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THE CONTINUITY

OF ADDITIVE AND CONVEX FUNCTIONS

WHICH ARE UPPER BOUNDED

ON NON-FLAT CONTINUA IN Rn

Taras Banakh — Eliza Jab lońska — Wojciech Jab loński

Abstract. We prove that for a continuum K ⊂ Rn the sum K+n of

n copies of K has non-empty interior in Rn if and only if K is not flat in
the sense that the affine hull of K coincides with Rn. Moreover, if K is

locally connected and each non-empty open subset of K is not flat, then for

any (analytic) non-meager subset A ⊂ K the sum A+n of n copies of A is
not meager in Rn (and then the sum A+2n of 2n copies of the analytic set A

has non-empty interior in Rn and the set (A−A)+n is a neighbourhood of

zero in Rn). This implies that a mid-convex function f : D → R defined on
an open convex subset D ⊂ Rn is continuous if it is upper bounded on some

non-flat continuum in D or on a non-meager analytic subset of a locally

connected nowhere flat subset of D.

1. Introduction

Let X be a linear topological space over the field of real numbers. A function

f : X → R is called additive if f(x+ y) = f(x) + f(y) for all x, y ∈ X.

A function f : D → R defined on a convex subset D ⊂ X is called mid-convex

if f((x+ y)/2) ≤ (f(x) + f(y))/2 for all x, y ∈ D.
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Many classical results concerning additive or mid-convex functions state that

the boundedness of such functions on “sufficiently large” sets implies their con-

tinuity. That is why Ger and Kuczma [8] introduced the following three families

of sets in X:

• the family A(X) of all subsets T ⊂ X such that any mid-convex function

f : D → R defined on a convex open subset D ⊂ X containing T is

continuous if sup f(T ) <∞;

• the family B(X) of all subsets T ⊂ X such that any additive function

f : X → R with sup f(T ) <∞ is continuous;

• the family C(X) of all subsets T ⊂ X such that any additive function

f : X → R is continuous if the set f(T ) in bounded in R.

It is clear that

(1.1) A(X) ⊂ B(X) ⊂ C(X).

By the example of Erdős [4] (discussed in [8]) the classes B(X) and C(X) are not

equal even if X = Rn, n ∈ N. On the other hand, Ger and Kominek [7] proved

that A(X) = B(X) for any Baire topological vector space X. In particular,

A(Rn) = B(Rn) for every n ∈ N (cf. [15]).

There are lots of papers devoted to the problem of recognizing sets in the

families A(X), B(X) or C(X), see e.g. [1], [5], [17], [19], [20]. The classical results

concerning mid-convex functions (namely, Bernstein–Doetsch Theorem [2] and

its generalizations, see e.g. [23]) imply that a subset T with non-empty interior

in a topological vector space X belongs to the family A(X). By (the proofs of)

Lemma 9.2.1 and Theorem 9.2.5 in [14], a subset T of a topological vector spaceX

belongs to a family K ∈ {A(X),B(X), C(X)} if and only if for some n ∈ N its

n-fold sum

T+n = T + . . .+ T︸ ︷︷ ︸
n times

belongs to the family K. Combining these two facts, we obtain the following

well-known folklore result.

Theorem 1.1. A subset T of a topological vector space X belongs to the

family A(X) if for some n ∈ N its n-fold sum T+n has non-empty interior in X.

Theorem 1.1 has been used many times to show that various “thin” sets

actually belong to the class A(X), B(X) or C(X). In this respect let us mention

the following result of Ger [6].

Theorem 1.2 (Ger). Let I ⊂ R be a nontrivial interval, n ≥ 2 and let

ϕ : I → Rn be a C1-smooth function defining in Rn a curve which does not lie

entirely in an (n − 1) dimensional affine hyperplane. Let Z ⊂ I be a set of

positive Lebesgue measure. If one of the conditions is fulfilled :
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(a) the Lebesgue measure of Z∩(a, b) is positive for every nontrivial interval

(a, b) ⊂ I,

(b) the determinant ∣∣∣∣∣∣∣∣
ϕ′1(x1) . . . ϕ′1(xn)

...
. . .

...

ϕ′n(x1) . . . ϕ′n(xn)

∣∣∣∣∣∣∣∣
is non-zero for almost every (x1, . . . , xn) in In,

then the image ϕ(Z) belongs to the class A(Rn).

In this paper we prove a topological counterpart of Ger’s Theorem 1.2.

A subset A of a topological vector space X is defined to be

• flat if the affine hull of A is nowhere dense in X;

• nowhere flat if each non-empty relatively open subset U ⊂ A is not flat

in X.

By a continuum we understand a connected compact metrizable space.

The main aim of the paper is to prove the following result.

Theorem 1.3. Let n ∈ N. For any non-flat continuum K ⊂ Rn its n-fold

sum K+n has non-empty interior in Rn and hence K belongs to the class A(Rn).

Moreover, if K is locally connected and nowhere flat in Rn, then for any non-

meager analytic subspace A of K the 2n-fold sum A+2n has non-empty interior

in Rn, which implies that A ∈ A(Rn).

The first part of Theorem 1.3 will follow from Corollary 2.5 and the second

one from Corollary 3.2.

Remark 1.4. The first part of Theorem 1.3 answers a problem posed by the

last author in [10].

2. Algebraic sum of n continua in Rn

In the proof of Theorem 1.3 we shall apply a non-trivial result of Hol-

sztyński [9] and Lifanov [18] on the dimension properties of products of continua.

Let us recall that a closed subset S of a topological space X is called a partition

between subsets A and B of X if there exist two sets U and W open in X \ S
such that A ⊂ U , B ⊂W , U ∩W = ∅ and X \ S = U ∪W .

The following proposition can be derived from results of Holsztyński [9] and

Lifanov [18] and is discussed by Engelking in [3, 1.8.K].

Proposition 2.1 (Holsztyński, Lifanov). Let K1, . . . ,Kn be continua and

K :=
n∏

i=1

Ki be their product. For every positive integer i ≤ n let a−i , a
+
i be two
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distinct points in Ki and let Si be a partition between the sets

A−i :=
{

(xk)nk=1 ∈ K : xi = a−i
}

and A+
i :=

{
(xk)nk=1 ∈ K : xi = a+i

}
in K. Then the intersection

n⋂
i=1

Si is not empty.

The principal ingredient in the proof of Theorem 1.3 is the following result,

which can have an independent value.

Theorem 2.2. Let K1, . . . ,Kn be continua in Rn containing the origin of

Rn. Assume that each continuum Ki contains a point ei such that the vectors

e1, . . . , en are linearly independent. Then the algebraic sum K := K1 + . . .+Kn

has non-empty interior in Rn and the Lebesgue measure of K is not smaller than

the volume of the parallelotope P := [0, 1] · e1 + . . .+ [0, 1] · en.

Proof. After a suitable linear transformation of Rn, we can assume that

e1, . . . , en coincide with the standard basis of Rn, i.e. e1 = (1, 0, . . . , 0), e2 =

(0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). In this case we should prove that the sum

K = K1 + . . . + Kn has non-empty interior in Rn and the Lebesgue measure

λ(K) of K is not smaller than the volume λ(P ) = 1 of the cube P = [0, 1]n.

On the space Rn we consider the sup-norm ‖x‖ = max
1≤i≤n

|xi|. Let

δ := max

{
‖x‖ : x ∈

n⋃
i=1

Ki

}
.

Choose numbers s, l ∈ N such that l > s + (n − 1)δ. Moreover, if λ(K) < 1,

then we can replace s and l by larger numbers and additionally assume that

[2s/(2l + 1)]n > λ(K).

For every positive integer i ≤ n, consider the finite set Zi = {k · ei : k ∈ Z,
|k| ≤ l} in Rn and observe that the sum K̃i := Ki+Zi is a continuum containing

the set Zi (as Ki contains zero). Let Z := Z1 + . . .+Zn ⊂ Zn ⊂ Rn and observe

that

K + Z = (K1 + . . .+Kn) + (Z1 + . . .+ Zn)

= (K1 + Z1) + . . .+ (Kn + Zn) = K̃1 + . . .+ K̃n.

Claim 2.3. [−s, s]n ⊂ K + Z.

Proof. To derive a contradiction, suppose that [−s, s]n 6⊂ K + Z and fix

a point (yi)
n
i=1 ∈ [−s, s]n \ (K + Z). For every positive integer k ≤ n denote by

prk : Rn → R, prk : (xi)
n
i=1 7→ xk, the coordinate projection. Also let

Yk := {x ∈ Rn : prk(x) = yk},

Y −k := {x ∈ Rn : prk(x) < yk}, Y +
k := {x ∈ Rn : prk(x) > yk}.



The Continuity of Additive and Convex Functions 251

Consider the continuous map

Σ:

n∏
i=1

K̃i → K + Z, Σ: (xi)
n
i=1 7→

n∑
i=1

xi.

For every positive integer k ≤ n let

pk :

n∏
i=1

K̃i → K̃k, pk : (xi)
n
i=1 7→ xk,

be the coordinate projection. The sets F−k := p−1k (−l · ek) and F+
k := p−1k (l · ek)

will be called the negative and positive k-faces of the “cube” K̃ :=
n∏

i=1

K̃i.

We claim that Σ(F−k ) ⊂ Y −k and Σ(F+
k ) ⊂ Y +

k . Indeed, for any x̃ = (x̃i)
n
i=1

in F+
k ⊂ K̃ we can find sequences (xi)

n
i=1 ∈

n∏
i=1

Ki and (zi)
n
i=1 ∈

n∏
i=1

Zi such that

(x̃i)
n
i=1 = (xi + zi)

n
i=1. Taking into account that prk(zi) = 0 for all i 6= k, we

conclude that

prk ◦ Σ(x̃) =

n∑
i=1

prk(x̃i) = prk(x̃k) +
∑
i 6=k

prk(x̃i)

= prk(l · ek) +
∑
i6=k

prk(xi + zi)

= l +
∑
i6=k

prk(xi) ≥ l −
∑
i 6=k

‖xi‖ ≥ l − (n− 1)δ > s ≥ yk

and hence Σ(x̃) ∈ Y +
k and finally Σ(F+

k ) ⊂ Y +
k . By analogy we can prove that

Σ(F−k ) ⊂ Y −k . Then Σ−1(Yk) is a partition between the k-th faces F−k and F+
k

of the “cube” K̃.

Since
n⋂

k=1

Yk =
{

(yk)nk=1

}
6⊂ K + Z = Σ(K̃), the intersection

n⋂
k=1

Σ−1(Yk) is

empty, which contradicts Proposition 2.1. �

Now we continue the proof of Theorem 2.2. By Claim 2.3, [−s, s]n ⊂ K +Z.

Taking into account that the set Z is finite, we conclude that the set K =

K1 + . . .+Kn has non-empty interior in Rn. Moreover, [−s, s]n ⊂ K+Z implies

(2s)n = λ([−s, s]n) ≤ λ(K + Z) ≤ λ(K) · |Z| = λ(K) · (2l + 1)n and hence

[2s/(2l + 1)]n ≤ λ(K). Then λ(K) ≥ 1 by the choice of the numbers l and s. �

Remark 2.4. By Theorem 2.2 with n = 2 we obtain that if K is a continuum

in the plane which does not lie on a line, then the set K −K contains an open

set. This is the exactly [11, Proposition 1.3] proved by Kallman and Simmons

to get a continuity criterion for automorphisms of the field of complex numbers.

The following corollary of Theorem 2.2 implies the first part of Theorem 1.3.

Corollary 2.5. For a continuum K ⊂ Rn and its n-fold sum K+n the

following conditions are equivalent :
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(a) K+n has non-empty interior in Rn;

(b) K+n has positive Lebesgue measure in Rn;

(c) K is not flat in Rn;

(d) for any non-zero continuous linear functional f : Rn → R the image

f(K) has non-empty interior in R;

(e) K belongs to the family A(Rn);

(f) K belongs to the family C(Rn).

Proof. The implications (a) ⇒ (b) ⇒ (c) are trivial. To prove that (c) ⇒
(a), assume that K is not flat in Rn. After a suitable shift, we can assume that

K contains the origin of the vector space Rn.

Let E ⊂ K be a maximal linearly independent subset of K. Assuming that

|E| < n we would conclude that K is contained in the linear hull of the set E

and hence is flat. So, |E| = n and we can write E as E = {e1, . . . , en} ⊂ K.

Applying Theorem 2.2 to the continua Ki := K, 1 ≤ i ≤ n, we conclude that

the sum K+n = K1 + . . .+Kn has non-empty interior in Rn.

The equivalence (c) ⇔ (d) is proved in Lemma 2.6 below, the implication

(a)⇒ (e) follows from Theorem 1.1 and (e)⇒ (f) is trivial. To finish the proof,

it suffices to show that (f)⇒ (c), which is equivalent to ¬(c)⇒ ¬(f). So, assume

that the continuum K is flat in Rn. Then K ⊂ x+L for some x ∈ Rn and some

linear subspace L ⊂ Rn of dimension dim(L) = n− 1. Let Rn/L be the quotient

space and q : Rn → Rn/L be the quotient linear operator.

Since the quotient space Rn/L is topologically isomorphic to R, it admits

a discontinuous additive function a : Rn/L → R. Then f = a ◦ q : Rn → R is

a discontinuous additive function such that f(K) ⊂ f(x + L) = {f(x)}, which

means that K /∈ C(Rn). �

Lemma 2.6. A connected subset K of a locally convex topological vector

space X is not flat if and only if for any non-zero linear continuous functional

f : X → R the image f(K) has non-empty interior in X.

Proof. If A is flat, then the affine hull of A in X is nowhere dense and hence

A ⊂ a+L for some a ∈ A and some nowhere dense closed linear subspace of X.

Using the Hahn–Banach Theorem, choose a non-zero linear continuous functional

f : X → R such that L ⊂ f−1(0). Then the image f(A) ⊂ f(L+ a) = {f(a)} is

a singleton (which has empty interior in the real line).

Now assuming that A is not flat, we shall prove that for any non-zero linear

continuous functional f : X → R the image f(A) has non-empty interior in R.

Since A is not flat, its affine hull is dense in X and hence the affine hull of f(A)

is dense in R. This implies that f(A) contains two distinct points a < b. By

the connectedness of f(A) (which follows from the connectedness of A and the
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continuity of f), the set f(A) contains the interval [a, b] and hence has non-empty

interior in R. �

Problem 2.7. Is there a compact subset K ⊂ R2 such that K+K has empty

interior in R2 but for any non-zero linear continuous functional f : R2 → R the

image f(K) has non-empty interior in R?

3. Collectively nowhere flat subsets in Rn

Subsets A1, . . . , An of Rn will be called collectively nowhere flat in Rn if

any non-empty relatively open subsets U1 ⊂ A1, . . . , Un ⊂ An contain points

a1, b1 ∈ U1, . . . , an, bn ∈ Un such that the vectors b1 − a1, . . . , bn − an form

a basis of the linear space Rn. For example, for a basis e1, . . . , en of Rn with

n ≥ 2 the closed intervals [0, 1] · e1, . . . [0, 1] · en are collectively nowhere flat; yet

each set [0, 1] · ei separately is flat.

It is easy to see that a subspace A ⊂ Rn is nowhere flat in Rn if and only

if the sequence of n its copies A1 = A, . . . , An = A is collectively nowhere flat

in Rn.

Theorem 3.1. Let K1, . . . ,Kn be collectively nowhere flat locally connected

subspaces of Rn. For every non-meager subsets B1, . . . , Bn in K1, . . . ,Kn the

algebraic sum B1 + . . .+Bn is non-meager in Rn.

Proof. To derive a contradiction, assume that the sum B1 + . . . + Bn is

meager and hence is contained in the countable union
⋃
i∈ω

Fi of closed nowhere

dense subsets of Rn. Consider the continuous map

Σ: (Rn)n → Rn, Σ: (xk)nk=1 7→
n∑

k=1

xk.

Taking into account that for every i ≤ n the subset Bi is not meager in Ki, we

can apply a classical result of Banach [16, §10.V] and find a non-empty open set

Wi ⊂ Ki such that the intersection Wi ∩ Bi is a dense Baire subspace of Wi.

Replacing Wi by a smaller open subset of Wi, we can assume that the set Wi

is bounded in Rn. Replacing Bi by Bi ∩Wi, we can assume that Bi is a dense

Baire space in Wi.

By [12, 8.44], the product
n∏

k=1

Bk of second countable Baire spaces Bk is

Baire. Since
n∏

k=1

Bk ⊂
⋃
i∈ω

Σ−1(Fi), we can apply Baire Theorem and find i ∈ ω

such that the set Σ−1(Fi) ∩
n∏

k=1

Bk has non-empty interior in
n∏

k=1

Bk. Then we

can find non-empty open sets V1 ⊂W1, . . . , Vn ⊂Wn such that
n∏

k=1

(Bk ∩ Vk) ⊂ Σ−1(Fi).
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Since the spaces K1, . . . ,Kn are locally connected, we can additionally assume

that each set Vk is connected and hence has compact connected closure V k

in Rn. The set Σ−1(Fi) is closed and hence contains the closure
n∏

k=1

V k of the

set
n∏

k=1

(Vk ∩Bk) in (Rn)n. Then the set

V 1 + . . .+ V n = Σ

( n∏
k=1

V k

)
⊂ Fi

is nowhere dense in Rn. On the other hand, taking into account that the sets

K1, . . . ,Kn are collectively nowhere flat in Rn, in each set V k we can choose two

points ak, bk such that the vectors b1− a1, . . . , bn− an form a basis of the vector

space Rn. Applying Theorem 2.2, we can conclude that the set V 1+ . . .+V n has

non-empty interior and hence cannot be contained in the nowhere dense set Fi.

This contradiction completes the proof. �

The following corollary of Theorem 3.1 yields the second part of Theorem 1.3.

Corollary 3.2. Let K be a nowhere flat locally connected subset of Rn

and A be a non-meager analytic subspace of K. Then the n-fold sum A+n of A

is a non-meager analytic subset of Rn, the 2n-fold sum A+2n has non-empty

interior and the set (A−A)+n is a neighbourhood of zero in Rn. Moreover, the

set A belongs to the family A(Rn).

Proof. Since the set A is non-meager in K, by [16, §10.V], there exists

a non-empty open set V ⊂ K such that V ∩ A is a dense Baire subspace of V .

Since K is locally connected, we can assume that V is connected and so is its

closure V in K. Replacing K by V and A by A ∩ V , we can assume that A is

a dense Baire subspace of K. By Theorem 3.1, the n-fold sum A+n of A is a non-

meager subset of Rn. The subspace A+n is analytic, being a continuous image

of the analytic space An. Applying Pettis–Piccard Theorem [21, Corollary 5],

[22] (also [13, Theorem 1]), we can conclude that the sum A+n + A+n = A+2n

has non-empty interior and the difference A+n−A+n is a neighbourhood of zero

in Rn. Since A+2n has non-empty interior in Rn, we can apply Theorem 1.1 and

conclude that A ∈ A(Rn). �

Writing down the definition of the class A(Rn) and applying Corollaries 2.5

and 3.2, we obtain the following characterization.

Corollary 3.3. For a mid-convex function f : D → R defined on a non-

empty open convex set D ⊂ Rn, the following conditions are equivalent :

(a) f is continuous;

(b) f is upper bounded on some non-flat continuum K ⊂ D;
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(c) f is upper bounded on some non-meager analytic subspace of a nowhere

flat locally connected subset of D.

Now we present an example showing that the condition of (collective) nowhere

flatness in Corollaries 3.2, 3.3 (and Theorem 3.1) is essential.

Example 3.4. Let

C =

{ ∞∑
n=1

2xn
3n

: (xn)∞n=1 ∈ {0, 1}N
}

be the standard Cantor set in the interval [0, 1]. Let f : C → [0, 1] be the

continuous map assigning to each point
∞∑

n=1
2xn/3

n of the Cantor set C the

real number
∞∑

n=1
xn/2

n. Let f : [0, 1] → [0, 1] be the unique monotone function

extending f . The function f is known as Cantor ladders. It is uniquely defined

by the condition f
−1

(y) = conv(f−1(y)) for y ∈ [0, 1].

Let Γf := {(x, f(x)) : x ∈ C} and Γf :=
{

(x, f(x)) : x ∈ [0, 1]
}

be the graphs

of the functions f and f . The set Γf is nowhere flat and zero-dimensional, and

the set Γf is connected but not nowhere flat in the plane R× R.

It is easy to see that A := Γf \ Γf is an open dense subset of Γf . By

Corollary 2.5 (see also the proof of Theorem 9.5.2 in [14]), the sum S := Γf + Γf

has non-empty interior in the plane R2. On the other hand, the sum A + A is

meager in R2. Moreover, since A + A is contained in the union of countably

many parallel lines in R×R, the Q-linear hull of A has uncountable codimension

in R2, which allows us to construct a discontinuous additive function a : R2 → R
such that a(A) = {0}, witnessing that A /∈ C(R2).
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[23] Ja. Tabor, Jo. Tabor and M. Żo ldak, Approximately convex functions on topological

vector spaces, Publ. Math. Debrecen 77 (2010), 115–123.

Manuscript received May 14, 2018

accepted October 15, 2018

Taras Banakh
Ivan Franko University of Lviv, UKRAINE
and

Jan Kochanowski University in Kielce, POLAND

E-mail address: t.o.banakh@gmail.com
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