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INFINITELY MANY SOLUTIONS
FOR A CLASS OF CRITICAL CHOQUARD EQUATION
WITH ZERO MASS

FASHUN GAO — MINBO YANG
CARLOS ALBERTO SANTOS — JIAZHENG ZHOU

ABSTRACT. In this paper we investigate the following nonlinear Choquard
equation
—Au = (/ M dy)g(x7 u) in RY,
RN |z —y[#
where 0 < u < N, N > 3, g(z,u) is of critical growth in the sense of
the Hardy-Littlewood—-Sobolev inequality and G(z,u) = [ g(x,s)ds. By

applying minimax procedure and perturbation technique, we obtain the
existence of infinitely many solutions.

1. Introduction and main results

The aim of the present paper is to consider the following nonlinear critical
Choquard equation with a subcritical nonlocal term

_Au= ( [ dute) = _Afy<|£y>u<y>|” dy>

(1.1) <6u|2;_2u + ;)\K(m)|u|"_2u) in RV,

12

u € DL2(RN),
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where N > 3, 0 < p < N, max{(2N — pu)/2N,(p —4)/(N —2)} < p < 1,

d, A are two positive parameters and 2, = (2N —p) /(N —2) is the upper critical

exponent in the sense of the Hardy-Littlewood—Sobolev inequality. Concerning

the function K (), we assume 0 < K(z) € L' (RN), where p/ = 2*/(2}, — p),

2* = 2N/(N —2) is the critical exponent for the embedding H*(R") into LI(R™).
The nonlinear Choquard equation

(1.2) —Au+ V(z)u= (2| *|u|*)|ul??u in RY

arises in various domains of mathematical physics such as in the description of the
quantum theory of a polaron at rest by S. Pekar in 1954 [19] and in the modeling
of an electron trapped in its own hole in 1976 in the work of P. Choquard as
a certain approximation to Hartree—Fock theory of one-component plasma [11],
etc. The equation (1.2) is also known as the Schrodinger—Newton equation [20].

Lieb [11] proved the existence and uniqueness, up to translations, of the
ground state for (1.2) with p = 1, ¢ = 2 and V is a positive constant and
Lions [13] showed the existence of a sequence of radially symmetric solutions via
variational methods. Recently, a great deal of mathematical efforts have been
devoted to the study of existence, multiplicity and properties of the solutions of
the nonlinear Choquard equation (1.2). In [6], [15], [16], the authors showed the
regularity, positivity and radial symmetry of the ground states and derived decay
property at infinity as well. We also refer the readers to [1], [2], [5], [18] and [22]
for the existence and concentration behavior of the semiclassical solutions for
the singularly perturbed Choquard equation.

It is necessary to recall the well known Hardy-Littlewood-Sobolev inequality
(see for instance [12]).

ProposITION 1.1 (Hardy-Littlewood—Sobolev inequality). Let t,7 > 1 and
0 < u< N with 1/t +pu/N+1/r =2, f € LY(RY) and h € L"(RY). There
exists a sharp constant C(t N, ,um), independent of f,h, such that

F@hiy)
1.3 / drdy < C(t,N,u,r hlr,
(13) [ (8, N, 1,7 Ll

where | - |, stands for the LY(RN)-norm for q € [1,00]. Ift =r =2N/(2N — p),
then

= L D(N/2 = p/2) fT(N/2) TN
O R R e v S

It is a consequence of Hardy-Littlewood-Sobolev inequality that the integral
NE NE
/ / @MW g forw e HIRY),
Ry Jry T -yl
is well defined if
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Then number (2N — p)/N is called the lower critical exponent and 2, = (2N —
)/ (N — 2) — the upper critical exponent. In [17], Moroz and Van Schaftingen
considered the nonlinear Choquard equation (1.2) in R with lower critical ex-
ponent and obtained existence and nonexistence results if the potential 1 — V'
does not decay to zero at infinity faster than the inverse square of |z|.

In order to study the critical nonlocal equation with upper critical expo-
nent 27, we will use SH,1 to denote the best constant defined by

(1.4) Sur = / vl

ueDlQ(RN N{0} 1/2;,
(Lo [ )
RN JRN |$_ |“

and note that Sy 1, is achieved if and only if

b (N-2)/2
U(ZZ?) :C<b2+ |$_a|2> y

where C' > 0 is a fixed constant, a € RY and b € (0,00) are parameters. More,

5 S
L= C(N, ) N=2)/CN=)’

where S is the best Sobolev constant and C(N, ) is given in Proposition 1.1.
See [8]. In [8], [9] the authors considered the Brézis—Nirenberg type problem

(1.5) —Au= ( Wdy)

| B 227204+ M inQ
Q=Y

and established the existence, multiplicity and nonexistence of solutions for the
nonlinear Choquard equation in bounded domain by perturbation method. In [3],
the authors studied the semiclassical limit problem for the singularly perturbed
Choquard equation in R? and characterized the concentration behavior by vari-
ational methods. Gao and Yang in [10] investigated the existence result for the
strongly indefinite Choquard equation with upper critical exponent in the whole
space. In the present paper we are interested in the existence of infinitely many
solutions.
The main result reads as

THEOREM 1.2. Assume max{(2N — u)/2N,(p—4)/(N —2)} <p <1 and
the Lebesgue measure of {x € RN /K (x) > 0} is positive. Then:

(a) foreachd > 0, there exists A« such that for any A € (0, \.), problem (1.1)
has a sequence of solutions {um,} with Jx (um) < 0 and Jg (uy) — 0 as
m — 0o,

(b) for each A > 0, there exists . such that for any § € (0,0,), problem (1.1)
has a sequence of solutions {un,} with Jx (um) <0 and Jg (um) — 0 as
m — 0.
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To apply variational methods, we introduce the energy functional associated
to equation (1.1)

2
1 (Slu(a) [P+ MK () u()|”) (3luly) > + AK (y)|u(y)[”)
5 fo L

|z — y|~

1
Jr(u) = 7/ |Vul|? dx
RN

dzx dy

and note that it is well defined on D*2(RY) and belongs to C! due to the
assumption on K(z) (0 < K(z) € LP (RM)) and to the Hardy Littlewood—
Sobolev inequality. Thus the weak solutions of (1.1) are precisely the critical
points of the action functional Jx on DV2(RY).

The paper is organized as follows. In Section 2, we introduce a concentration-
compactness principle for nonlocal type problem and prove the (PS) condition.
In Section 3, we prove the existence of infinitely many solutions for (1.1).

2. Variational setting

Throughout this paper we write | - |, for the L¢(R")-norm, ¢q € [1,00], 0 <
< N and N > 3. Different positive constants are denoted by C,Cy,Co, .. ..

Let
1/2
Jul] = ( / |Vu|2dx)
RN

be the standard norm on D*2(R”") and denote by

()P ) >l/<2-2:>
u = — = dxdy .
leclavz </ / o=yl

The following splitting lemma was proved in Lemma 2.2 of [8].

LEMMA 2.1. Let N >3 and 0 < p < N. If {un} is a bounded sequence in
LPN/(N=2)(RN) such that w, — u almost everywhere in RN as n — oo, then

2:2}, 2:2% 2.2*
HunHN[f - ||un - 'LL”NLH — HU‘HNLM as n — oQ.

Since the lack of compactness also occurs when one considers the critical
Choquard equation in unbounded domain, it is quite natural to apply the second
concentration-compactness principle involving convolution type nonlinearities to
overcome the difficulties. A version of the second concentration-compactness
principle for nonlocal convolution case was proved in [7].

LEMMA 2.2 (see [7]). Let {un,} be a bounded sequence in D**(RY) converging
weakly and almost everywhere to some ug, |V, |? — w, |un|>” — ¢ weakly in the
sense of measures, where w and ¢ are bounded non-negative measures on RYN.

Assume that -
L

(L, e oo
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weakly in the sense of measure, where v is a bounded positive measure on RY
and define

Weo 1= lim lim |Vu,|? d,
R—o00n—o00 lz|>R

(oo := lim lim lun|?" da,
R— o0 n—o0 lz|>R

2% )
Voo := lim lim </ |un(y)}dy)|un(x)|2u dx.
R— 00 n—o0 |z|>R RN |$_y|u
Then, there exists a countable sequence of points {z;}icr C RN and families of
positive numbers {v; 11 € I}, {¢; 14 € I} and {w; : i € I} such that

2. . .
(21) V= (/ F;O(y:)ylu dy) |UO(.’I}) 2 + Zyi62i7 Zyil/%L < 00,
RN -

icl iel

(22) w2 Vol + 3 wid,,

iel
(2.3) ¢>Juol” +) G,

iel
and
(2.4) SH7LV¢1/2; < w;, p N < O(N, )N/ BN,
where &, is the Dirac-mass of mass 1 concentrated at x € RY. Furthermore, we
have

T [t ()" 1 () [
(2.5) hmn_)oo/ / dydr =ve + dv
RN JRN |z — y[~ RN
and
C(N, M)—ZN/(QN—/L)VEON/(QN—#) < Coo(/ d¢ + Coo)v

(2.6) BT

RN

Moreover, if ug = 0 and f]RN dw = SH,L(fRN dz/)l/Qz, then v is concentrated at
a single point.

Let us show the following lemma.

LEMMA 2.3. Suppose that max{(2N — u)/2N,(u —4)/(N —2)} < p < 1,

then:

(a) for each fived § > 0 and c < 0, there exists A > 0 such that for any (PS).-
sequence {u,} contains a convergent subsequence for each A € (0, )
given,

(b) for each fized X > 0 and ¢ < 0, there exists 6 > 0 such that any (PS).-
sequence {u,} has a convergent subsequence for each § € (0,8) given.
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ProOOF. Let {u,} be a (PS).-sequence, i.e. Jx(u,) — ¢ and
sup {|(Jic (un), @)| - ¢ € B, [l =1} — 0
as n — +oo. Then there exists a C; > 0 such that
[Tk (un)| < C1 - and - [(Ji (un), un/[Junl}] < Cy

for all n large. Since (u—4)/(N —2) < p <1, we have p+2j, > 2. So, we obtain

1

Cr(1 + flunll) = Tk (un) — m(«]}((un),um

1 1
= ( - *)|un”2
2 p+2

2;, 2;,
+( 11 )/ / S| ()78 |un (y)] dax dy
p+2, 2-25) Jan Jan |z — y|#

1 (1‘pip2;> [ [ K@ r , ,

2.2, jz —y|*

1 1 1 2
> (5= Ml — 5 (1= o )N K2
2 p+2 225 P+ 2
1 1 1 2p
> = — un||? — 1-— NIK % Csllun||??
(5 55 ) Ioel? = gz (1= e )UK ol

which implies that {u,} is bounded in D*2(RY).
Since DV2(RY) is reflexive, up to a subsequence, we may assume that there
exists u € DV2(RY) such that u,, — u in DY2(RY), u,, — u almost everywhere

2;/

2p
2*

in RY, |Vu,|? converges weakly to some nonnegative measure w, ([ [tn(y)
|z — | dy)|un (2)|? converges weakly to some nonnegative measure v.

Let z; be a singular point of measure w and v. By taking a function
¢ € C(RYM,[0,1]) such that ¢(z) = 1 in B, (), ¢(z) = 0 in RN \ B, (2¢),
|V¢| < C/e in RN, we infer that {¢u,} is bounded in DV2(RY). Evidently,
(J5 (up,), puyn) — 0, ie.

O<—<J}{(un),und))=/ |vun\2¢dx+/ Uy, Vu, Vo da
RN RN

_ / / L (Olun () P+ AR (@) () )
RN JRN

|z — y[»

< (Bl 000) + ZAK G n ()P60) ) oy

as n — oQ.
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Applying Holder’s inequality, we have, as ¢ — 07,

0 < limsup / Up Vu, Vo dz
n—00 RN

1/2 1/2
< lim sup (/ |V, |2 dx> (/ un|? V|2 dz)
n—o0o RN RN
(N—2)/2N 1/N
< c( / Ju[2N/ (N =2) dm) < / IWSINdw)
B, (2¢) B, (2¢)

(N—-2)/2N
< C(/ |u| 2N/ (N=2) d:v)
Bzi(2s)

where we used the fact that |V¢| < C/e and the sequence u, is bounded. It
follows from the Holder inequality and the Sobolev inequality that

o/2"
[l < B oot ( [l dw)
2, (2¢) B, (2¢)

/2
< C|B..(2¢)" 712 (/B (2)Vun|2d:c) — o(1)

— 0,

as € — 07 holds for all o € [0,2%). Hence, by the Hardy-Littlewood—Sobolev’s
inequality, there holds

[ [ @KW g, g
RN JRN |z — yl~ 7
K(x

/ @) K@l @) 6) 00 oo
RN JRN |z —y|~ ,
/ K@)l @) Pln ) 560) 30 )

RN JRN |$ — y|# ’

as € — 0. Therefore,

8luy, 2
J;((un),ungb):/ V|2 dac— /RN/RN [un(@ |x_y|(u) YY) 4 dy to(1),

that is

¢ dw — §° pdv+o(l)=0
RN RN

as n — oo. Let € — 0, we obtain w; — §?v; = 0. Hence, it follows from (2.4) in
Lemma 2.2 that either

(i) v; =0or

(i) v; > (5*2SHL)(2N*N)/(N*M+2).

To examine a possible concentration of the sequence {u,} at infinity, we
define ¢ € C5°(RY,[0,1]) such that

¢r=0 onlz|]<R and ¢r=1 on|z|>R+1
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Since {u,¢r} is bounded in DV2(RY), we have (J5 (un), undr) — 0, i.e.

— (T (), undr) = / |Vun| oRr dac—f—/ upVu,Vor dx

[ ] e Gl @+ AR @l @)
RN JRN |33 y|
(Bl 0% o) + ZN G ()P () ) s

"
Arguing as above, we have wo, — 62v5 = 0. Again, by (2.6) in Lemma 2.2, we

know

S?{Lugf“ <w ( dw—i—woo),
; .

1 2/2;, 1/2
woo>(<</ dw> +4SHL ) —/ dw)
2 RN RN

and so, we get either

i.e.

(iil) voo = 0; or

(iv) 6*ve + 02 / dw > 8% =D/ @N=w)
RN '
Now we claim both (ii) and (iv) can not occur, if d, A are chosen properly. In

fact, from the weak lower semicontinuity of Jx, we obtain
5 ielun). )|
— Up, ), Up
p+2;, "
. 1 1 9
= Jim. [(2 —p”*)nunn
n / / 8t ()25 8|y, (y) |4 ddy
+2* 2 2 RN JRN |$—y|ﬂ
AK ()|t () |PAK (W)|P
(-5 [ e )
2'2# p+2 RN JRN |x—y|“
. 1 1 1 2p )
! 5~ 5 ) luall* = 1- N2 |K 2 un |3
1 1 1 2p
(5= lul*- 1- MK 2,
(5573 2,22( p%) K2

1 1 1 2
> ( *)Su@* *(1 p*)AﬂKp uf22,
2 p—|—2u 2-2M p+2

n
9« < CAY(=P) Hence

U)o

n— oo

0>c= lim {JK(un) -

Y%

which implies |u

0>c= lim [JK(un) -

n—oo

p+2;

11 1 2
> lim <— >/ Vun| 205 dz — (1— P >A2K|p,
n—oo \ 2 p—I—QZ RN 2'22 p+2;;
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> (1 — 1)woo — O)2p/(1-p)

SN N /dw 4482 2 1/2—/ dw | — O\P/(=P)
- 2 p-i-QZ 2 RN 2L RN ’

Combining this with (iv), for a given A > 0 given, we obtain & > 0 such that

for every 0 < § < 0 the last term on the right-hand side above is greater than
0, which is a contradiction. Similarly, for each § fixed, there exists a A so small
that for every 0 < A < X the last term on the right-hand side above is greater
than 0 as well, thus we have v, = 0. Arguing with a similar process, we can
prove v; =0, i € I.

Now, applying Lemma 2.2 again, we have

2 un(y) (v) 2

hm//‘“" d:cdf// TENTRIN T g dy
n—oo Jpn JgN |z —y|~ RN JRN |5U—?J|“

and we can deduce from Lemma 2.1 that
2,

. [(un — ) (@) P4 (wn — ) @)%
(2.7 nhHII;O /RN /]RN Py dxdy = 0.

Now we are ready to prove that u, — u strongly in D%2(RY). Notice that
(Jie (un) — Jie (), — )
:/ IV (n, — u)|? dz

2*

/ / (52|u U (y )|2*_2un(y)(un_u)(y) da dy
RN JRN |z — yl~

[ [ B B 0 =00,
RN JRN \x—y\“
[ [ AR Gl i~ )
RN JRN |z — yl~

// N2 K () [un () [P (p/27) K () [un (1) P21 () (un — u)(y)
RN JRN

dx dy
|z —y[*

o[ [ B = ),
RN JRN |z — yl~

Slu(a) 2 (p/2,) MK () [u(y) [P~ 2u(y) (un — u)(y)
+/RN/RN |z — y\“

///\K @) |u(@)[PS|u(y) >~ ()(Un_“)(y)da:dy
RN JRN

|z — yl~

dx dy

o] [ RO/ EE D~ g
RN JRN ’

|z —y|»
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On one hand, from the fact that {u,} is bounded in L?" (R") we have
|un|2z N |u|2; in L2N/(2N7u)(RN)

as n — 4o00. By the Hardy-Littlewood—Sobolev inequality, the Riesz potential
defines a linear continuous map from L2N/GN=t)(RN) to L2N/#(RN), we know
that

o* 9%

as n — +00. Combining this with the fact that
|un|2;—2un N |u|2;—2u in L2N/(N—u+2)(RN)

as n — +00, we have

|un (y)] > 2* R 2% 2
BN |(E—y‘“ y|un( ) » un |x—y\“ U(.Z‘)|i u(a:)

in L2NV/(NF2)(RN) as n — 4-o00. Since (2.7), we get

2% —2

/ / [ ()% [t () P~ () (. — 0) () drdy — 0
. | — y|# .

Similarly, we have

/ / |t ()| K () [ () [P~ () (. — ) (y) dz dy — 0
RN JRN |z —y|~ ’
/ K (@) ()P [t (1) P2~ (y) (. — ) (y) dzdy — 0

RN JRN |z — yl|~ ,

/ K (@) [un (2)[PK (y) [un () [P~ un (y) (un —u)(y) dedy 0
RN JRN |z — gy~ 7

[ [, M o= ) 1,
RN JRN |z —yl* |

/ / Ju(@) e K (y)[u(y) P~ *u(y) (u, — u)(y) drdy — 0
RN JRN |

\:v—yl“
[ [ B )0 =00 g,
RN JRN |z — yl|~ ,
[ [ RO K i = D) 1,
RN JRN |z —y|~

Since Jj(un,) — 0 and w, — u, we have (Jj (un) — Jp(u),un — u) — 0, as
n — oo, that is

/ IV(uy, —u)|?de —0 as n— oo. O
RN
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3. Infinitely many solutions for problem (1.1)

In this section we will use minimax procedure and perturbation technique
to prove the existence of infinitely many solutions of problem (1.1). Let X be
a Banach space and ¥ = {4 C X \ {0}, A is closed in X and symmetric with
respect to the orgin}. For A € ¥, we define the genus v as

Y(A) :=inf{m e N:Jp € C(A,R™\ {0}), —p(x) = p(—x)}.

If there is no mapping ¢ as above for any m € N, then y(A) := +oo. For future
use, we list some properties of the genus firstly.

PROPOSITION 3.1 (see [21]). Let A,B € X. Then:

(a) if there exists an odd map f € C(A,B), then v(A) < ~(B),

(b) if A C B then 4(A) < ~(B),

(c) 7(AUB) < ~(4) +7(B),

(d) if S is a sphere centered at the origin in R™, then v(S) = m,

(e) if A is compact, then v(A) < 400 and there exists 6 > 0 such that
Ns(A) € ¥ and v(A) = v(Ns(A)), where Ns(A)={x € X : |[x—A| < d}.

The technique has been used in [4], [14]. Applying Sobolev inequality and
the Hardnyittlewoodfsobolev inequality, we have
1

JK<u>=§/RN|Vu| do— oo 5 /RN/RWW lu(x)[?
% (8lu(y) % + AK () lu(y)P?) do dy

b AK (2)|u(2) )

1 .
> 5 llull® = 8 Caljul** = X*Caul].

Given 0 > 0, set t = |Ju||. So,
1 * 1 .
Jre(u) > Q(t) == 5752—5201752‘% —\2Cot?P = 7P (2t2—2p—5201t2‘2r2p—/\202>

and so there exists A\, < X so small that for every A € (0, ), there exit 0 <
Ry < Ry such that Q(t) < 0for 0 <t < Ry, Q(t) >0 for Ry <t < Ry, Q(t) <0
for t > R;. Clearly, Q(Rp) = Q(R1) = 0.

Now, let x: RT — [0,1] be a nonincreasing C* function such that x(¢) = 1
ift < Ry and x(t) =0if ¢ > Ry. Let define ¢(u) = x(|lul|) and consider the
perturbation of Jx (u) given by

1 9 82 |u(x) |2 [u(y)| >
J(u)—2/N|Vu|dx—22* /RN/RN |m_y|u dz dy

_ 1 Slu(z) | AK (y)|u(y)[?
(b /RN /]RN Iw*yl“ der dy

NE () |u(@) [P K (y)u(y)[”

RN \33 -y~

dz dy.

22RN
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Similarly, for each A > 0, we can find d, > 0, Ry, Ry as above for each 0 < § < 4,
and define the perturbation of Jg (u) as well.
From Lemma 2.3 and the discussion above, we have the following:

LEMMA 3.2. If J(u) is defined as above, then:

(a) J € CYHDM2(RN),R), J is even and bounded from below.

(b) If J(u) <0, then we have either ||u|| < Ro or ||u|| > Ry. Furthermore,
Ji(u) = J(u) if |ul < Ro.

(¢c) for any fixed 0 there exists Ay such that for any X € (0,\,), J satisfies
a (PS) condition at ¢ < 0.

(d) for any fized X there exists 0, such that for any 6 € (0,04), J satisfies
a (PS) condition at ¢ < 0.

PROOF. It is easy to see (a) and (b). Conditiona (c) and (d) are consequences
of (b) and Lemma 2.3. O

PROPOSITION 3.3. Denote by J¢ = {u € DV2(RN)/J(u) < c¢}. Then, for
any k € N, there exists o(k) > 0 such that v(J~7®)) > k.

PROOF. Firstly, given k € N, let Ej, be a k-dimensional subspace of D1:2(RY).
From the assumption on K (x), there exist dy > 0 such that

K PK p
we [ [ EOMOPEOMG 4y, g,
u€Ey, ||ul|=1 JrNy JrN |S€ — y|“

So, by using this information, the Hardy—Littlewood—Sobolev and Hoélder’s in-
equalities, we have

2 2
p 0% |u
J(pu) = Jk(pu) = ?/R \Vu|2dxf 27 /RN /]RN | |x—y|l§ w) dx dy

2 +p/ / (S|’LL |2”>‘K( )|u(y)‘p dCCdy
RN JRN \:c—y|“

2 P p
RE@WE@PK@uP ,
RN |91j —yl»

2 25

RN
< % — 62p% 20y — N2Chdip® < —a(k) < 0
for each p < Ry small enough (see definition of ¢(u)) and |ju|| = 1. That is,
{u€ By, |lul = p} € {u € DY3(RY), J(u) < —o(k)}.
and consequently, we have v(J 7)) > k. O
REMARK 3.4. By Lemma 3.2 and Proposition 3.3 we can define
Iy ={AeX:y(A) =k}
and let ¢, = Ainf sup J(u). It is obvious that —co < ¢, < —a(k), since J~7*) €

€Tr uea
I'; and J is bounded from below.
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PROPOSITION 3.5. Let 6, A be as in (c) and (d) of Lemma 3.2. Then all ¢y,
giwen by Remark 3.4 are critical values of J, and ¢, — 0.

PrOOF. It is clear that ¢, < ¢py1,6m < 0, hence ¢,, — ¢ < 0. Moreover,
since all ¢, are critical values of J, (refer to [21]), we claim ¢ = 0. If € < 0, then
Kz ={J'(u) =0,J(u) = ¢} is compact and Kz € X. Hence v(Kz) = mo < o0,
and there exists o > 0, such that v(Kz) = v(N,(Kz)) = mg. By the deformation
lemma, there exists € > 0 such that ¢+ ¢ < 0 and an odd homeomorphism
n: DY2(RN) — DV2(RYN) such that n(JH¢ \ N, (Kz)) C J°°.

Since ¢, is increasing and converges to ¢, there exists m € N such that
Cm > C—€ and Cp4m, < €, and thereis A € T'p, 44, such that sup,c 4 J(u) < ¢+,
i.e. AC J°<. Now it follows from the properties of the genus,

V(AN Ny (Kz)) = 7(A) = v(No(Ke)) = m,
hence v(A \ N,(Kz)) > m, and therefore n(A \ N,(Kz)) € I';,. Consequently

sup Jw) >y >c—¢
u€n(A\N, (Kz))

but, by on the other hand, we have
N(A\ No(Kz)) € n(J°"\ No(Ke)) € J°%,
which is a contradiction. O

ProoF orF THEOREM 1.2. Now, by Lemma 3.2, Remark 3.4 and Proposi-
tion 3.5, it is easy to prove Theorem 1.2. O
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