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ON THE TOPOLOGICAL DEGREE OF PLANAR MAPS

AVOIDING NORMAL CONES

Alessandro Fonda — Giuliano Klun

Abstract. The classical Poincaré–Bohl theorem provides the existence of

a zero for a function avoiding external rays. When the domain is convex,
the same holds true when avoiding normal cones. We consider here the

possibility of dealing with nonconvex sets having inward corners or cusps, in

which cases the normal cone vanishes. This allows us to deal with situations
where the topological degree may be strictly greater than 1.

1. Introduction

Let Ω be an open and bounded planar set, whose boundary ∂Ω is a Jordan

curve, and let f : Ω → R2 be a continuous function such that 0 /∈ f(∂Ω). The

aim of this paper is to provide some conditions on the behaviour of the function

at the boundary which guarantee that the Brouwer topological degree deg(f,Ω)

is a positive number. It is well known that, in such a case, there will be some

x ∈ Ω such that f(x) = 0 (sometimes called equilibria).

In the case when Ω is convex, the normal cone at a given point x ∈ ∂Ω is

defined as

NΩ(x) =
{
v ∈ R2 : 〈v, x− x〉 ≤ 0, for every x ∈ Ω

}
.

Here, as usual, 〈 · , · 〉 denotes the euclidean scalar product in R2, with associated

norm ‖ · ‖. Let us recall the following known result.
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Theorem 1.1. Assume Ω to be convex, and that

(1.1) f(x) /∈ NΩ(x), for every x ∈ ∂Ω.

Then, deg(f,Ω) = 1.

We call (1.1) an avoiding cones condition. (For a proof of Theorem 1.1, see,

e.g. [6], [8].) In this paper we would like to investigate what happens when Ω is

not convex. In this case, we adopt the following definition of normal cone (see,

e.g. [9]):

(1.2) NΩ(x) =

{
v ∈ RN : lim sup

x→x
x∈Ω

〈v, x− x〉
‖x− x‖

≤ 0

}
.

This is the polar of the Bouligand cone (also named contingent cone). It has

been called regular normal cone in [9, Definition 6.3]. Since it could well happen

that NΩ(x) = {0} for some x ∈ ∂Ω, the avoiding cones condition at those points

x gives no restriction for f(x). However, despite this apparent difficulty, we will

show that, if the avoiding cones condition (1.1) holds, the topological degree

remains a positive number, at least when assuming some regularity for ∂Ω.

There are many other possible definitions of normal cone in the nonconvex

case (see [9, p. 232] for a clarifying survey), and several theorems on the existence

of equilibria are available (see, e.g. the well-written review paper [8]). The main

novelty of our paper is allowing the normal cones to vanish at certain points,

still recovering the existence result. However, we are able to do this only in the

planar case, and we do not know if and how our results could be extended to

higher dimensions.

Let us explain our main results, first introducing some notation. Since ∂Ω is

a Jordan curve, there is a continuous function γ : [0, 1] → R2, whose restriction

to [0, 1[ is injective, with γ(0) = γ(1) and γ([0, 1]) = ∂Ω. Let us start assuming

that ∂Ω is a piecewise regular Jordan curve. By this we mean that there are

0 = a0 < a1 < . . . < an−1 < an = 1,

such that, for every j = 1, . . . , n, if we look at the function γj : [aj−1, aj ]→ R2,

restriction of γ to the closed interval [aj−1, aj ], this function is of class C1, and

γ ′j(s) 6= 0 for every s ∈ [aj−1, aj ]. Then, writing

γ ′−(aj) = γ ′j(aj), γ ′+(aj) = γ ′j+1(aj),

it may be that γ ′−(aj) 6= γ ′+(aj). Among these, there could be inward and

outward corner points (see Section 2 for a precise definition). Let us denote by

Nι the number of inward corner points (or cusps).

We will first prove the following result.
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Theorem 1.2. Assume ∂Ω to be a piecewise regular Jordan curve, and that

(1.3) f(x) /∈ NΩ(x), for every x ∈ ∂Ω.

Then 1 ≤ deg(f,Ω) ≤ Nι + 1.

As we already said, at certain points aj it may happen that NΩ(aj) = {0},
in which case f(aj) has no cone to avoid. Let us illustrate this with an example.

Using complex notation, we consider the function f : C → C defined as f(z) =

z2. As for the set Ω, if we took the disk centered at the origin with radius 1,

condition (1.3) would be violated at the point (1, 0). So, we modify the disk in a

small neighbourhood of that point, by creating an inner corner, as in Figure 1.

Now condition (1.3) is satisfied, and Theorem 1.2 tells us that 1 ≤ deg(f,Ω) ≤ 2

(of course, we all know that deg(f,Ω) = 2 in this case).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1. Local deformation of the boundary.

The proof of Theorem 1.2 is provided in the next section. An important tool

will be Hopf’s Theorem (the so-called Umlaufsatz), adapted to our situation.

The extension of Theorem 1.2 to sets having an infinite number of corners

is discussed in Section 3, where we focus our attention on sets whose boundary

is piecewise the graph of a continuous function. This difficult task is not fully

achieved here, since we eventually need to assume some additional regularity

of the boundary. However, in view of some striking examples of sets whose

boundary is locally the graph of nowhere differentiable functions (see, e.g. the

one in [5]), we expect that further generalizations would require a much deeper

insight in the theory of continuous functions. As expected, in this framework we

loose the upper estimate on the degree, and finally only prove that deg(f,Ω) ≥ 1.

Nevertheless, with the aim of extending Theorem 1.2, we will provide in

Section 3.1 a generalization of Hopf’s Theorem to some cases where the curve
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bounding the set Ω is not regular, and in Section 3.3 an extension of Darboux

Theorem involving the Dini derivatives. These results could also have an inde-

pendent interest.

The existence of equilibria of functions defined on sets in abstract spaces

with very irregular boundaries has been investigated in [2]–[4], typically in situ-

ations when the associated topologically degree is equal to 1. Our results require

a planar setting and stronger regularity assumptions on the boundary; we do not

know whether they could be extended to higher dimensions.

Let us end this introduction by saying that Theorem 1.2 and its extension

in Section 3 could be generalized assuming the vector field f(x) to avoid some

more general upper semicontinuous multivalued map having closed convex val-

ues. However, for briefness we prefer not entering into this subject, which will

be treated elsewhere.

2. Proof of Theorem 1.2

Following the usual habit, we assume that γ : [0, 1] → R2 parametrizes ∂Ω

in the counter-clockwise direction. Also, without loss of generality, we may

ask that γ(0) = γ(1) is a regular point, i.e. that γ ′+(0) = γ ′−(1), and that

γ ′−(aj) 6= γ ′+(aj), for j = 1, . . . , n − 1. Moreover, for simplicity we may also

assume that γ is an arc-length parametrization.

2.1. The angular function. Denoting by P(R) the collection of all subsets

of R, we define a multivalued function ω : [0, 1] → P(R), the so-called angular

function, as follows.

In the open intervals ]aj−1, aj [, the function will be single-valued, hence we

can write

(2.1) γ ′(s) = eiω(s), when s ∈ ]aj−1, aj [,

(recall that ‖γ ′(s)‖ = 1) while at the points aj , corresponding to corners or

cusps, ω(aj) will be a closed interval [αj , βj ]. Moreover, the multivalued function

ω : [0, 1]→ P(R) will be upper semicontinuous (cf. [1, p. 41]). We now enter into

details.

Since we have assumed that γ(0) is a regular point, we define ω(0) to be

single-valued, such that eiω(0) = γ ′+(0) and ω(0) ∈ [0, 2π[. Then, the function

ω(s) is uniquely defined on [0, a1[, by continuity, asking that (2.1) holds, and it

is single-valued there.

Let us explain how ω(s) is defined on [a1, a2[. Since γ ′−(a1) 6= γ ′+(a1), it is

easily seen that we have the following alternative: either

(i) there is an ε > 0 such that γ(a1) + λγ ′−(a1) /∈ Ω, for every λ ∈ ]0, ε[,

in which case we say that γ ′−(a1) “points outward”, so that γ(a1) is an “outward

corner point”, or
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(ii) there is an ε > 0 such that γ(a1) + λγ ′−(a1) ∈ Ω, for every λ ∈ ]0, ε[,

in which case we say that γ ′−(a1) “points inward”, so that γ(a1) is an “inward

corner point”.

In case γ ′−(a1) points outward, let

(2.2) α1 = lim
s→a−1

ω(s).

Such a limit exists and is finite, since γ(s) = γ1(s) on [0, a1] and γ1 : [0, a1]→ R2

is of class C1, with ‖γ ′1(s)‖ = 1 for every s ∈ [0, a1]. Moreover, eiα1 = γ ′−(a1).

Let β1 ∈ ]α1, α1 + π] be such that eiβ1 = γ ′+(a1), and define ω(a1) = [α1, β1].

Now there is a unique way to define ω(s) on ]a1, a2[, in such a way that (2.1)

holds, preserving the upper semicontinuity of the multivalued function ω on the

whole interval [0, a2[. Notice that it has to be

(2.3) β1 = lim
s→a+1

ω(s).

In case γ ′−(a1) points inward, let instead

(2.4) β1 = lim
s→a−1

ω(s),

so that eiβ1 = γ ′−(a1), and let α1 ∈ [β1 − π, β1[ be such that eiα1 = γ ′+(a1).

Define ω(a1) = [α1, β1], and extend ω(s) on ]a1, a2[, in such a way that (2.1)

holds, preserving the upper semicontinuity on the whole interval [0, a2[. In this

case, it has to be

(2.5) α1 = lim
s→a+1

ω(s).

The definition of ω(a2) is analogous to that of ω(a1), and we can continue

recursively, thus defining ω(s) on [aj−1, aj [, for every j = 1, . . . , n. When we

arrive at the last interval, we define ω(1) just by continuity: ω(1) = lim
s→1−

ω(s).

The following lemma will be crucial in the proof of Theorem 1.2.

Lemma 2.1. One has that ω(1) = ω(0) + 2π.

Proof. The function ω : [0, 1]→ P(R) defined above is upper semicontinu-

ous and, since γ(0) = γ(1) is a regular point, there must exist an integer N for

which ω(1) = ω(0) + 2πN . If there are no singular points, i.e. if n = 1, we can

apply Hopf’s Theorem [7], stating that for any simple closed C1-curve γ in the

plane it has to be N = 1.

Let us now assume n ≥ 2. We will approximate the curve γ with a C1-curve

γ̃ : [0, 1] → R2, by smoothing the angles. We will thus correspondingly obtain

an approximation of the multivalued function ω by a continuous single-valued

function ω̃ : [0, 1]→ R.
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Let us explain how γ̃ is defined, assuming for simplicity n = 2, i.e. that a1 is

the only point of discontinuity of γ ′. Recalling that ω is upper semicontinuous

and ω(a1) = [α1, β1], for any ε ∈ ]0, π/2[ there is a δ > 0 such that

s ∈ [a1 − δ, a1 + δ] ⇒ dist(ω(s), [α1, β1]) ≤ ε.

(Here and in the following, dist(A,B) = inf{‖x − y‖ : x ∈ A, y ∈ B}.) Take δ

small enough, and consider the rectangle I1 = [a1 − δ, a1 + δ]× [α1 − ε, β1 + ε].

We want the function ω̃ to coincide with ω on [0, a1− δ]∪ [a1 + δ, 1], while in the

interval [a1 − δ, a1 + δ] we will construct a C1-function whose graph is contained

in I1 and smoothly glues the endpoints (a1−δ, ω(a1−δ)) and (a1 +δ, ω(a1 +δ)).

Let B(γ(a1), r) be the open planar disk centered at γ(a1) with a small radius

r > 0, so small that its boundary is crossed only twice by the curve γ. This

choice is possible since there surely are r > 0 and δ > 0 such that, if r ∈ ]0, r]

and dist(γ(s), γ(a1)) = r for some s ∈ ]a1 − δ, a1 + δ[, then γ ′(s) is transversal

to ∂B(γ(a1), r). Moreover, there is a ε > 0 such that, if |s − a1| ≥ δ, then

dist(γ(s), γ(a1)) ≥ ε. It will then be sufficient to choose r ≤ min{r, ε}. With

this choice of r > 0, there will be an “entrance point” A = γ(a) and an “exit

point” B = γ(b). Notice that a < a1 < b, and b − a can be made arbitrarily

small, by reducing the radius r.

Figure 2. The case of a cusp.

Consider the segment AB joining A and B, and take the straight line L,

parallel to AB, at a small distance ε̂ > 0 from it, lying between the segment

itself and the center of the ball γ(a1). Let A′ and B′ be the intersections of L
with the lines

LA = {γ(a) + tγ ′(a) : t ∈ R} and LB = {γ(b) + tγ ′(b) : t ∈ R},

respectively. Let A′′ and B′′ be the points on the segment A′B′ such that AA′

and A′A′′ have the same length, as well as for for BB′ and B′B′′. Taking ε̂

small enough, the vector from A′′ to B′′ will have the same direction of the
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vector from A to B. Consider the circular arc CAA′′ , starting at A, arriving

at A′′, and tangent to both L and LA. Similarly, consider the circular arc CBB′′ ,
starting at B, arriving at B′′, and tangent to both L and LB . The curve γ̃ will

be defined as follows (see Figure 2): γ̃(s) coincides with γ(s) for s < a, i.e. until

it reaches the point A; then, it follows the circular arc CAA′′ until A′′; at this

point, it goes straight to B′′, thus remaining on the line L; then, it follows the

circular arc CBB′′ until B, where it rejoins the curve γ. (Notice that, since we

must be careful to parametrize γ̃ in such a way that γ̃(b) = B, this curve will be

regular but not necessarily parametrized by arc-length any more.) Finally, γ̃(s)

coincides with γ(s) for s > b.

Figure 3. An example of angle-smoothing.

In the above construction, the constants r ε, δ and ε̂ can be chosen to be

arbitrarily small. Moreover, the angle function ω̃ : [0, 1]→ R, defined by

(2.6)
γ̃ ′(s)

‖γ̃ ′(s)‖
= ei ω̃(s),

with ω̃(0) = ω(0), is monotone as s varies in [a, b], and continuous. These facts

guarantee that

dist(ω̃(s), ω(s)) ≤ π + 2ε < 2π, for every s ∈ [0, 1].

By Hopf’s Theorem, ω̃(1) = ω̃(0)+2π, hence also ω(1) = ω(0)+2π, thus finishing

the proof. �

2.2. The avoiding cones condition. We consider the restriction of our

function f : Ω→ R2 to the boundary of Ω. More precisely, let us define the new
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function

g = f ◦ γ : [0, 1]→ R2 \ {0}.
Passing to polar coordinates, in complex notation, we can write

g(s) = ρ(s)eiϕ(s),

for some continuous functions ρ : R→ ]0,+∞[ and ϕ : R→ R. Since γ(0) = γ(1),

the number ϕ(1) differs from ϕ(0) by an integer multiple of 2π, and

deg(f,Ω) =
ϕ(1)− ϕ(0)

2π
.

It will be useful to consider the multivalued function Θ: [0, 1]→ P(R) defined

as

Θ(s) =

∅ if s = aj and γ ′−(aj) points inward,

ω(s)− π/2 + 2πZ otherwise.

We can thus introduce an auxiliary cone N ∗Ω(γ(s)), made of the origin and the

union of all the half-lines starting from the origin determined by the angles in

Θ(s). Precisely,

(2.7) N ∗Ω(γ(s)) =


{0} if s = aj

and γ ′−(aj) points inward,

{αeiθ : α ≥ 0, θ ∈ Θ(s)} otherwise.

In the sequel we will often use without further mention the elementary properties

of this kind of cones, like e.g. being closed sets, translation invariant and rotation

equivariant. Notice also that neither NΩ(γ(s)) nor N ∗Ω(γ(s)) can be larger than

a half-plane.

Lemma 2.2. The cones NΩ(γ(s)) and N ∗Ω(γ(s)) coincide. Therefore, the

avoiding cones condition (1.3) is equivalent to

ϕ(s) /∈ Θ(s), for every s ∈ [0, 1].

Proof. We analyze several different situations.

If s 6= aj for every j = 1, . . . , n−1, the boundary of Ω is smooth at γ(s), hence

NΩ(γ(s)) is just a single half-line, orthogonal to γ ′(s), with angle ω(s) − π/2.

Thus it coincides with N ∗Ω(γ(s)).

Assume that s = aj and that γ ′−(aj) points inward, so that Θ(aj) = ∅ and

N ∗Ω(γ(s)) = {0}. We want to prove that NΩ(γ(aj)) = {0}, as well. Let us

translate γ(aj) to the origin and rotate the reference system of axes in such

a way that the two straight lines passing through it determined by γ ′−(aj) and

γ ′+(aj) are symmetric with respect to the vertical axis and, roughly speaking, the

set Ω locally stays below its boundary. More precisely, if these two lines coincide,

in which case we have an inner cusp, they will be equal to {(x1, x2) : x1 = 0};
otherwise, the first one will have a positive slope m, and the second one a negative
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slope −m. We may also assume, in both cases, that there are two constants r > 0

and µ > 0 such that

{(x1, x2) : x2 < µ|x1|} ∩B(0, r) ⊆ Ω, for every r ∈ ]0, r].

Let v = (v1, v2) be a vector with ‖v‖ = 1. We distinguish three cases.

Case 1. v2 ≤ µ|v1|. Then, choosing x = v/2, we have that 〈v, x〉/‖x‖ = 1.

Case 2. v2 > µ|v1| and v1 ≥ 0. Here we choose x = (ε, µε), with ε > 0 small

enough, and we have that

(2.8)
〈v, x〉
‖x‖

≥ µ√
1 + µ2

v2.

Case 3. v2 > µ|v1| and v1 < 0. We then take x = (−ε, µε), with ε > 0 small

enough, and we have (2.8) again.

We have thus shown, in all the three cases, that v /∈ NΩ(0). Since it cannot

contain any unitary vector v, the cone NΩ(0) is reduced to {0}.
Assume now that s = aj and that γ ′−(aj) points outward. In this case,

ω(aj) = [αj , βj ], so that Θ(aj) = [αj − π/2, βj − π/2] + 2πZ. As above, we

translate γ(aj) to the origin and take a reference system of axes so that the

two straight lines passing through the origin determined by γ ′−(aj) and γ ′+(aj)

are symmetric with respect to the vertical axis. If they coincide (in which case

αj = π/2 and βj = 3π/2 mod 2π), we have an outer cusp, and they will be equal

to {(x1, x2) : x1 = 0}; otherwise, the first one will have a negative slope −m,

and the second one a positive slope m (in this case, αj = π − arctan(m) and

βj = π+ arctan(m) mod 2π). We want to prove that, in the first case, NΩ(0) =

{(x1, x2) : x2 ≥ 0} while, in the second case, NΩ(0) = {(x1, x2) : x2 ≥ |x1|/m}.
This will imply that NΩ(0) = N ∗Ω(0).

Let us consider the case of an outer cusp. We first prove the inclusion

{(x1, x2) : x2 > 0} ⊆ NΩ(0). Let v be a vector in {(x1, x2) : x2 > 0}, and

let mv > 0 be such that v ∈ {(x1, x2) : x2 ≥ mv|x1|}. There is a r > 0 such that

Ω ∩B(0, r) ⊆
{

(x1, x2) : x2 < −
2

mv
|x1|
}
, for every r ∈ ]0, r].

Therefore, for any r ∈ ]0, r] and every x ∈ Ω∩B(0, r)\{0}, one has that 〈v, x〉 < 0,

showing that v ∈ NΩ(0). Since NΩ(0) is closed (cf. [9, Proposition 6.5]), we

conclude that {(x1, x2) : x2 ≥ 0} ⊆ NΩ(0).

To prove the opposite inclusion, let v = (v1, v2) be such that v2 < 0. There

exist cv > 0 and µ̃v > 0 such that, for every nonzero vector x = (x1, x2) with

x2 ≤ −µ̃v|x1|, one has

(2.9)
〈v, x〉
‖x‖

≥ cv.
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Now, there is a rv > 0 such that

Ω ∩B(0, r) ⊆ {(x1, x2) : x2 < −µ̃v |x1|}, for every r ∈ ]0, rv].

Therefore, for any r ∈ ]0, rv] and every x ∈ Ω ∩B(0, r) \ {0}, one has that (2.9)

holds, showing that v /∈ NΩ(0).

Assume now that γ ′−(aj) points outward, but is not a cusp. Let us first prove

the inclusion {(x1, x2) : x2 > |x1|/2} ⊆ NΩ(0). Let v be a vector in {(x1, x2) :

x2 > |x1|/m}, and let m′v ∈ ]0,m[ be such that v ∈ {(x1, x2) : x2 ≥ |x1|/m′v}.
There is a r > 0 such that

Ω ∩B(0, r) ⊆
{

(x1, x2) : x2 < −m′v |x1|
}
, for every r ∈ ]0, r].

Therefore, for any r ∈ ]0, r] and every x ∈ Ω ∩ B(0, r) \ {0}, one has that

〈v, x〉 < 0, showing that v ∈ NΩ(0). Since NΩ(0) is a closed cone, we conclude

that {(x1, x2) : x2 ≥ |x1|/m} ⊆ NΩ(0).

Let us now prove the opposite inclusion. Let v = (v1, v2) /∈ {(x1, x2) : x2 ≥
|x1|/m}, and let µv > m be such that v /∈ {(x1, x2) : x2 ≥ |x1|/µv}. There is a

r > 0 such that{
(x1, x2) : x2 < −µv |x1|

}
∩B(0, r) ⊆ Ω, for every r ∈ ]0, r].

Assume v1 ≥ 0, and hence v2 < v1/µv. Then, taking x = (δ,−µvδ), for any

sufficiently small δ > 0 we have that x ∈ Ω, and

〈v, x〉
‖x‖

=
1√

1 + µ2
v

(v1 − v2µv) > 0,

showing that v /∈ NΩ(0). The case v1 ≤ 0 is analogous. The proof of the lemma

is thus completed. �

2.3. Conclusion of the proof. Recalling that γ(0) is a regular point and

that, by Lemma 2.2,

ϕ(0) /∈ ω(0)− 1

2
π + 2πZ,

there is a K ∈ Z such that

(2.10) ω(0)− 1

2
π + 2πK < ϕ(0) < ω(0)− 1

2
π + 2π(K + 1).

Then, by continuity and Lemma 2.2, it has to be that

(2.11) ϕ(s) > ω(s)− 1

2
π + 2πK, for every s ∈ [0, a1[.

(Notice that ω(s) is single-valued in [0, a1[, and in each interval ]aj−1, aj [.) When

we arrive at s = a1, we have two possibilities: either γ ′−(a1) points outward, or

it points inward. If it points outward, then

(2.12) ϕ(a1) /∈ Θ(a1) = ω(a1)− 1

2
π + 2πZ = [α1, β1]− 1

2
π + 2πZ.
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By (2.11) and (2.2), we know that

ϕ(a1) = lim
s→a−1

ϕ(s) ≥ lim
s→a−1

ω(s)− 1

2
π + 2πK = α1 −

1

2
π + 2πK,

hence, by (2.12) and (2.3), it has to be

ϕ(a1) > β1 −
1

2
π + 2πK = lim

s→a+1
ω(s)− 1

2
π + 2πK.

Consequently, if s > a1 and s is sufficiently near a1, then ϕ(s) > ω(s) − π/2 +

2πK. This inequality will persist, by continuity and Lemma 2.2, for every

s ∈ ]a1, a2[.

On the other hand, if γ ′−(a1) points inward, there is no cone to avoid. How-

ever, by (2.11), (2.4) and (2.5),

ϕ(a1) = lim
s→a−1

ϕ(s) ≥ lim
s→a−1

ω(s)− 1

2
π + 2πK

= β1 −
1

2
π + 2πK > α1 −

1

2
π + 2πK = lim

s→a+1
ω(s)− 1

2
π + 2πK.

Hence, by the same argument as above, we will have that

ϕ(s) > ω(s)− 1

2
π + 2πK, for every s ∈ ]a1, a2[.

Iterating this process, we have that

ϕ(s) > ω(s)− 1

2
π + 2πK, for every s ∈

n⋃
j=1

]aj−1, aj [,

and finally, by continuity, Lemma 2.1 and (2.10),

ϕ(1) ≥ ω(1)− 1

2
π + 2πK = ω(0)− 1

2
π + 2π(K + 1) > ϕ(0).

Since ϕ(1)−ϕ(0) is an integer multiple of 2π, we then deduce that ϕ(1)−ϕ(0) ≥
2π, i.e. that deg(f,Ω) ≥ 1.

In order to show that deg(f,Ω) ≤ Nι + 1, let us go back to [0, a1[. Arguing

as above, by (2.10) we have that

(2.13) ϕ(s) < ω(s) +
3

2
π + 2πK, for every s ∈ [0, a1[.

If γ ′−(a1) points outward,

(2.14) ϕ(a1) < α1 +
3

2
π + 2πK,

and we see that, if s > a1 and s is sufficiently near a1, then ϕ(s) < ω(s)+3π/2+

2πK, and this inequality will persist for every s ∈ ]a1, a2[.

Now, if γ ′−(aj) points outward for every j, we would have

ϕ(s) < ω(s) +
3

2
π + 2πK, for every s ∈

n⋃
j=1

]aj−1, aj [,
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and, by Lemma 2.1 and (2.10),

ϕ(1) ≤ ω(1) +
3

2
π + 2πK = ω(0) +

3

2
π + 2π(K + 1) < ϕ(0) + 4π.

Then, ϕ(1)− ϕ(0) ≤ 2π, so that deg(f,Ω) ≤ 1.

On the other hand, if γ ′−(a1) points inward, there is no control like (2.14),

and it could be as well that

α1 +
3

2
π + 2πK < ϕ(a1) < β1 +

3

2
π + 2πK,

giving an increase of 1 in the final computation of the degree. Clearly, the same

could happen for any of the Nι inward corner points. The proof of Theorem 1.2

is thus completed. �

3. An extension of Theorem 1.2

The aim of this section is to extend Theorem 1.2 to the case when ∂Ω is

piecewise the graph of a continuous function. However, this difficult task will not

be completely achieved, and we will eventually need to assume some additional

regularity on that set. Moreover, as may be expected, in this framework we will

loose the upper estimate on the degree, and finally only prove that deg(f,Ω) ≥ 1.

Let us start by giving a precise definition of what we mean by “piecewise

graph of a continuous function”. As usual, ∂Ω is a Jordan curve parametrized

by a continuous function γ : [0, 1]→ R2, in counter-clockwise direction.

Definition 3.1. We say that ∂Ω is piecewise the graph of a continuous

function if there are

0 = â0 < â1 < . . . < âm−1 < âm = 1,

such that, writing pk = γ(âk), the closed polygonal curve Γ = p0p1 · · · pm has

no self-intersections. Moreover, denoting by νk the outer normal to the segment

pk−1pk joining the two points pk−1 and pk, for every k = 1, . . . ,m there are

hk > 0 and a continuous function gk : pk−1pk → [−hk, hk] such that, defining

the rectangles

Rk = pk−1pk + [−hk, hk]νk,

we have that

Ω ∩Rk =
{
p+ yνk : p ∈ pk−1pk, y ∈ [−hk, gk(p)[

}
,

∂Ω ∩Rk =
{
p+ yνk : p ∈ pk−1pk, y = gk(p)

}
.

Notice that the polygonal curve Γ, being a piecewise regular Jordan curve,

can be parametrized by a piecewise regular function γΓ : [0, 1] → R2 such that

γΓ(âk) = γ(âk), for every k = 1, . . . ,m. Then, there is an associated angular

function ωΓ : [0, 1] → P(R), defined precisely as in Section 2 (to simplify the

exposition, we may assume that γΓ(0) is a regular point for Γ, i.e. that γ ′Γ(0) =
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γ ′Γ(1)). Notice that there are no cusps for Γ, and that ωΓ(1) = ωΓ(0) + 2π, by

Lemma 2.1.

Let us now introduce the concept of “vanishing set”. Given a set S, we

denote by S ′ the derived set of S, i.e. the set of cluster points of S.

Definition 3.2. Looking at the iterated derived sets S(1) = S ′, S(n+1) =

[S(n)]′, we call S a vanishing set if, for some positive integer N , the iterated

derived set S(N) is empty.

We will prove the following extension of Theorem 1.2.

Theorem 3.3. Assume ∂Ω to be a Jordan curve, piecewise graph of a con-

tinuous function. Let γ : [0, 1] → R2 be a continuous parametrization of ∂Ω,

with the property that there are a countable number of non-overlapping inter-

vals [aj , bj ], contained in [0, 1], on the interior of which γ is of class C1, and

S = [0, 1] \
⋃
j

]aj , bj [ is a vanishing set. If the avoiding cones condition (1.3)

holds, then deg(f,Ω) ≥ 1.

The proof will be carried out in the next four subsections. We will first

need to extend Hopf’s Theorem in this new setting, and to characterize the

normal cones with the new angular function, similarly as in Lemma 2.2. We

will then make a small detour to provide us with some useful properties of the

Dini derivatives (which could also have some independent interest). The proof

of Theorem 3.3 will then be given first assuming the number of intervals [aj , bj ]

to be finite, and finally in its general form.

3.1. An extension of Hopf’s Theorem. We need to define the angu-

lar function ω : [0, 1] → P(R) in the case when ∂Ω is piecewise the graph of

a continuous function. This will eventually lead us to an extension of Hopf’s

Theorem.

So, take some x ∈ ∂Ω, and assume first that x = γ(s) for some s ∈ ]âk−1, âk[.

After a roto-translation Sk, in which the segment pk−1pk becomes horizon-

tal, of the type [ck, dk] × {0}, we have a corresponding continuous function

Fk : [ck, dk] → R, whose graph is the transformation of the graph of gk by

Sk, and Sk(Ω) locally “stays below” this graph. More precisely, we can write

Sk = Tk ◦Rk, where Tk is a translation and Rk is the rotation around the origin

with angle

θ̂ kΓ = π − ωΓ

(
âk−1 + âk

2

)
.

(Notice that ωΓ is constant on ]âk−1, âk[.) The interval [ck, dk] has the same

length as the segment pk−1pk, and we will have that

Sk(γ(s)) = (t(s), Fk(t(s))),
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with t(s) ∈ ]ck, dk[ continuously determined by s ∈ ]âk−1, âk[ through the for-

mula

t(s) = ck +
dk − ck
âk − âk−1

(âk − s).

Moreover, t(âk−1) = dk, t(âk) = ck, and

Fk(t(s)) = [Sk ◦ gk ◦ S−1
k ](t(s), 0).

To simplify the notation, we will now write F instead of Fk, and t instead of

t(s). We consider the four Dini derivatives

D`
±F (t) = lim inf

h→0±

F (t+ h)− F (t)

h
, Du

±F (t) = lim sup
h→0±

F (t+ h)− F (t)

h
.

(In the above, the letter ` stands for “lower”, while u means “upper”.) Let

L`−(t) =
{

(x1, x2) ∈ R2 : x1 ≤ 0, x2 = D`
−F (t)x1

}
,

Lu+(t) =
{

(x1, x2) ∈ R2 : x1 ≤ 0, x2 = Du
+F (t)x1

}
,

where it is implicitly assumed that

D`
−F (t) = −∞ ⇒ L`−(t) = {0} × [0,+∞[,

D`
−F (t) = +∞ ⇒ L`−(t) = {0} × ]−∞, 0],

Du
+F (t) = −∞ ⇒ Lu+(t) = {0} × [0,+∞[,

Du
+F (t) = +∞ ⇒ Lu+(t) = {0} × ]−∞, 0].

Let θ`−(t), θu+(t) be the two real numbers in [π/2, 3π/2] such that, in complex

notation,

L`−(t) = {αeiθ
`
−(t) : α ≥ 0}, Lu+(t) = {αeiθ

u
+(t) : α ≥ 0}.

(Notice that, whenever the right and left derivatives exist and are finite, the case

θ`−(t) < θu+(t) corresponds to an inward corner point, while the case θ`−(t) >

θu+(t) corresponds to an outward corner point.) We thus define ω(s)=[α(s), β(s)],

where

(3.1) α(s) = θu+(t(s))− θ̂ kΓ , β(s) = θ`−(t(s))− θ̂ kΓ ,

with the convention that [a, b] = [b, a] when b < a.

Now we look at the cases when s = âk, for some k = 1, . . . ,m. At these

points, the limits from the left have to be made with one reference function, while

those from the right concern a different one. For example, looking at s = âk,

the angle θu+(t(âk)) must be defined through the function Fk : [ck, dk] → R,

with t(âk) = ck, while θ`−(t(âk)) is defined using Fk+1 : [ck+1, dk+1] → R, with

t(âk) = dk+1. Once this is done, the definition of ω(âk) is

ω(âk) = [α(âk), β(âk)],
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where

(3.2) α(âk) = θu+(t(âk))− θ̂ kΓ , β(âk) = θ`−(t(âk))− θ̂ k+1
Γ ,

with the usual convention for [a, b] when b < a.

Having defined the multivalued function ω : [0, 1]→ P(R), we can now state

an analogue of Hopf’s Theorem.

Theorem 3.4. Assume that ∂Ω is piecewise the graph of a continuous func-

tion. Then ω(1) = ω(0) + 2π.

Proof. We know that ωΓ(1) = ωΓ(0) + 2π and, for every s ∈ [0, 1],

α′, β′ ∈ ωΓ(s) ⇒ |α′ − β′| < π.

Moreover, recalling the assumption that ∂Ω is piecewise the graph of a continuous

function,

s ∈ ]âk−1, âk[ ⇒ dist(ωΓ(s), ω(s)) ≤ π

2
.

The conclusion easily follows. �

3.2. A characterization of normal cones. We now give a characteriza-

tion of normal cones, similarly as in Section 2, when ∂Ω is piecewise the graph

of a continuous function. It will be useful to consider the following multivalued

function Θ: [0, 1] → P(R). Recalling how we have defined ω(s) = [α(s), β(s)],

we set

Θ(s) =

∅ if α(s) > β(s),

ω(s)− 1

2
π + 2πZ if α(s) ≤ β(s).

We can thus introduce an auxiliary cone N ?
Ω(γ(s)), made of the origin and the

union of all the half-lines starting from the origin determined by the angles

in Θ(s), as in (2.7).

Lemma 3.5. The cones NΩ(γ(s)) and N ?
Ω(γ(s)) coincide. Therefore, the avoi-

ding cones condition (1.3) is equivalent to ϕ(s) /∈ Θ(s), for every s ∈ [0, 1].

Proof. We fix s ∈ [0, 1] and assume first that s ∈ ]âk−1, âk[, for some k.

After operating the roto-translation Sk, we can assume that the segment pk−1pk
coincides with [ck, dk]×{0}. Moreover, without loss of generality, we can assume

that ck < 0 < dk and that Sk(γ(s)) coincides with the origin.

Let α(s) > β(s), so that Θ(s) = ∅ and N ?
Ω(γ(s)) = {0}. We want to prove

that NΩ(γ(s)) = {0}, as well. In this case, there are two real constants µ > ν

such that, for every µ ≤ µ and every ν ≥ ν, the half-lines

`+µ = {(x1, x2) : x1 ≥ 0, x2 = µx1}, `−ν = {(x1, x2) : x1 ≤ 0, x2 = νx1}

intersect the set Ω infinitely many times in every small neighbourhood of the

origin. Hence, for every v ∈ R2 \ {0}, it is possible to find a vector x with
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‖x‖ = 1 on one of such half-lines for which 〈v, x〉 = δ > 0. Hence, there is

a sequence of points (xn)n of Ω \ {0} on this half-line such that xn → 0 and

〈v, xn〉 = δ‖xn‖. Therefore, if v 6= 0, then v /∈ NΩ(γ(s)).

Assume now that α(s) = β(s), so that ω(s) is single-valued and N ?
Ω(γ(s)) is

a half-line. For every ε > 0 there are two sectors Sε1 ⊆ Sε2 , with the following

properties. First of all, both sectors are symmetrical with respect to N ?
Ω(γ(s)).

The sector Sε2 has angular amplitude equal to π + 2ε, and there is a r > 0 such

that Sε2 ∩ B(0, r) contains Ω ∩ B(0, r), for every r ∈ ]0, r[. The sector Sε1 has

angular amplitude equal to π − 2ε, and every half-line of this sector intersects

the set Ω infinitely many times in every small neighbourhood of the origin.

Let v 6= 0 be a vector not belonging to the half-line N ?
Ω(γ(s)). Then, taking

ε > 0 small enough, it is possible to find a half-line in Sε1 and a point x on it,

with with ‖x‖ = 1, for which 〈v, x〉 = δ > 0. Then, there is a sequence of points

(xn)n of Ω\{0} on this half-line such that xn → 0 and 〈v, xn〉 = δ‖xn‖, showing

that v /∈ NΩ(γ(s)). We have thus proved that NΩ(γ(s)) ⊆ N ?
Ω(γ(s)).

On the other hand, let v ∈ N ?
Ω(γ(s)) be a vector with norm ‖v‖ = 1. For

every ε > 0, there is a r > 0 such that, for every x ∈ Ω ∩B(0, r), being x ∈ Sε2 ,

one has

(3.3)
〈v, x〉
‖x‖

≤ cos

(
π

2
− ε
)
.

Since ε is arbitrary, this shows that v ∈ NΩ(γ(s)), and since NΩ(γ(s)) is a cone,

we have proved that N ?
Ω(γ(s)) ⊆ NΩ(γ(s)).

Finally, let α(s) < β(s). In this case Θ(s) = [α(s)− π/2, β(s)− π/2] + 2πZ
and N ?

Ω(γ(s)) is a cone whose angular amplitude is ι(s) = β(s) − α(s). We

distinguish two subcases.

Case 1. ι(s) < π. For every ε ∈ ]0, (π − ι(s))/2[ there are two sectors

Sε1 ⊆ Sε2 , symmetrical with respect to N ?
Ω(γ(s)). The sector Sε2 has angular

amplitude equal to π − ι(s) + 2ε, and there is a r > 0 such that Sε2 ∩ B(0, r)

contains Ω ∩ B(0, r), for every r ∈ ]0, r[. The sector Sε1 has angular amplitude

equal to π − ι(s) − 2ε, and every half-line of this sector intersects the set Ω

infinitely many times in every small neighbourhood of the origin. The proof now

is the same as the one seen above in the case α(s) = β(s).

Case 2. ι(s) = π. In this case, N ?
Ω(γ(s)) is the half-plane {(x1, x2) : x2 ≥ 0}.

For every ε > 0 there is a sector Sε, symmetrical with respect to the vertical axis,

having angular amplitude equal to 2ε, and there is a r > 0 such that Sε∩B(0, r)

contains Ω ∩ B(0, r), for every r ∈ ]0, r[. Let v = (v1, v2) be a vector with

‖v‖ = 1 and v2 > 0. Then, for every sufficiently small ε > 0, taking r ∈ ]0, r[,

we see that, for every x ∈ Ω ∩ B(0, r), being x ∈ Sε, the inequality (3.3) holds

true. Since ε is arbitrary, this shows that v ∈ NΩ(γ(s)). We have thus proved

that NΩ(γ(s)) contains the open set {(x1, x2) : x2 > 0}. Being a closed cone, it
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contains {(x1, x2) : x2 ≥ 0}, hence N ?
Ω(γ(s)) ⊆ NΩ(γ(s)). Then, equality must

hold, since NΩ(γ(s)) cannot be larger than a half-plane.

In the case when s = âk for some k ∈ {0, 1, . . . ,m}, the proof is essentially

the same, in view of (3.2), taking care of distinguishing the behaviour to the left

from the one to the right. We avoid the details, for briefness. �

3.3. A generalized version of Darboux’s Theorem. In the following

theorem and related corollary, we provide some important properties of the Dini

derivatives, in the spirit of Darboux’s Theorem.

Theorem 3.6. Let F : [a, b] → R be a continuous function such that, for

some µ ∈ R,

(3.4) Du
+F (a) > µ > D`

−F (b).

Then, there is a ξ ∈ ]a, b[ such that

D`
−F (ξ) ≥ µ ≥ Du

+F (ξ).

Proof. By Weierstrass Theorem, the function F̃ (t) = F (t)−µt has a maxi-

mum in [a, b]. By (3.4), a maximum point ξ must be in ]a, b[. Then, D`
−F̃ (ξ) ≥

0 ≥ Du
+F̃ (ξ), and since

D`
−F̃ (ξ) = D`

−F (ξ)− µ, Du
+F̃ (ξ) = Du

+F (ξ)− µ,

the result follows. �

The following corollary will play an important role in the proof of Theo-

rem 3.3.

Corollary 3.7. Let F : I → R be a continuous function, defined on some

interval I, and let τ0 be a point of I. Consider the set

E = {τ ∈ I : Du
+F (τ) ≤ D`

−F (τ)}.

If τ0 is a cluster point for E from the left, then

(3.5) D`
−F (τ0) ≥ lim inf

τ→τ−0
τ∈E

Du
+F (τ).

Similarly, if τ0 is a cluster point for E from the right, then

(3.6) Du
+F (τ0) ≤ lim sup

τ→τ+
0

τ∈E

D`
−F (τ).

Proof. Let us prove (3.5). Assume by contradiction that the opposite in-

equality holds. Then, we can find a δ > 0 and a real number µ such that

[τ0 − δ, τ0] ⊆ I and

(3.7) Du
+F (τ) > µ > D`

−F (τ0), for every τ ∈ [τ0 − δ, τ0[ ∩ E.
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Fix τ ∈ [τ0 − δ, τ0[ ∩ E. By Theorem 3.6, there is a ξ ∈ ]τ , τ0[ such that

D`
−F (ξ) ≥ µ ≥ Du

+F (ξ).

Then, we see that ξ ∈ E and, by (3.7), it should be Du
+F (ξ) > µ, a contradiction.

The proof of (3.6) is analogous. �

3.4. The proof of Theorem 3.3. The proof will be divided in three steps.

Step 1. First, we assume that the number of intervals [aj , bj ] is finite. Hence,

besides assuming that ∂Ω is piecewise the graph of a continuous function, we

also ask that there are 0 = a0 < a1 < . . . < an−1 < an = 1, such that, for

every j = 1, . . . , n, the restriction of γ to the open interval ]aj−1, aj [ is of class

C1, and γ ′j(s) 6= 0 for every s ∈ ]aj−1, aj [. Notice that, in this setting, the limits

lim
s→a±j

γ ′(s) do not have to exist.

In the following, for simplicity, we will ask that γ(0) = γ(1) is a regular

point, i.e. that γ ′+(0) = γ ′−(1). Let us start by assuming that each point aj is

contained in the interior of some ]âk−1, âk[.

We consider the function g = f ◦ γ : [0, 1] → R2 \ {0} and, extending it by

1-periodicity, we write g(s) = ρ(s)eiϕ(s), for some continuous functions ρ : R →
]0,+∞[ and ϕ : R→ R.

Being ϕ(0) /∈ Θ(0), let K ∈ Z be such that

(3.8) β(0) + 2πK < ϕ(0) +
1

2
π < α(0) + 2π(K + 1).

(Here, since ω(0) is single-valued, α(0) = β(0).) By continuity and Lemma 3.5,

it has to be that

ϕ(s) +
1

2
π > β(s) + 2πK, for every s ∈ [0, a1[.

We know that a1 ∈ ] âk−1, âk[, for some k ∈ {1, . . . ,m}. We consider the cor-

responding function t : ] âk−1, âk[ → ]ck, dk[, and set τ0 = t(a1). Then, recall-

ing (3.1), there exists some δ > 0 for which

ϕ
(
t−1(τ)

)
+

1

2
π > θ`−(τ)− θ̂ kΓ + 2πK, for every τ ∈ ]τ0, τ0 + δ[.

Then, by (3.6), recalling (3.1) again,

ϕ(a1) +
1

2
π = lim sup

τ→τ+
0

ϕ(t−1(τ)) +
1

2
π ≥ lim sup

τ→τ+
0

θ`−(τ)− θ̂ kΓ + 2πK(3.9)

≥ θu+(τ0)− θ̂ kΓ + 2πK = α(a1) + 2πK.

(Here the set E plays no role.) We have two possibilities.

Case 1. D`
−Fk(τ0) ≥ Du

+Fk(τ0). Then, by Lemma 3.5 and (3.9), it has to be

that

(3.10) ϕ(a1) +
1

2
π > β(a1) + 2πK.
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Case 2. D`
−Fk(τ0) < Du

+Fk(τ0). Then, α(a1) > β(a1), and from (3.9) we

get (3.10) again.

On the other hand, by (3.1) and (3.5),

β(a1) = θ`−(τ0)− θ̂ kΓ ≥ lim inf
τ→τ−0

θu+(τ)− θ̂ kΓ .

(Even here the set E plays no role.) So, by (3.10), there are a sufficiently small

ε > 0 and a strictly increasing sequence (τn)n such that lim
n
τn = τ0 and setting

sn = t−1(τn), by (3.1),

ϕ(a1) +
1

2
π − ε > θu+(τn)− θ̂ kΓ + 2πK = α(sn) + 2πK = β(sn) + 2πK.

(Here α(sn) = β(sn), being γ of class C1 on ]a1, a2[.) Since sn → a1, by conti-

nuity, for n large enough,

ϕ(sn) +
1

2
π > β(sn) + 2πK.

Hence, by Lemma 3.5 and the continuity of ϕ and β on ]a1, a2[,

ϕ(s) +
1

2
π > β(s) + 2πK, for every s ∈ ]a1, a2[.

Iterating this procedure on each interval ]aj−1, aj [, we thus prove that

ϕ(s) +
1

2
π > β(s) + 2πK, for every s ∈ ]aj−1, aj [.

By continuity and Theorem 3.4, recalling that ω(1) is single-valued and us-

ing (3.8),

ϕ(1) +
1

2
π ≥ β(1) + 2πK = α(1) + 2πK = α(0) + 2π(K + 1) > ϕ(0) +

1

2
π.

Since ϕ(1)− ϕ(0) is an integer multiple of 2π, we then deduce that

ϕ(1)− ϕ(0) ≥ 2π,

and the proof is completed. In the case when some aj coincides with some âk
the proof is easily adapted, in view of the definition given in (3.2), taking care

of the different functions involved when approaching aj from the left and from

the right.

Step 2. As a second step, we now assume that there are a countable number

of non-overlapping intervals [aj , bj ], contained in [0, 1], on the interior of which

γ is of class C1, and that the singular set

S = [0, 1] \
∞⋃
j=0

]aj , bj [

has a finite number of cluster points a′1 < . . . < a′N .

Keeping the same notations as above, for simplicity we ask that γ(0) = γ(1)

be a regular point, and we first assume that each point a′1, . . . , a
′
N is contained
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in the interior of some ]âk−1, âk[. Let K ∈ Z be such that (3.8) holds. Then, by

induction, using the result proved in Step 1, we see that

ϕ(s) +
1

2
π > β(s) + 2πK, for every s ∈ [0, a′1[.

We know that a′1 ∈ ]âk−1, âk[, for some k ∈ {1, . . . ,m}. We consider the corre-

sponding function t : ]âk−1, âk[ → ]ck, dk[, and set τ ′0 = t(a′1). Using (3.6), we

see like in (3.9) that ϕ(a′1) + π/2 ≥ α(a′1) + 2πK (here the set E plays no role).

We now have two possibilities.

Case 1. D`
−Fk(τ ′0) ≥ Du

+Fk(τ ′0). Then, by Lemma 3.5, it has to be that

(3.11) ϕ(a′1) +
1

2
π > β(a′1) + 2πK.

Case 2. D`
−Fk(τ ′0) < Du

+Fk(τ ′0). Then, α(a′1) > β(a′1), and we get (3.11)

again.

Now, using (3.5), there is a strictly decreasing sequence (sn)n such that

lim
n
sn = a′1, α(sn) ≤ β(sn), lim

n
α(sn) ≤ β(a′1).

(In this case, the set E plays a crucial role.) By (3.11), taking ε > 0 small

enough,

ϕ(a′1) +
1

2
π − ε > α(sn) + 2πK,

for every sufficiently large n. Being Θ(sn) = [α(sn), β(sn)] − π/2 + 2πZ, with

α(sn) ≤ β(sn), by Lemma 3.5 we have that

ϕ(a′1) +
1

2
π − ε > β(sn) + 2πK,

so that, by continuity, for n large enough,

ϕ(sn) +
1

2
π > β(sn) + 2πK.

We can now use the argument at the end of Step 1 to show that

ϕ(s) +
1

2
π > β(s) + 2πK, for every s ∈ ]a′1, a

′
2[.

Iterating this procedure, we easily conclude the proof. The case when some a′j
coincides with some âk is treated similarly, as already observed above.

Step 3. We have thus shown that the topological degree is a positive number

if S ′, the derived set of S, is finite. We can now repeat the argument in Step 2

assuming that S ′ is an infinite set, with a finite number of cluster points. And

this procedure can be carried on an arbitrary finite number of times. Since we

have assumed that S is a vanishing set, we will eventually reach an iterated

derived set having only a finite number of points. The proof is then completed

using once again the argument in Step 2. �
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