d

dt
‖u‖22 + C

∫
Ω

|u|2 dx ≤ C(‖g‖2, |Ω|).

By the Gronwall lemma, we obtain the existence of absorbing set in L2(Ω), i.e.

there exist ρ0 and T0 = T0(‖u0‖2) > 0 such that

‖u(t)‖22 ≤ ρ0 for t ≥ T0.

Taking t ≥ T0 and integrating (4.2) on [t, t+ 1], we have∫ t+1

t

(∫
Ω

a(x)|∇u|p dx+

∫
Ω

|u|q dx
)
ds ≤ C(‖g‖2, |Ω|, ρ0), for all t ≥ T0.

Then, by (4.1), we can deduce that, for all t ≥ T0,

(4.3)

∫ t+1

t

(∫
Ω

a(x)|∇u|p dx+

∫
Ω

F (u) dx

)
ds ≤ C(‖g‖2, |Ω|, ρ0).

On the other hand, multiplying (1.1) by ut, we obtain

(4.4)
d

dt

(
1

p

∫
Ω

a(x)|∇u|p +

∫
Ω

F (u)

)
dx ≤ C(‖g‖2, |Ω|).

Therefore, from (4.3) and (4.4), using the uniform Gronwall lemma, we get∫
Ω

a(x)|∇u|p dx+

∫
Ω

F (u) dx ≤ C(‖g‖2, |Ω|, ρ0).

Thanks to (4.1), this inequality implies that, for all t ≥ T0 + 1,∫
Ω

a(x)|∇u|p dx+

∫
Ω

|u|q dx ≤ C(‖g‖2, |Ω|, ρ0).

Taking T = T0 + 1 and ρ1 = C(‖g‖2, |Ω|, ρ0), we complete the proof of Theo-

rem 4.1. �
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4.2. Global attractors in L2(Ω) and Lq(Ω). Our goal in this subsection

is to deal with the existence of global attractor in L2(Ω) and Lq(Ω), respectively.

In view of the definition of global attractor (see [4], [6], [17], [18]) we need to

verify {S(t)}t≥0 is compact in L2(Ω) and Lq(Ω), however, which we can not

obtain by the uniformly compact method for lack of the corresponding Sobolev

compact embedding theorem. Here we notice that D1
0(Ω) can be embedding in

to Lr(Ω) and finally obtain the compactness of the attractor in L2(Ω) and Lq(Ω)

using the asymptotic a priori estimate method introduced in [21].

Theorem 4.2. The semigroup {S(t)}t≥0 generated by (1.1) with initial data

u0 ∈ L2(Ω) has a global attractor A2. That is, A2 is compact, invariant in L2(Ω)

and attracts every bounded subset of L2(Ω) in the topology of L2(Ω).

Proof. In order to prove the existence of global attractor in L2(Ω), we need

to verify that the semigroup associated with (1.1) has some kind of compactness

in L2(Ω). Now we distinguish two cases to verify it.

Firstly, we consider the case p > 2. From Proposition 2.1, it is easy to know

that {S(t)}t≥0 is compact in L2(Ω) for D1,p
0 (Ω) is compactly embedded in L2(Ω),

so there exist a global attractor in L2(Ω).

In the case 1 < p ≤ 2 the proof is more complicated. Firstly, we give a priori

estimate for the unbounded part of modular |u| for the solution u of (1.1) in

L2-norm. For any fixed ε > 0, there exists δ > 0 such that for any e ⊂ Ω and

m(e) ≤ δ

(4.5)

∫
e

|g(x)|2 dx < ε.

Moreover, from Theorem 2.5 and 4.1, we know that there exist T = T (B, ε) and

M1 = M(ε) such that

(4.6) m
(
Ω(|u(t)| ≥M1)

)
≤ min{ε, δ} for u0 ∈ B and t ≥ T.

In addition, thanks to (1.3), we know f(s) ≥ 0 when s > (C0/C1)1/q. In the

following we assume M = max
{
M1, (C0/C1)1/q

}
and t ≥ T .

Multiplying (1.1) by (u−M)+ and integrating over Ω, we have

1

2

d

dt
‖(u−M)+‖22 +

∫
Ω

a(x)|∇(u−M)+|p dx

+

∫
Ω

f(u)(u−M)+ dx =

∫
Ω

g(u−M)+ dx

where (u−M)+ denotes the positive part of u−M , that is

(u−M)+ =

u−M if u ≥M,

0 if u ≤M.
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Set Ω1 = Ω(u(t) ≥ M). Notice that f(u) ≥ C1u
q−1 − C3 and u −M ≤ u as

u ≥M , from the Cauchy inequality and the Hölder inequality, we deduce that

(4.7)
d

dt
‖(u−M)+‖22 + C

∫
Ω1

(u−M)qdx ≤ C
∫

Ω1

|g|2 dx, as t ≥ T.

Combining with (4.5)–(4.6) and Lq ↪→ L2(Ω)(q ≥ 2), we get

d

dt
‖(u−M)+‖22 + C

∫
Ω1

(u−M)2 dx ≤ Cε.

We apply the Gronwall lemma to infer

‖(u−M)+‖22 =

∫
Ω1

|u−M |2 dx ≤ Cε.

Let Ω2 = Ω (u ≥ 2M), we have

(4.8)

∫
Ω2

|u|2 dx ≤ Cε.

Replacing (u −M)+ with (u + M)− and using the same method as above, we

obtain

(4.9)

∫
Ω(u≤−2M)

|u|2 dx ≤ Cε.

Hence, assertions (4.8) and (4.9) yield∫
Ω(|u(t)|≥M)

|u(t)|2 dx < Cε for any u0 ∈ B and t ≥ T,

where the constant C is independent of ε and B.

Let B0 be the absorbing set in D1,p
0 (Ω), we can consider our problem only

in B0. From Proposition 2.1 we know D1,p
0 (Ω) is compactly embedded into

Lr(Ω) for some 1 < r < p∗, so B0 is compact in Lr(Ω), and B0 has a finite ε-net

in Lr(Ω). According to Theorem 2.6 we see B0 is compact in L2(Ω), hence,

Theorem 4.1 implies the existence of attractor in L2(Ω). �

We now prove the existence of global attractors for {S(t)}t≥0 in Lq(Ω). We

firstly give a priori estimate for the unbounded part of modular |u| for the solu-

tion u of (1.1) in Lq-norm.

Theorem 4.3. For any ε > 0 and any bounded subset B ⊂ L2(Ω), there

exist T = T (B, ε) and M = M(ε) such that∫
Ω(|u|≥M)

|u|q dx ≤ Cε for all t ≥ T and u0 ∈ B,

where the constant C is independent of ε and B.
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Proof. Let t ≥ T . Integrating (4.7) on [t, t + 1] and combining with (1.3)

and Theorem 4.2, we have

(4.10)

∫ t+1

t

(∫
Ω

|u−M |q dx
)
dt ≤ Cε.

On the other hand, multiplying (1.1) by (u−M)q−1
+ and integrating over Ω1, we

get

1

q

d

dt

∫
Ω1

|u−M |q dx+ (q − 1)

∫
Ω1

a(x)|∇u|p(u−M)q−2 dx

+

∫
Ω1

f(u)(u−M)q−1 dx =

∫
Ω1

g(u−M)+ dx.

In view of (1.3), we have

1

q

d

dt

∫
Ω1

|u−M |qdx+ (q − 1)

∫
Ω1

a(x)|∇u|p(u−M)q−2 dx

+ C

∫
Ω1

|u−M |2q−2 dx ≤ Cε,

where we used the Hölder inequality and the Cauchy inequality. Hence,

(4.11)
d

dt

∫
Ω1

|u−M |q dx ≤ Cε.

Using (4.10) and (4.11), the uniform Gronwall lemma leads to∫
Ω1

|u−M |q dx ≤ Cε,

where the constant C is independent of ε and B. Thus

(4.12)

∫
Ω(u≥2M)

|u|q dx ≤ Cε.

Repeating the same steps above, just taking (u+M)− and (u+ 2M)q−1
− instead

of (u−M)+ and (u− 2M)q−1
+ , respectively, we deduce that

(4.13)

∫
Ω(u≤−2M)

|u|q dx ≤ Cε.

Combining (4.12) with (4.13), we obtain that∫
Ω(|u|≥2M)

|u|q dx ≤ Cε. �

Theorems 2.4, 4.1 and 4.3 lead to the existence of global attractor in Lq(Ω).

Theorem 4.4. The semigroup {S(t)}t≥0 generated by the weak solution of

equations (1.1) has a global attractor Aq in Lq(Ω), i.e. Aq compact, invariant

in Lq(Ω) and attracts every bounded subset of L2(Ω) in the topology of Lq(Ω).



Weighted p-Laplacian Equations 697

4.3. Global attractor in D1,p
0 (Ω) ∩ Lq(Ω). In this subsection, we prove

the existence of a global attractor in D1,p
0 (Ω). At first, we will give some a priori

estimates about ut endowed with L2-norm.

Theorem 4.5. Assume that Ω is a bounded smooth domain in Rn, g ∈ L2(Ω),

and f satisfies (1.2) and (1.3). Then, for any bounded subset of L2(Ω), there

exists a positive constant T = T (B) such that

‖ut‖22 ≤ C for u0 ∈ B and s ≥ T,

where ut(s) = dS(t)u0/dt|t=s and C is independent of B.

Proof. From Lemma 5.1 in [19] we know that for any bounded subset of

L2(Ω), there exists a positive constant T = T (B) such that

‖uεt‖22 ≤ C for all u0 ∈ B and s ≥ T ,

where uε is solution to (3.1). Thus, we have

uεt ⇀ h(s) in L2(Ω) for any s ≥ T and ‖h(s)‖22 ≤ C for all s ≥ T .

On the other hand, from the proof of Theorem 3.3, we know that uεt ⇀ ut in V ∗.

By the uniqueness of limit, we have

‖ut‖22 = ‖h(s)‖22 ≤ C for all s ≥ T. �

In order to verify that the semigroup {S(t)}t≥0 is asymptotically compact in

D1,p
0 (Ω) we need the following simple property of weighted p-Laplacian:

Proposition 4.6. The operator La,p : D1,p
0 (Ω)→ D−1,p′(Ω) is strong mono-

tone, i.e. for any u, v ∈ D1,p
0 (Ω), there exists a positive constant δ such that

〈Lp,au1 − Lp,au2, u1 − u2〉 ≥ δ‖u1 − u2‖D1,p
0
.

Proof. We need to prove the strong monotonicity. From the Lemma A.0.5

in [16], we know ((
|x|p−2x− |y|p−2y, x− y

))
≥ δ|x− y|p,

where (( · , · )) is the standard scalar product in Rn. So

〈Lp,au1−Lp,au2, u1−u2〉 =

∫
Ω

a(x)
((
|∇u1|p−2∇u1−|∇u2|p−2∇u2,∇u1−∇u2

))
≥ δ‖u1 − u2‖D1,p

0
.�

Theorem 4.7. The semigroup {S(t)}t≥0 generated by the weak solution of

equations (1.1) has a global attractor A in D1,p
0 (Ω) ∩ Lq(Ω), i.e. A compact,

invariant in D1,p
0 (Ω) ∩ Lq(Ω) and attracts every bounded subset of L2(Ω) in the

topology of D1,p
0 (Ω) ∩ Lq(Ω).
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Proof. Firstly, we prove that the semigroup {S(t)}t≥0 is asymptotically

compact in D1,p
0 (Ω). Let B0 be a bounded absorbing set in D1,p

0 (Ω) obtained in

Theorem 4.1, then we need only to show that for any sequence {u0n}∞n=1 ⊂ B0

(4.14) {un(tn)}∞n=1 is precompact in D1,p
0 (Ω),

where un(tn) = S(tn)u0n.

Thanks to Theorems 4.2 and 4.4, we know that {un(tn)}∞n=1 is precompact

in L2(Ω) and Lq(Ω), so we can assume that the subsequence {unk(tnk)}∞k=1 is

Cauchy sequence in L2(Ω) and Lq(Ω).

In the following, we prove that {unk(tnk)}∞k=1 is Cauchy sequence in D1,p
0 (Ω).

Noting Proposition 4.6, we have

δ‖unk(tnk)− unj (tnj )‖D1,p
0

≤〈Lp,aunk(tnk)− Lp,aunj (tnj ), unk(tnk)− unj (tnj )〉

=

〈
− d

dt
unk(tnk)−f(unk(tnk))+

d

dt
unj (tnj )+f(unj (tnj )), unk(tnk)−unj (tnj )

〉
≤
∫

Ω

∣∣∣∣ ddtunk(tnk)− d

dt
unj (tnj )

∣∣∣∣|unk(tnk)− unj (tnj )|

+

∫
Ω

∣∣f(unk(tnk))− f(unj (tnj ))
∣∣ ∣∣unk(tnk)− unj (tnj )

∣∣
≤
∥∥∥∥ ddtunk(tnk)− d

dt
unj (tnj )

∥∥∥∥
2

∥∥unk(tnk)− unj (tnj )
∥∥

2

+ C
(
1 + ‖unk(tnk)‖qq + ‖unj (tnj )‖qq

)∥∥unk(tnk)− unj (tnj )
∥∥
q
,

which, combining with Theorem 4.4 and 4.5, yields (4.14) immediately. Set

A =
⋂
s≥0

⋃
t≥s

S(t)B0

D1,p
0 ∩L

q

,

which consists of all the limit points of the orbit of B0, i.e.

A =
{
y : ∃ tn →∞, xn ∈ B0 with S(tn)xn → y in D1,p

0 (Ω) ∩ Lq(Ω)
}
.

On the other hand, from Theorem 4.2, we know there exists y∗ ∈ L2(Ω) such

that

S(tn)xn → y∗ in L2(Ω) as n→∞.

By the uniqueness of the limit, we get y = y∗, and A = A2. Using Theorem 4.2

again, we know A is invariant. So A is the global attractor in D1,p
0 (Ω)∩Lq(Ω),

which is compact, invariant in D1,p
0 (Ω)∩Lq(Ω) and attracts every bounded subset

of L2(Ω) in the topology of D1,p
0 (Ω) ∩ Lq(Ω). �

Remark 4.8. From the procedure of the proof of Theorem 4.7, obviously,

we know that A = A2 = Aq.
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