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TWO HOMOCLINIC ORBITS

FOR SOME SECOND-ORDER HAMILTONIAN SYSTEMS

Patricio Cerda — Luiz F.O. Faria

Eduard Toon — Pedro Ubilla

Abstract. This paper is concerned with the existence of homoclinic orbits

for a class of second order Hamiltonian systems considering a non-periodic
potential and a weaker Ambrosetti–Rabinowitz condition. By considering

an auxiliary problem, we show the existence of two different approximative

sequences of periodic solutions, the first one of mountain pass type and the
second one of local minima. We obtain two different homoclinic orbits by

passing to the limit in such sequences. As a relevant application, we obtain

another homoclinic solution for the Hamiltonian system studied in [5].

1. Introduction

The complex dynamical behavior of Hamiltonian systems has attracted math-

ematicians and physicists ever since Newton wrote the differential equations de-

scribing planetary motions and derived Kepler’s ellipses as solutions.

It is well known that the existence of homoclinic solutions for Hamiltonian

systems and their importance in the study of the behavior of dynamical systems
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have been recognized by Poincaré [7]. In addition, homoclinic solutions may give

the horseshoe chaos (see, for instance, [9] and the references therein).

A lot of attention has been devoted in the past twenty five years to finding

the existence and multiplicity of homoclinic solutions of Hamiltonian systems.

We would like to cite [3], [5], [6], [8], [1], [10] and the references therein.

In 1990, Rabinowitz [8] obtained the existence of one homoclinic orbit of the

nonautonomous Hamiltonian system

ü+Hu(t, u) = 0 ,

where the potential H is given by

H(t, u) = −1

2
(L(t)u, u) +M(t, u),

where L is a continuous T -periodic matrix valued function such that L(t) is

positive definite and symmetric for all t ∈ [0, T ], and M satisfies:

(H̃) Mu(t, u) = o(|u|), as |u| → 0 uniformly with respect to t,

(AR) there is a constant µ > 2 such that, for every t ∈ R and u ∈ Rn \ {0},

0 < µM(t, u) ≤ 〈u,Mu(t, u)〉.

Rabinowitz obtained the existence of one homoclinic orbit, where the main

key is to construct a sequence of periodic auxiliary systems to approximate the

Hamiltonian system, by applying the Mountain Pass Theorem to obtain periodic

solutions. Therefore, the homoclinic solution is obtained as the limit of those

periodic solutions.

In 2005, Izydorek and Janczewska [5] considered the system studied by Ra-

binowitz in [8], perturbing it with a bounded time dependent force f(t), i.e.

ü+Hu(t, u) = f(t)

where f : R → Rn is a continuous bounded function such that its norm in L2

space is small enough (can be considered f ≡ 0). Using the same ideas of [8],

with the additional complication that f is not periodic, the authors prove the

existence of a homoclinic orbit for the perturbed problem.

Our study is motivated in part by the work of Izydorek and Janczewska [5].

First we observed that by using their hypotheses, we were able to obtain a second

homoclinic orbit by minimization techniques. This motivated us to determine the

class of non-periodic potentials for which it is possible to obtain two nontrivial

homoclinic orbits. More precisely, in this paper we concentrate on the existence

of two nontrivial homoclinic orbits for a class of second order systems of the

form:

(P) ü+ Vu(t, u) = 0,

where t ∈ R, u ∈ Rn, and the function V : R× Rn → R satisfies:



Two Homoclinic Orbits for Some Second-Order Hamiltonian Systems 429

(H1) V (t, u) = −K(t, u) + W (t, u) where K,W : R × Rn → R are C1-maps,

W (t, 0) = 0 and K(t, 0) = 0 for all t ∈ R.

(H2) There exists a constant b1 > 0 such that for all (t, u) ∈ R× Rn,

b1|u|2 ≤ K(t, u) and |Ku(t, u)| ≤ 2b1|u|.

(H3) For all (t, u) ∈ R× Rn, K(t, u) ≤ 〈u,Ku(t, u)〉.
(H4) Given M > 0, there is a CM > 0 such that |Wu(t, u)| ≤ CM for all t ∈ R

and for all |u| ≤M .

(H5) There exist constants 0 ≤ q < 1, 1 < r < 2/(1 − q), u1, τ1, c0 > 0,

a continuous function b ∈ Lr(R), bounded and not identically null, and

a non-decreasing continuous function F : R → [0,+∞), F (|u|) = o(|u|),
as |u| → 0, such that

|Wu(t, u)| ≤ F (|u|) + λb(t)|u|q, for all |u| ≤ u1 and for all t ∈ R,

and λc0|u|q+1 ≤W (t, u), for all |u| ≤ u1 and for all |t| < τ1, where λ > 0

is a real parameter.

(AR)l There exist constants µ > 2, u0 > 0 and τ0 > 0, such that W (t, u) > 0

for all |t| ≤ τ0 and for all |u| ≥ u0; and

〈Wu(t, u), u〉 − µW (t, u) ≥ 0, for all |u| ≥ u0 and for all t ∈ R,

and there exists a function g ∈ L1(R), such that

〈Wu(t, u), u〉 − µW (t, u) ≥ g(t), for all |u| < u0 and for all t ∈ R.

The contribution of this paper is to obtain two homoclinic orbits for a more

general class of nonlinearities considering a weaker Ambrosetti-Rabinowitz con-

dition (AR)l.

Remark 1.1. In our equation we can consider a function

W (t, u) = a(t)G(u) + F (t, u)

where G satisfies (AR) and the bounded non-null function a ≥ 0 verifying

|{t ∈ R; a(t) = 0}| > 0. Notice that the functions a and F might not to be

periodic. We can also consider

W (t, u) = M(t, u) + F (t, u),

where M as in [5] and

F (t, u) = |u(t)|q〈f(t), u(t)〉,

where f ∈ Lr(R,Rn) is bounded and not identically null, whose the particular

case (q = 0) was studied in [5]. In such a case, as observed by Izydorek and

Janczewska, u(t) = 0 is a solution of (P) only if f(t) = 0. For more details and

more examples, see Section 6.
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To the best of our knowledge, the hypotheses considered in the present paper

are not found in previous literature. In this sense, we understand that this paper

contributes to the study of this class of problems both in the results and the

hypothesis. The lack of periodicity on the potential V resulted on technical

issues that we were able to solve.

Here and subsequently, we consider 〈 · , · 〉 and | · | the standard inner product

and norm on Rn, respectively. By a nontrivial homoclinic solution (to 0) of (P),

we consider a orbit which connects the same equilibria 0. More precisely, we

mean u : R→ Rn satisfying:

(i) u ∈ C2(Rn,R);

(ii) u 6≡ 0, which solves (P);

(iii) u(t)→ 0, u̇(t)→ 0, as t→ ±∞.

We state that our main result concerning (P) is the following:

Theorem 1.2. Assuming conditions (H1)–(H4) and (AR)l, there exists Λ>0

such that if (H5) holds for all λ ∈ (0,Λ), then problem (P) possesses at least two

nontrivial homoclinic orbits.

Remark 1.3. Notice that one can consider (ÃR)l instead of hypothesis (AR)l
considered above, where (ÃR)l is given by: there exist constants µ > 2, u0 > 0

and a, b ∈ R, such that W (t, u) > 0 for all t ∈ [a, b] and for all |u| ≥ u0; and

〈Wu(t, u), u〉 − µW (t, u) ≥ 0, for all |u| ≥ u0 and for all t ∈ R,

and there exists a function g ∈ L1(R), such that

〈Wu(t, u), u〉 − µW (t, u) ≥ g(t), for all |u| < u0 and for all t ∈ R.

In the proof of Theorem 1.2, the first homoclinic orbit is obtained as a limit

of a certain sequence of functions and using the Mountain Pass Theorem. It

is important to note that, under these hypotheses, u = (0, . . . , 0) ∈ Rn can be

a trivial solution of the system (P ), which means that we can not directly use

calculations of [5] to obtain the first homoclinic orbits. The second homoclinic

orbits is obtained as a limit of a certain sequence of functions and by minimiza-

tion methods into a small ball.

Remark 1.4. According to Remark 1.1, Theorem 1.2 establishes another

homoclinic orbit for the problem treated in [5].

The paper is organized as follows. In Section 2, we gather the most relevant

notations and known results we will use. In Section 3, we prove the existence

of 2kT -periodic solutions of an auxiliary system by using the Mountain Pass

Theorem. In Section 4, we obtain the existence of 2kT -periodic solutions of

an auxiliary system through local minimization. In Section 5, we prove the
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Theorem 1.2. These are the main results of this work. Finally, in Section 6, we

show some applications of our results.

2. Preliminary results

For each k ∈ N, let Ek := W 1,2
2kT (R,Rn) the Hilbert space of 2kT -periodic

functions on R with values in Rn under the product and norm are given, respec-

tively, by

〈u, v〉Ek :=

∫ kT

−kT
[〈u̇(t), v̇(t)〉+ 〈u(t), v(t)〉] dt, ‖u‖Ek := 〈u, u〉1/2Ek

.

Remark 2.1. Notice that by (H1) and (H2), and using the Mean Value

Theorem, we have

b1|u|2 ≤ K(t, u) ≤ 2b1|u|2 for all (t, u) ∈ R× Rn.

By Remark 2.1, there exist b1, b2 such that

(2.1) b1‖u‖2Ek ≤
∫ kT

−kT

[
|u̇(t)|2 + 2K(t, u(t))

]
dt ≤ b2‖u‖2Ek .

Remark 2.2. By hypothesis (H2), we have 〈Ku(t, u), u〉 ≤ 2K(t, u).

Let L∞2kT (R,Rn) denote the space of 2kT -periodic essentially bounded (mea-

surable) functions from R into Rn equipped with the norm

‖u‖L∞2kT := ess sup{|u(t)| : t ∈ [−kT, kT ]}.

We set ‖ · ‖∞ := ‖ · ‖L∞(R), where

‖u‖L∞(R) := ess sup{|u(t)| : t ∈ R}.

Let Lθ2kT (R,Rn), θ > 1, denote the Lebesgue space of 2kT -periodic (measur-

able) functions from R into Rn equipped with the norm

‖u‖Lθ2kT :=

(∫ kT

kT

|u(t)|θ dt
)1/θ

.

Remark 2.3. If u : R → Rn, then u ∈ Ek if and only if u is an absolutely

continuous function, u(−kT ) = u(kT ) and u̇ ∈ L2([−kT, kT ],Rn).

Remark 2.4. Notice that φ(η) = W (t, ηu) is a continuous function on the

closed interval [0, 1], and differentiable on the open interval (0, 1), then by mean

value theorem there exists ξ ∈ (0, 1) such that W (t, u) = 〈Wu(t, ξu), u〉, and so

by hypotheses (H1) and (H5), we have that:

(2.2) |W (t, u)| ≤ G(|u|) + λb(t)|u|q+1, if |u| ≤ u1 and for al t ∈ R,

where G(|u|) = F (|u|)|u|.

The following result is a direct consequence of the estimations made by Ra-

binowitz in [8].
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Proposition 2.5. There is a positive constant C (independent of k ∈ N)

such that for each k ∈ N and u ∈ Ek the following inequality holds:

(2.3) ‖u‖L∞2kT ≤ C‖u‖Ek .

The following lemma will be essential to our purposes. For a proof of the

result, see [5, Fact 2.8].

Lemma 2.6. Let u : R → Rn be a continuous mapping such that u̇ ∈
L2

loc(R,Rn). For every t ∈ R, the following inequality holds

|u(t)| ≤
√

2

(∫ t+1/2

t−1/2

(
|u(s)|2 + |u̇(s)|2

)
ds

)1/2

.

Now, consider the following sequence of Hamiltonian systems:

(Pk) ü+ V ku (t, u) = 0,

where, for each k ∈ N, V ku : Rn+1 → Rn and V k : Rn+1 → R are, respectively,

2kT -periodic extensions of the restriction of Vu(t, u) and V (t, u) to the interval

[−kT, kT ) in the variable t.

Definition 2.7. By a non-trivial periodic solution of (Pk), we consider

uk : R→ Rn satisfying:

(a) uk ∈ C1
(
[−kT, kT ],Rn

)
∩ C2

(
(−kT, kT ),Rn

)
;

(b) ü+ V ku (t, u) = 0, for all t ∈ (−kT, kT );

(c) uk(−kT )− uk(kT ) = u̇k(−kT )− u̇k(kT ) = 0.

Let Ik,λ : Ek → R be the associated functional defined by

(2.4) Ik,λ(u) =

∫ kT

−kT

[
1

2
|u̇(t)|2 − V k(t, u(t))

]
dt.

Then, Ik,λ ∈ C1(Ek,R) and it is easy to verify that

(2.5) I
′

k,λ(u)v =

∫ kT

−kT

[
〈u̇(t), v̇(t)〉 − 〈V ku (t, u(t)), v(t)〉

]
dt.

The following lemma characterizes the functions that belong to the space Ek
using its Fourier series (see [4]).

Lemma 2.8. If u ∈ L2
2kT (R,Rn) and

u(t) = c0 +

∞∑
n=1

[
cn cos

(
πnt

kT

)
+ bn sin

(
πnt

kT

)]
is its associated Fourier series, then u ∈ Ek if and only if

∞∑
n=1

n2
(
|cn|2 + |bn|2

)
<∞.
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The following result will be essential to our purposes. It says that if a function

u belongs to the space Ek is a critical point of the functional (2.4), then u is

a solution of (Pk).

Lemma 2.9. If u ∈ Ek is such that I ′k,λ(u) = 0, then u is a solution of (Pk).

Proof. We assume u ∈ Ek is a critical point of Ik,λ, then by (2.5) we have

(2.6)

∫ kT

−kT
u̇ḣ dt−

∫ kT

−kT
Vu(t, u(t))h(t) dt = 0, for all h ∈ Ek.

Let us suppose that the Fourier series of u is given by

u(t) = c0 +

∞∑
n=1

[
cn cos

(
πnt

kT

)
+ bn sin

(
πnt

kT

)]
,

and that the series of Vu(t, u(t)) is given by

Vu(t, u(t)) = c̃0 +

∞∑
n=1

[
c̃n cos

(
πnt

kT

)
+ b̃n sin

(
πnt

kT

)]
.

Applying (2.6) with h equal to the basic functions cos(πnt/kT ), sin(πnt/kT )

and 1, we obtain

b̃n =

(
πn

kT

)2

bn, c̃n =

(
πn

kT

)2

cn and c̃0 = 0.

By Lemma 2.8, we have u̇ ∈ Ek and, hence, u ∈ C1
(
[−kT, kT ],Rn

)
and ü ∈

L2
2kT (R,Rn). Then, integrating by parts in (2.6) we obtain∫ kT

−kT
(ü+ Vu(t, u))h(t) dt = 0, for all h ∈ Ek,

from where we conclude

ü+ Vu(t, u) = 0 for all t ∈ (−kT, kT ).

Notice that the second term in the left side is continuous so that

u ∈ C2((−kT, kT ),Rn). �

The next lemma is concerned with an important property of the function

W (t, u). We borrow some ideas from [5], [8], however, we consider hypothesis

(AR)l instead of the classical (AR).

Lemma 2.10. Suppose that (AR)l is satisfied. Then, there exists a1 > 0 such

that for all |t| < τ0 and for all |u| ≥ u0

(2.7) W (t, u) ≥ a1|u|µ.

Proof. By using (AR)l, notice that for every |u| > u0 and |t| < τ0 the

function ψ : (0, |u|/u0] → R, given by ψ(τ) = W (t, τ−1u)τµ, is non-increasing.

Therefore, we can chose a1 > 0 verifying (2.7) by the continuity of W . �
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The following lemma provides the energy of a solution obtained by the Moun-

tain Pass Theorem (see Section 3).

Lemma 2.11. Assume (H1), (H2), (H5) and let γ ∈ (0, 1). There exists

Λ > 0, such that for each λ ∈ (0,Λ), one can find explicitly αλ > 0 such that

Ik,λ(u) > αλ,

for all u ∈ χ(λγ) = {u ∈ Ek : ‖u‖Ek = λγ}.

Proof. Let ζ > 0, by (H5) there exists λ > 0 sufficiently small, such that if

u ∈ χ(λγ) then F (|u|) < ζ|u|. By (H1), (H2) and (H5), we have

Ik,λ(u) ≥ b1
2
‖u‖2Ek −

∫ kT

−kT

∣∣W k(t, u)
∣∣ dt

≥ b1
2
‖u‖2Ek −

∫ kT

−kT
G(|u(t)|) dt− λ

∫ kT

−kT
b(t)|u(t)|q+1 dt

≥
(
b1
2
− ζ
)
‖u‖2Ek − λc1‖u‖

q+1
Ek

,

where c1 > 0. Since ‖u‖Ek = λγ ,

Ik,λ(u) ≥
(
b1
2
− ζ
)
λ2γ − c1λγ(q+1)+1.

Notice that γ ∈ (0, 1) implies 2γ < γ(q + 1) + 1. Therefore, if ζ > 0 such that

b1/2− ζ > 0, we have(
b1
2
− ζ
)
λ2γ − c1λγ(q+1)+1 := αλ > 0,

for λ ∈ (0,Λ), where Λ is small enough. Hence, we obtain

Ik,λ(u) ≥ αλ, for all ‖u‖Ek = λγ

and the result is proved. �

3. Mountain Pass solution

In this section, we are concerned with obtaining 2kT -periodic solutions of

the system (Pk), for each k ∈ N. More precisely, we have the following theorem.

Theorem 3.1. Assume that conditions (H1)–(H3) and (AR)l are satisfied.

For every k ∈ N, there exists Λ > 0 such that for each λ ∈ (0,Λ) system

(Pk) possesses a non-trivial 2kT -periodic solution, denoted by u1,k, such that

Ik,λ(u1,k) > 0.

We obtain a critical point of Ik,λ by the use of a standard version of the

Mountain Pass Theorem (see [2]). In addition, we notice that such result provides

a minimax characterization for the critical value. For this reason, we state this

theorem.
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Theorem 3.2 (see [2]). Let X be a real Banach space and I : X → R be

a C1-smooth functional. If I satisfies the following conditions:

(a) I(0) = 0,

(b) every sequence {uj}j∈N in X such that {I(uj)}j∈N is bounded in R and

I ′(uj) → 0 in X∗, as j → +∞, contains a convergent subsequence (the

Palais–Smale condition),

(c) there exists constants δ, α > 0 such that I|∂Bδ(0) ≥ α,

(d) there exists e ∈ X \Bδ(0) such that I(e) ≤ 0,

where Bδ(0) is an open ball in X of radius δ centered at 0, then I possesses a

critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = e}.

Proof of Theorem 3.1. From now on, we assume 0 < Λ < 1. Clearly

Ik,λ(0) = 0. We show that Ik,λ satisfies the Palais–Smale condition. Sup-

pose that {uj}j∈N in Ek is a sequence such that {Ik,λ(uj)}j∈N is bounded and

I ′k,λ(uj) → 0 as j → +∞. Then, there exists a constant Ck > 0 such that, for

every j ∈ N,

(3.1) |Ik,λ(uj)| ≤ Ck, ‖I ′k,λ(uj)‖E∗k ≤ Ck.

We first prove that {uj}j∈N is bounded. Notice that

Ik,λ(uj)−
1

µ
I ′k,λ(uj)uj ≥ b1

(
1

2
− 1

µ

)
‖uj‖2Ek

+
1

µ

∫ kT

−kT

[
〈W k

u (t, uj(t)), uj(t)〉 − µW k(t, uj(t))
]
dt

By (AR)l we have∫ kT

−kT

[
〈W k

u (t, uj(t)), uj(t)〉 − µW k(t, uj(t))
]
dt ≥ A,

where A is a constant that does not depend on j. Thus

(3.2) b1

(
1

2
− 1

µ

)
‖uj‖2Ek ≤ Ck‖uj‖Ek +Dk,

where Dk is a constant. Since µ > 2, there exists a constant Ĉk > 0 that does

not depend on λ, such that

(3.3) ‖uj‖Ek < Ĉk,

which shows that {uj}j∈N is bounded in Ek. Going if necessary to a subsequence,

we can assume that there exists u ∈ Ek such that uj ⇀ u as j → +∞ in Ek,

which implies uj → u uniformly on [−kT, kT ].
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On the other hand, note that

|I ′k,λ(uj)(uj − u)| ≤ εj‖uj − u‖Ek

and εj → 0 when j → +∞. By the continuity of Vu, it is easy to verify that∫ kT

−kT
〈V ku (t, uj(t)), uj(t)− u(t)〉 dt→ 0.

Therefore,

ηj =

∫ kT

−kT
〈u̇j(t), u̇j(t)− u̇(t)〉 dt→ 0.

Thus,

〈uj , uj − u〉Ek = ηj +

∫ kT

−kT
〈uj(t), uj(t)− u(t)〉 → 0.

Consequently, ‖uj‖Ek → ‖u‖Ek , and then, uj → u in Ek.

Notice that the condition (c) of Theorem 3.2 follows from Lemma 2.11, where

δ = λγ is obtained in such lemma.

It remains to show tha,t for every k ∈ N, there exists wk ∈ Ek such that

‖wk‖Ek > δ and Ik,λ(wk) ≤ 0. Let w1 ∈ E1 such that |w1(t)| ≥ u0 for all

|t| < τ0/2 and w1(t) = 0 for all τ0 < |t| < T .

We have that, for every ζ > 1, the following inequality holds by (H2) and (2.7)

I1,λ(ζw1) =
1

2

∫ T

−T

[
ζ2|ẇ1(t)|2 − 2V 1(t, ζw1(t))

]
dt(3.4)

≤ ζ2b2
2
‖w1‖2E1

− ζµa1τ0u
µ
0 +B.

Since 2 < µ, let ζ1 > 1, such that I1,λ(ζ1w1) < 0. Take δ = λγ and ζ̃ =

max {ζ1, ζ2}, where ζ2 ∈ R \ {0} is such that ‖ζ2w1‖E1
> δ. Define

(3.5) w̃k(t) =

ζ̃w1(t) if |t| ≤ T,
0 if T < |t| ≤ kT,

for k > 0. Then w̃k ∈ Ek, ‖w̃k‖Ek =
∥∥ζ̃w1

∥∥
E1

> δ and Ik,λ(w̃k) = I1,λ(ζ̃w1) < 0.

Hence, by Theorem 3.2, Ik,λ possesses a critical value ck ≥ α given by

(3.6) ck = inf
g∈Γk

max
s∈[0,1]

Ik,λ(g(s)),

where Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = wk}. Therefore, for every

k ∈ N, there is u1,k ∈ Ek such that

Ik,λ(u1,k) = ck, I ′k,λ(u1,k) = 0.

The function u1,k is the desired classical 2kT -periodic solution of (Pk). Since

ck > 0, u1,k is a non-trivial solution. �
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4. Minimization solution

In this section, we are concerned with obtaining, for each k ∈ N, a second

2kT -periodic solutions u2,k of system (Pk) through local minimization.

Theorem 4.1. Assume that hypothesis (H1), (H2), and (H5) holds, then

for every k ∈ N the system (Pk) possesses a nontrivial 2kT -periodic solution,

denoted by u2,k, such that Ik,λ(u2,k) < 0.

Proof. Firstly, we will show that there exists ωk ∈ Ek such that

(4.1) Ik,λ(ξωk) ≤ −η < 0, for all ξ ∈ (0, ξ0).

Let w1 ∈ E1 not identically null, such that |w1(t)| ≤ u1 for all |t| ≤ τ1 and

w1(t) = 0 for all τ1 < |t| ≤ T . Since k ∈ N, define

wk(t) =

w1(t) if |t| ≤ T,
0 if T < |t| ≤ kT.

Let ξ1 ∈ (0, 1) be such that ξ1‖w1‖E1
< λγ . By (2.1) and (H5), for all ξ ∈ (0, ξ1)

we have

(4.2) Ik,λ(ξwk(t)) ≤ ξ2c‖w1‖2E1
− λξq+1c0

∫ τ1

−τ1
|w1(t)|q+1 dt.

Since q + 1 < 2, there exists ξ2 > 0 small enough such that

−η := ξ2c‖w1‖2E1
− λξq+1c0

∫ τ1

−τ1
|w1(t)|q+1 dt < 0.

Thus, taking ξ0 = min{ξ1, ξ2}, (4.1) follows.

Now, consider the closed ballB∗λγ = {u ∈ Ek : ‖u‖Ek ≤ λγ}. By Lemma 2.11,

Ik,λ(u) > αλ for all u ∈ {u ∈ Ek : ‖u‖Ek = λγ}. It follows from (4.1) that

the minimum of the (weakly lower semicontinuous) functional Ik,λ on B∗λγ is

achieved in the corresponding open ball and, thus, yields a non-trivial solution

u2,k of (Pk), with

(4.3) Ik,λ(u2,k) ≤ −η < 0 and ‖u2,k‖ < λγ . �

5. Proof of main results

In this section, we prove Theorem 1.2. Before proceeding to the proof, we

need a technical lemma.

Lemma 5.1. Let uk be a solution of Problem (Pk) for each k ∈ N. If

‖uk‖L∞2kT ≤ M1, where M1 is a constant independent of k, and assume (H1),

(H2) and (H4) holds, then there exists u0 ∈ C1(R,Rn) and a subsequence {uj,j}j
of {uk}k converging to u0 in C2

loc(R,Rn). Moreover, if ‖uk‖Ek ≤M1, where M1

is a constant independent of k, then u0 is a solution of (P) and

u0(t)→ 0 and u̇0(t)→ 0 as t→ ±∞.
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Proof. Let j ∈ N then there exist kj ∈ N such that [−j, j] ⊂ (−kT, kT )

for all k ≥ kj . For each k ≥ kj , since uk is a solution of (Pk), we have that

uk ∈ C2([−j, j],Rn) and

(5.1) ük + Vu(t, uk) = 0, t ∈ [−j, j].

Then, by (H1), (H2) and (H4), we have

|ük(t)| ≤ |Vu(t, uk)| ≤M3,

and it follows that

(5.2) ‖ük‖L∞2j ≤M3 for all k ≥ kj ,

where M3 is a constant independent of j.

Since uk, u̇k ∈ Ek are absolutely continuous functions for each k ∈ N (see

Remark 2.3), by the Mean Value Theorem, for each k ∈ N and t ∈ R, there

exists τk ∈ [t− 1, t] such that

u̇k(τk) =

∫ t

t−1

u̇k(s) ds = uk(t)− uk(t− 1).

Consequently,

|u̇k(t)| =
∣∣∣∣ ∫ t

τk

ük(s) ds+ u̇k(τk)

∣∣∣∣ ≤ 2M1 +M3 =: M2,

which means that for each k ≥ kj ,

(5.3) ‖u̇k‖L∞2j ≤M2.

One can easily see that uk and u̇k verify the Lipschitz condition for each k ≥ kj ,
with constants independent of j ∈ N. In other words,

|uk(t)−uk(t0)| ≤M2|t−t0| and |u̇k(t)−u̇k(t0)| ≤M3|t−t0| for all k ≥ kj .

It follows from the Arzela–Ascoli Theorem that there exists a subsequence {uj,k}k
of {uk}k converging to uj,0 in C1([−j, j],Rn).

By equation (5.1), it follows that üj,k → w uniformly in [−j, j] and, then,

w(t) + Vu(t, uj,0) = 0, t ∈ [−j, j].

Since the function üj,k is continuous on [−j, j] for each k ≥ kj , from [5, Fact 2.7],

it follows that üj,k is a derivative of u̇j,k in [−j, j]. Since üj,k → w and u̇j,k → u̇j,0
uniformly, it follows that {uj,k}k converge to uj,0 in the topology C2([−j, j],Rn).

In particular, we get uj,0 ∈ C2([−j, j],Rn).

By a diagonal argument, there exists a subsequence {uj,j}j of {uj,k}k con-

verging to u0 in C2
loc(R,Rn), where u0(t) = lim

j→∞
uj,0(t). Moreover, note that we

have actually proved that {uk}k∈Ñ converges to u0 in the topology of C2
loc(R,Rn).

In particular, we get u0 ∈ C2(R,Rn).
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It remains to show that u0(t) → 0 and u̇0(t) → 0 as t → ±∞. Let us prove

the first assertion. Notice that∫ +∞

−∞

(
|u̇0(t)|2 + |u0(t)|2

)
dt = lim

i→+∞

∫ iT

−iT

(
|u̇0(t)|2 + |u0(t)|2

)
dt

= lim
i→+∞

lim
k→+∞

∫ iT

−iT

(
|u̇k(t)|2 + |uk(t)|2

)
dt.

For each i ∈ N, there exists ki ∈ Ñ, such that, for every k ≥ ki,∫ iT

−iT

(
|u̇k(t)|2 + |uk(t)|2

)
dt ≤ ‖uk‖2Ek ≤M

2
1 .

Since the constant M1 is independent of k, if we take i→ +∞, it follows that∫ +∞

−∞

(
|u̇0(t)|2 + |u0(t)|2

)
dt ≤M2

1 ,

and then ∫
|t|>r

(
|u̇0(t)|2 + |u0(t)|2

)
dt→ 0,

as r → +∞. By Lemma 2.6, we know that

(5.4) |u(t)| ≤
√

2

(∫ t+1/2

t−1/2

(
|u̇(t)|2 + |u(t)|2

)
dt

)1/2

and it follows that

(5.5) u0(t)→ 0 as t→ ±∞.

Let us prove the second assertion, i.e. u̇0(t)→ 0 whenever t→ ±∞. By (5.4),

we have

|u̇0(t)|2 ≤ 2

(∫ t+1/2

t−1/2

(|ü0(t)|2 + |u̇0(t)|2) dt

)
(5.6)

≤ 2

(∫ t+1/2

t−1/2

(
|u̇0(t)|2 + |u0(t)|2

)
dt

)
+ 2

∫ t+1/2

t−1/2

|ü0(t)|2 dt.

Since u0 is a solution of (P), it follows that∫ t+1/2

t−1/2

|ü0(t)|2 dt =

∫ t+1/2

t−1/2

Vu(t, u0)2 dt.

By (H1), (H2) and (5.5), it follows that∫ t+1/2

t−1/2

|ü0(t)|2 dt→ 0 as t→ ±∞.

By (5.6), we obtain u̇0(t)→ 0 as t→ ±∞, and we have the desired result. �
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Proof of Theorem 1.2. For each k ∈ R, let uk := u1,k, where u1,k is the

solution obtained in Theorem 3.1. For every k ∈ N, let gk : [0, 1] → Ek be the

curve given by gk(s) = sw̃k where w̃k is determined by (3.5). Then gk ∈ Γk and

Ik,λ(gk(s)) = I1,λ(g1(s)) for all k ∈ N and s ∈ [0, 1]. Therefore, by (3.6),

(5.7) ck ≤ max
s∈[0,1]

I1,λ(g1(s)) ≡M0,

where M0 is independent of k ∈ N. Notice that

M0 ≥ Ik,λ(u1,k)− 1

µ
I ′k,λ(u1,k)u1,k

≥ b1
(

1

2
− 1

µ

)
‖u1,k‖2Ek

+
1

µ

∫ kT

−kT

[
〈Wu(t, u1,k(t)), u1,k(t)〉 − µW (t, u1,k(t))

]
dt

≥ b1
(

1

2
− 1

µ

)
‖u1,k‖2Ek +A,

then there exists a constant C0 > 0 that does not depend on λ and k, such that

(5.8) ‖u1,k‖Ek ≤ C0.

By Lemma 5.1, there exists a subsequence of {uk} which we still will denote

by {uk}, and u1 : R → Rn such that uk → u1 in C2
loc(R,RN ), where u1 is

a homoclinic solution of (P).

Let us prove that u1 6≡ 0. Firstly, we prove that there exists a constant σ > 0,

independent of k, such that ‖uk‖Ek > σ for all k ∈ N. Suppose that, on the

contrary, there exists a subsequence of {uk} which we still will denote by {uk},
such that ‖uk‖Ek → 0, as k →∞. From Lemma 2.11, we have Ik,λ(uk) > αλ > 0

for all k ∈ N. Thus, for k large enough by Proposition 2.5, (2.2), (H1), (H2) and

(H5), we obtain

0 < αλ < Ik,λ(uk)

≤ 1

2
b2‖uk‖2Ek +

∫ kT

−kT
F (|uk(t)|)|uk(t)| dt+ λ

∫ kT

−kT
|b(t)||uk(t)|q+1 dt

≤ 1

2
b2‖uk‖2Ek +

∫ kT

−kT
|uk(t)|2 dt+ λ

∫ kT

−kT
|b(t)||uk(t)|q+1 dt

≤
(

1

2
b2 + 1

)
‖uk‖2Ek + λ‖uk‖εL∞2kT

∫ kT

−kT
|b(t)||uk(t)|q+1−ε dt,

for r > 0 in hypothesis (H5). By the Höder inequality, we get

0 < αλ <

(
1

2
b2 + 1

)
‖uk‖2Ek + λ‖uk‖εL∞2kT ‖b(t)‖L2/(1−q+ε)

2kT

‖uk(t)|‖q+1−ε
L2

2kT
.
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By Proposition 2.5 and taking ε = q − 1 + 2/r, we obtain

0 < αλ <

(
1

2
b2 + 1

)
‖uk‖2Ek + λ‖b‖Lr(R)‖uk‖q+1

Ek
.

Thus, there exists σ > 0 such that ‖uk‖Ek > σ for all k ∈ N.

Now, we will verify that there exists c > 0 such that ‖uk‖L∞2kT > c. Assume

by contradiction that ‖uk‖L∞2kT → 0 as k → ∞. Since I ′k,λ(uk)uk = 0, (2.1)

and (2.5), we have

(5.9)

∫ kT

−kT

[
〈Wu(t, uk(t)), uk(t)〉

]
dt

=

∫ kT

−kT

[
〈u̇k(t), u̇k(t)〉+ 〈Ku(t, uk(t)), uk(t)〉

]
dt ≥ min{1, b1}‖uk‖2Ek .

By hypothesis (H5), for any δ > 0, there exist k0 > 0 such that F (|uk|) ≤ δ|uk|
for all k > k0. Then we have

(5.10)

∫ kT

−kT
〈Wu(t, uk(t)), uk(t)〉 dt ≤

∫ kT

−kT
|Wu(t, uk(t))||uk(t)| dt

≤
∫ kT

−kT
F (|uk(t)|)|uk(t)|+ λ‖uk‖εL∞2kT

∫ kT

−kT
b(t)|uk(t)|q+1−ε dt

≤ δ‖uk‖2Ek dt+ λ‖uk‖εL∞2kT ‖b‖Lr(R)‖uk‖q+1−ε
Ek

.

By (5.9) and (5.10), we obtain

δ‖uk‖2Ek + λC2‖uk‖εL∞2kT ‖uk‖
q+1−ε
Ek

≥ min{1, b1}‖uk‖2Ek .

Then, we have

λ‖uk‖εL∞2kT ≥
(

min{1, b1} − δ
)
σ1−q+ε

C2
> 0,

where we take δ > 0, such that min{1, b1} − δ > 0, and it is a contradiction.

Thus, there exists c > 0 such that ‖uk‖L∞2kT > c for all k ∈ N and λ ∈ (0,Λ),

where c is independent of k. By the periodicity of uk, its maximum is achieved

in [−T, T ]. This shows that u1 6≡ 0.

Now, let uk := u2,k, where u2,k is the solution obtained in Theorem 4.1, for

each k ∈ R. By (4.3), we know that ‖uk‖Ek ≤ λγ . By Lemma 5.1, there exists

a subsequence of {uk} which we still will denote by {uk}, and u2 : R→ Rn such

that uk → u2 in C2
loc(R,RN ), where u2 is a homoclinic solution of (P).

Let us prove that u2 6≡ 0. As above, suppose that there exists a subsequence

of {uk} which we still will denote by {uk}, such that ‖uk‖Ek → 0, as k → ∞.

By (4.3), there exists η > 0, independent of k, such that Ik,λ(uk) ≤ −η < 0.

Therefore, by (2.1), we have

b1
2
‖uk‖2Ek −

∫ kT

−kT
|W (t, uk)| dt ≤ −η.
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Notice that, by (H5),

−
∫ kT

−kT
|W (t, uk)| dt ≥ −‖uk‖2Ek − λ‖b‖Lr(R)‖uk‖q+1

Ek
,

where ĉ0 is a positive constant. Hence,(
b1
2
− 1

)
‖uk‖2Ek − λ‖b‖Lr(R)‖uk‖q+1

Ek
≤ −η.

Thus, we arrive at (
b1
2
− 1

)
‖uk‖2Ek − λc̃‖uk‖

q+1
Ek

+ η ≤ 0,

where c̃ > 0 is a constant that do not depend on k. Using the same arguments

as above, we conclude that u2 6≡ 0.

By Lemma 5.1 we notice that u1(±∞) = u̇1(±∞) = 0 and u2(±∞) =

u̇2(±∞) = 0, which is the desired result. �

6. Applications and concluding remarks

In this section we provide examples of where we may apply our main result,

which is Theorem 1.2.

Example 6.1. Suppose that W (t, u) = W (t, u) + λ〈f(t), u〉, where |f | ∈
Lr(R) and W satisfies the classical (AR) condition, then W is superquadratic,

i.e., there exists constants a1 > 0 and a2 > 0, such that

W (t, u) ≥ a1|u|µ if |u| ≥ 1,(6.1)

W (t, u) ≤ a2|u|µ if |u| ≤ 1,(6.2)

see [5, Fact 2.1]. Then, as a relevant application, we have that, assuming the

hypotheses of the result proved in the paper of Izydorek and Janczewska, i.e.

assuming the conditions (H1)–(H4) of [5], and (AR) are satisfied, by using similar

ideas to those in Theorem 1.2, is possible to prove that there exists Λ > 0 such

that for each λ ∈ (0,Λ), problem (P) possesses at least two nontrivial homoclinic

orbits. In other words, we have established another homoclinic orbit for the

problem studied in [5], which correspond to the case q = 0.

Example 6.2. Consider the hamiltonian system

(6.3)
ü−Ku(t, u) + a(t, u)|u|p−1u+ λb(t)|u|q−1u = 0,

u(±∞) = u̇(±∞) = 0,

where p > 1, a : R × Rn → R is a C1-map and bounded function. In addition,

suppose that A(t, s) ≤ a(t, s)s for all |s| > s0 where, A(t, s) =
∫ s

0
a(t, τ) dτ ,
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the function K verifies conditions (H1)–(H3) and on the function f is such that

|f | ∈ Lr(R). Then, since

W (t, u) =
A(t, |u|p+1)

p+ 1
+ λb(t)

|u|q+1

q + 1
,

verifies the hypotheses (H4), (H5) and (AR)l with µ = p + 1, we may apply

Theorem 1.2 to obtain two nontrivial homoclinic orbits. Note that if the func-

tion a changes sign the classical Ambrosetti–Rabinowitz condition (AR) does

not satisfy.

Example 6.3. Consider W (t, u) = a(t)G(|u|) + λb(t)|u|q+1, where a, b are

continuous functions verifying a ∈ L1(R)∩L∞(R) and b ∈ Lr(R)∩L1(R)∩L∞(R),

where G ∈ C1(0,+∞) verifies:

G(s) =


sp+1 for 0 ≤ s < 1/4,

log (1 + s) for 1/2 < s < 3/4,

sp+1 for 1 < s,

with p > 1. In addition, suppose that the function a is nonnegative and there

exist α, β > 0, such that b(t) > δ0 > 0 in (α, β). One can easily verify that W

satisfies hypothesis (H1)–(H5) and (AR)l but it does not verify the classical (AR).
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[7] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier–Villars, Pairs,

1897–1899.

[8] P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc.

Edinburgh Sect. A 114 (1990), 33–38.



444 P. Cerda — L.F.O. Faria — E. Toon — P. Ubilla

[9] L.P. Shil’nikov, Homoclinic trajectories: From Poincaré to the present, Mathematical

Events of the Twentieth Century, Springer, Berlin, 2006, 347–370.

[10] Ye, Yiwei and Tang, Chun-Lei Multiple homoclinic solutions for second-order perturbed

Hamiltonian systems, Stud. Appl. Math. 132 (2014), no. 2, 112–137.

Manuscript received April 19, 2018

accepted September 11, 2018

Patricio Cerda and Pedro Ubilla

Departamento de Matematica y C. C.

Universidad de Santiago de Chile
Casilla 307, Correo 2

Santiago, CHILE

E-mail address: patricio.cerda@usach.cl, pedro.ubilla@usach.cl

Luiz F.O. Faria and Eduard Toon

Departamento de Matemática
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