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COERCIVE FUNCTIONALS AND THEIR RELATIONSHIP

TO MULTIPLICITY OF SOLUTION

TO NONLOCAL BOUNDARY VALUE PROBLEMS

Christopher S. Goodrich

Abstract. We consider perturbed Hammerstein integral equations of the

form

y(t) = γ1(t)H1(ϕ1(y)) + γ2(t)H2(ϕ2(y)) + λ

∫ 1

0
G(t, s)f(s, y(s)) ds

in the case where H1 and H2 are continuous functions, which can be ei-

ther linear or nonlinear subject to some restrictions, and ϕ1, ϕ2 are linear

functionals. We demonstrate that by using a specially constructed order
cone one can equip ϕ1 and ϕ2 with coercivity conditions that are useful

in proving existence of multiple positive solutions. In addition, we demon-

strate that the methodology can be superior to competing methodologies.
We provide an application to the modeling of the deflection of an elastic

beam.

1. Introduction

In this paper we consider the perturbed Hammerstein integral equation

(1.1) y(t) = γ1(t)H1(ϕ1(y)) + γ2(t)H2(ϕ2(y)) + λ

∫ 1

0

G(t, s)f(s, y(s)) ds,
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where ϕi : C
(
[0, 1]

)
→ R are linear functionals, which are able to be represented

in the form

ϕi(y) :=

∫
[0,1]

y(t) dαi(t),

and γi : [0, 1] → [0,+∞), Hi : R → [0,+∞) are continuous functions. We have

recently considered such problems [11]–[14] and have demonstrated in a few

different contexts (e.g. the positone problem, the semipositone problem, and the

case of a vanishing or sign-changing Green’s function) that existence results in

some situations can be improved if we look for solutions of (1.1) from the cone

K :=
{
y ∈ C ([0, 1]) : y ≥ 0, ϕ1(y) ≥ C0‖y‖, ϕ2(y) ≥ D0‖y‖

}
,

where C0 and D0 are the constants defined by

C0 := inf
s∈S0

1

G (s)

∫ 1

0

G(t, s) dα1(t) and D0 := inf
s∈S0

1

G (s)

∫ 1

0

G(t, s) dα2(t)

with G (s) := sup
t∈[0,1]

|G(t, s)| and S0 ⊆ [0, 1] a set of full measure to be detailed in

Section 2. In other words, the cone K restricts our search for solutions of (1.1)

to those maps that cause each of the functionals ϕ1 and ϕ2 to be coercive with

coercivity constants C0 and D0. We have previously utilized a cone such as K
when studying existence of positive solution to perturbed Hammerstein equations

(see, for example, [13]–[15]), though not in any investigations of multiplicity of

solution as we investigate here.

Particularly, when used in conjunction with the open set

V̂ρ,i := {y ∈ K : ϕi(y) < ρ}

this methodology can be more effective than existing methodologies in the litera-

ture; note that the above set is (relatively) open in the cone K – see Lemma 2.2.

It is worth noting at this juncture that while problems such as (1.1) can be

studied as a problem in pure mathematics, such nonlocal problems do arise

naturally in various applications such as problems in beam deflection, chemical

reactor theory, and thermostatics – see, respectively, Infante and Pietramala [22],

Infante, Pietramala, and Tenuta [27], and Cabada, Infante, and Tojo [3]. In fact,

we provide an example of such an application, namely a problem in modeling

beam deflection, in Example 3.3 later in this paper. More specifically, we consider

the differential equation

y(4)(t) = f(t, y(t)), t ∈ (0, 1)

subject to the nonlocal boundary conditions

y(0) = H1

(
ϕ1(y)

)
, y′(0) = 0, y′′(1) = 0, y′′′(1) = −H2(ϕ2(y)).

The physical meaning of this problem is described in more detail in Example 3.3.

Succinctly, however, it describes the deflection of an elastic beam with controllers
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which affect the deflection at the left end (t = 0) and the shearing force at the

right end (t = 1). This type of problem was also studied in the already mentioned

paper of Infante and Pietramala [22].

The contribution of this note is twofold. First of all, we demonstrate how our

methodology can generate quite easily conditions under which (1.1) will possess

multiple positive solutions. Our results are stated more precisely in Section 2,

but, loosely, one interpretation of one of the results is that if there are two

positive numbers ρ1 6= ρ2 such that, for i = 1, 2,

H(ρi)

ρi
>

1

ϕ1(γ1)

and, in addition, if 0 < λ < λ0 for some computable λ0 > 0, then problem

(1.1) has at least two positive solutions. In particular, by using V̂ρ,i and K in

tandem, we can move the usual interval -type conditions on f (e.g. [1], [18], [20],

[25], [30], [46], [47]) or asymptotic-type conditions (e.g. [8], [10], [46], [47]) to

pointwise-type conditions on H. Note that by an “interval-type condition” we

mean, for example, a condition of the form

max
z∈[a,b]

H(z) ≤ C < +∞,

whereas by an “asymptotic-type condition” we mean, for example, a condition

of the form

lim
z→+∞

H(z)

z
= +∞.

Second of all, we also demonstrate that this methodology may be more effec-

tive in the special case of nonlocal elements associated to sign-changing Stieltjes

measures. For example, in three very interesting and recent papers Cabada, In-

fante, and Tojo [3], [4] and Cianciaruso, Infante and Pietramala [6] utilize a new

methodology for treating problems like (1.1). Among other facets of their theory,

is the requirement that the linear functionals, such as ϕ1, satisfy a sort-of upper

boundedness condition of the form

H(ϕ1(y)) ≤ αρ(y), for all y ∈ ∂Ωρ :=
{
y ∈ C

(
[0, 1]

)
: ‖y‖ = ρ

}
,

where αρ is a linear functional and ρ > 0 is some fixed number – a similar

lower boundedness condition is also required; it should be remarked that their

methodology is somewhat more general than the above suggests, but it accurately

captures the spirit of the condition they impose. However, the function αρ must

be able to be written in the form (see, for example, [6, Lemma 2.3])∫ 1

0

y(t) dAρ(t),
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where dAρ is a positive Stieltjes measure. This can create some issues if the

function ϕ1 above is associated to a sign-changing Stieltjes measure. We explic-

itly demonstrate this in Remark 3.2, where we argue that our methodology may

be more naturally suited to these types of problems.

We conclude this section by mentioning some of the relevant literature.

In addition to the papers already mentioned, there exists a substantial number

of papers on nonlocal boundary value problems, whether with linear nonlocal

or nonlinear nonlocal boundary conditions. Two papers of historical interest

in the area and which are worth reading are those by Picone [38] and Why-

burn [44]. A general and useful theory for nonlocal BVPs with linear nonlo-

cal BCs was developed by Webb and Infante [41], [43], further refined by In-

fante and co-authors in many other subsequent papers such [42]. Somewhat

earlier Karakostas and Tsamatos [30], [31] studied nonlocal BVPs as related to

certain Fredholm integral equations, and, then, somewhat contemporaneously

Yang [48], [49] also studied fairly general nonlocal BVPs. A number of related

papers, both complementing these mentioned papers and extending them in var-

ious directions, have appeared, such as ones by Cianciaruso and Pietramala [7],

Goodrich [9], Graef and Webb [17], Infante and Pietramala [21], [23], [24], [26],

Infante, Minhós, and Pietramala [19], Infante, Pietramala, and Tenuta [27],

Jankowski [28], Karakostas [29], and Webb [40]. Since the study of such BVPs

is closely connected to the study of perturbed Hammerstein integral equations,

one may consult papers by Lan [32], Lan and Lin [33], Liu and Wu [36], Xu

and Yang [45], and Yang [50] for various applications of Hammerstein integral

equations. In this paper, by contrast, we continue to demonstrate that in con-

trast to the existing methodologies in the literature, our approach of utilizing

a nonstandard cone together with the V̂ -type set can be advantageous in certain

problems.

2. Preliminaries and main results

We begin this section by mentioning the basic hypotheses that we impose on

the constituent parts of problem (1.1).

(H1) For each i = 1, 2 the functional ϕi has the form

ϕi(y) :=

∫
[0,1]

y(t) dαi(t),

where αi : [0, 1] → R satisfies αi ∈ BV([0, 1]). In addition, let the con-

stants C1, D1 > 0 be selected so that, for each y ∈ C ([0, 1]),

|ϕ1(y)| ≤ C1‖y‖ and |ϕ2(y)| ≤ D1‖y‖.

(H2) The kernel G : [0, 1] × [0, 1] → [0,+∞) appearing in (1.1) satisfies each

of the following conditions:
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(1) G ∈ L1([0, 1]× [0, 1]).

(2) For almost every s ∈ [0, 1] it follows that

lim
t→τ
|G(t, s)−G(τ, s)| = 0 for each τ ∈ [0, 1].

(3) It holds that G (s) := sup
t∈[0,1]

|G(t, s)| < +∞ for each s ∈ [0, 1], with

the map s 7→ G (s) not identically zero.

(H3) There exists a set S0 of full measure (i.e. |S0| = 1) such that the num-

bers C0 and D0, which are defined by

C0 := inf
s∈S0

1

G (s)

∫ 1

0

G(t, s) dα1(t)

and

D0 := inf
s∈S0

1

G (s)

∫ 1

0

G(t, s) dα2(t),

satisfy C0, D0 ∈ (0,+∞).

(H4) The functions γ1, γ2 : [0, 1]→ [0,+∞), H1, H2 : R→ [0,+∞), f : [0, 1]×
[0,+∞) → [0,+∞) are continuous and, in addition, for each i = 1, 2 it

holds both that

ϕ1(γi) ≥ C0‖γi‖ and ϕ2(γi) ≥ D0‖γi‖.

As mentioned in Section 1 we will subsequently use the cone K ⊆ C
(
[0, 1]

)
defined by

K :=

{
y ∈ C ([0, 1]) : y ≥ 0, ϕ1(y) ≥

(
inf
s∈S0

1

G (s)

∫ 1

0

G(t, s) dα1(t)

)
‖y‖,

ϕ2(y) ≥
(

inf
s∈S0

1

G (s)

∫ 1

0

G(t, s) dα2(t)

)
‖y‖
}
.

Remark 2.1. We note that the cone K is inspired by related cones studied

by Graef, Kong and Wang [16], Webb [40], and Ma and Zhong [37].

For convenience we include a statement of the properties of the set V̂ρ,i
described in Section 1 – see [11] for additional details.

Lemma 2.2. For ρ > 0 define the set V̂ρ,i by V̂ρ,i := {y ∈ K : ϕi(y) < ρ}.
Then each of the following is true.

(a) If y ∈ ∂V̂ρ,i, then ϕi(y) = ρ, where by ∂V̂ρ,i we mean the boundary

relative to the cone K.

(b) If ρ1 < ρ2, then V̂ρ1,i ⊂ V̂ρ2,i.
(c) For each ρ > 0 the set V̂ρ,i is (relatively) open in K.

Remark 2.3. We note that sets similar to the open set V̂ρ,i, namely open sets

involving a bound on an appropriate functional used in concert with topological

fixed point methods and Hammerstein equations, can be found as far back as

the well-known paper of Leggett and Williams [34].
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Notation 2.4. For the functions f and H identified in condition (H3) above,

we utilize the following notation.

(a) For each [a, b] ⊆ [0, 1] and [c, d] ⊆ [0,+∞) we put

fM[a,b]×[c,d] := max
(t,y)∈[a,b]×[c,d]

f(t, y).

(b) For given i = 1, 2 and for each [a, b] ⊆ [0,+∞) we put

HM,i
[a,b] := max

z∈[a,b]
Hi(z).

Now consider the operator T : C ([0, 1])→ C
(
[0, 1]

)
defined by

(Ty)(t) := γ1(t)H1(ϕ1(y)) + γ2(t)H2(ϕ2(y)) + λ

∫ 1

0

G(t, s)f(s, y(s)) ds.

A solution of the operator equation (Ty)(t) = y(t), for t ∈ [0, 1], is then a solution

of the integral equation (1.1). With this in mind we state the main result of this

section. We note that the proof methodology for the existence results is via fixed

point index theory – see Zeidler [52] for more details.

Theorem 2.5. Assume that conditions (H1)–(H4) hold. Assume that ‖γ1‖,
‖γ2‖ 6= 0. If there exist numbers ρ1, ρ2, ρ3 > 0, where either

(a) ρ1 > ρ2 > ρ3 or

(b) ρ3 > ρ2 > ρ1

such that

(i)
H1(ρ1)

ρ1
>

1

ϕ1(γ1)
;

(ii)

H1(ρ2)ϕ1(γ1) +
(
HM,2

[D0ρ2/C1,D1ρ2/C0]

)
ϕ1(γ2)

+ λ
(
fM[0,1]×[0,ρ2/C0]

) ∫ 1

0

∫ 1

0

G(t, s) dα1(t) ds < ρ2;

(iii)
H1(ρ3)

ρ3
>

1

ϕ1(γ1)

then problem (1.1) has at least two positive solutions.

Proof. It is standard to show that T is a completely continuous operator,

and so, we omit this part of the proof. Moreover, it has been shown in other pa-

pers that T (K) ⊆ K, and so, we also omit that demonstration – see, for example,

[12, Lemma 2.12], [13, Lemma 2.3], [14, Theorem 3.1], and [15, Lemma 2.5] for

materially identical arguments of this type. Without loss of generality, through-

out the proof we assume that ρ3 > ρ2 > ρ1 – the case in which ρ1 > ρ2 > ρ3 is

treated essentially in an identical manner.

We demonstrate first that for each y ∈ ∂V̂ρ1,1 and for each µ ≥ 0 it holds

that y 6= Ty+µe, where e(t) := γ1(t). So, for contradiction, suppose not. Then,
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there exists y ∈ ∂V̂ρ1,1 and a number µ ≥ 0 such that y = Ty+µe. Applying ϕ1

to both sides of the operator equation implies that

(2.1) ρ1 > ϕ1(γ1)H1(ρ1) > ρ1,

which is a contradiction; note that in (2.1) we use that (for each i = 1, 2)∫ 1

0

G(t, s) dαi(t) > 0,

for almost every s ∈ [0, 1]. Inequality (2.1) implies that

(2.2) iK
(
T, V̂ρ1,1

)
= 0.

In a completely similar manner, we obtain that

(2.3) iK
(
T, V̂ρ3,1

)
= 0.

On the other hand, we show that for each y ∈ ∂V̂ρ2,1 it follows that µy 6= Ty

for each µ ≥ 1. Suppose not. Then, for some y ∈ ∂V̂ρ2,1 and some number

µ ≥ 1, we have that µy = Ty, and so, applying ϕ1 to both sides of the operator

equation we obtain

(2.4) ρ2 < ϕ1(γ1)H1(ρ2) + ϕ1(γ2)H2

(
ϕ2(y)

)
+ λ

∫ 1

0

∫ 1

0

G(t, s)f
(
s, y(s)

)
dα1(t) ds.

Note that, since ϕ1(y) = ρ2, it follows that cρ2/C1 ≤ ‖y‖ ≤ ρ2/C0. Conse-

quently, since D0‖y‖ ≤ ϕ2(y) ≤ D1‖y‖, it follows that

D0ρ2
C1

≤ ϕ2(y) ≤ D1ρ2
C0

.

Therefore, we estimate both that

(2.5) 0 ≤ f
(
s, y(s)

)
≤ fM[0,1]×[0,ρ2/C0]

and that

(2.6) 0 ≤ H2

(
ϕ2(y)

)
≤ HM,2

[D0ρ2/C1,D1ρ2/C0]
.

Then, putting (2.5)–(2.6) into inequality (2.4), we arrive at the inequality

ρ2 < ϕ1(γ1)H1(ρ2) + ϕ1(γ2)H2(ϕ2(y)) + λ

∫ 1

0

∫ 1

0

G(t, s)f(s, y(s)) dα1(t) ds

≤ ϕ1(γ1)H1(ρ2) +
(
HM,2

[D0ρ2/C1,D1ρ2/C0]

)
ϕ1(γ2)

+ λ
(
fM[0,1]×[0,ρ2/C0]

) ∫ 1

0

∫ 1

0

G(t, s) dα1(t) ds < ρ2,

which is a contradiction. Consequently, we conclude that

(2.7) iK
(
T, V̂ρ2,1

)
= 1.
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Finally, putting (2.2), (2.3), and (2.7) together and using the fact that ρ3 >

ρ2 > ρ1 > 0, we conclude that

(2.8) iK
(
T, V̂ρ2,1 \ V̂ρ1,1

)
= 1

and that

(2.9) iK
(
T, V̂ρ3,1 \ V̂ρ2,1

)
= −1.

Since V̂ρ3,1 ⊃ V̂ρ2,1 ⊃ V̂ρ1,1, it follows from (2.8)–(2.9) that there exist maps

y1 ∈ V̂ρ2,1 \ V̂ρ1,1 and y2 ∈ V̂ρ3,1 \ V̂ρ2,1

such that Tyi = yi for each i = 1, 2. Since, in addition, for each i = 1, 2 we have

that ‖yi‖ > 0 and (
V̂ρ2,1 \ V̂ρ1,1

)
∩
(
V̂ρ3,1 \ V̂ρ2,1

)
= ∅,

it follows that y1 and y2 are nontrivial, distinct positive solutions to equa-

tion (1.1). �

Remark 2.6. Notice that condition (ii) of Theorem 2.5 can be recast as

requiring that the parameter λ satisfy λ ∈
(
0, λ0

)
, where

(2.10) λ0 :=
[
ρ2 −

(
H1(ρ2)ϕ1(γ1) +

(
HM,2

[D0ρ2/C1,D1ρ2/C0]

)
ϕ1(γ2)

)]
×
(
fM[0,1]×[0,ρ2/C0]

∫ 1

0

∫ 1

0

G(t, s) dα1(t) ds

)−1
.

In other words, problem (1.1) has at least one positive solution provided that

conditions (i) and (iii) are satisfied, and, in addition, the number λ is sufficiently

small according to inequality (2.10) above.

Numerous slight variations of Theorem 2.5 may be provided. We state a rep-

resentative example.

Corollary 2.7. Assume that conditions (H1)–(H4) hold, that H2(z) ≡ 0,

and that ‖γ1‖ 6= 0. If there exist numbers ρ1, ρ2, ρ3 > 0, where either

(a) ρ1 > ρ2 > ρ3 or

(b) ρ3 > ρ2 > ρ1;

such that

(i)
H1(ρ1)

ρ1
>

1

ϕ1(γ1)
;

(ii) H1(ρ2)ϕ1(γ1) + λ
(
fM[0,1]×[0,ρ2/C0]

) ∫ 1

0

∫ 1

0

G(t, s) dα1(t) ds < ρ2; and

(iii)
H1(ρ3)

ρ3
>

1

ϕ1(γ1)

then problem (1.1) has at least two positive solutions.
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Finally, we conclude this section with a remark.

Remark 2.8. It is easy to see that the technique utilized in the proof of

Theorem 2.5 can be replicated to derive theorems guaranteeing existence of n

distinct positive solutions for problem (1.1) for any integer n ≥ 3. However, we

omit the statement of such results here.

3. Analysis and application of the methodology

In this section we begin by providing an example to illustrate the possible

advantage of utilizing coercive linear functionals. The example is a modification

of an example given in [13], and it also serves to illustrate the applicability of

the theorems we have given in Section 2 of this paper.

Example 3.1. Consider the functional

ϕ1(y) := y

(
1

40

)
.

If we set H1(z) := 121
(
z3 +

√
z
)
/195, then

H1(ϕ1(y)) =
121

195

((
y

(
1

40

))3

+

√
y

(
1

40

))
.

Then we consider the boundary value problem

(3.1)

−y′′ = f
(
t, y(t)

)
, t ∈ (0, 1)

y(0) =
121

195

((
y

(
1

40

))3

+

√
y

(
1

40

))
y(1) = 0.

In this case we select γ1(t) := 1−t, so that ϕ1(γ1) = 39/40, so 1/ϕ1(γ1) = 40/39.

In addition, we note that the coercivity constant C0 is here computed to be

C0 = 1/40 since

inf
s∈(0,1)

1

G (s)

∫ 1

0

G(t, s) dα(t) = inf
s∈(0,1)


1

40s
, 0 <

1

40
< s < 1,

39

40(1− s)
, 0 < s <

1

40
< 1,

=
1

40
,

where G is the Green’s function defined by

(3.2) G(t, s) :=

t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.

Furthermore, observe that

ϕ1(γ1) =
39

40
≥ 1

40
‖γ1‖.
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Consider Corollary 2.7. Notice that if we put ρ1 := 10−4, say, then

H1(ρ1)

ρ1
=

121

195

(
ρ31 +

1
√
ρ1

)
=

121

195
(10−12 + 100) >

40

39
,

and so, condition (i) of the theorem is satisfied. Similarly, if we select ρ3 := 10,

then
H1(ρ3)

ρ3
=

121

195

(
ρ33 +

1
√
ρ3

)
=

121

195

(
1000 +

1√
10

)
>

40

39
,

and so, condition (iii) of the theorem is satisfied. We conclude that if there exists

a number ρ2 ∈ (10−4, 10) such that

(3.3)
121

200

(
ρ32 +

√
ρ2
)

+ λ
(
fM[0,1]×[0,40ρ2]

) ∫ 1

0

∫ 1

0

G(t, s) dα(t) ds︸ ︷︷ ︸
=39/3200

< ρ2,

then problem (3.1) will have at least two positive solutions. Regarding the

choice of the constant ρ2 note that inequality (3.3) is not so restrictive since

condition (i) of Corollary 2.7 is, in fact, satisfied for all ρ1 sufficiently small and,

likewise, condition (iii) of the corollary is satisfied for all ρ3 sufficiently large.

Consequently, we have sufficient latitude in how we can choose the number ρ2.

In particular, note that condition (3.3) is the same as requiring that

(3.4) λ <
3200

39

(
fM[0,1]×[0,40ρ2]

)−1(
ρ2 −

121

200

(
ρ32 +

√
ρ2
))
.

Evidently, for (3.4) to be sensible, we must require that

(3.5) ρ2 −
121

200

(
ρ32 +

√
ρ2
)
> 0.

But inequality (3.5) is, to four decimal places of accuracy, satisfied for 0.5375 /

ρ2 / 0.6124. Therefore, if we take, say,

ρ1 = 10−4, ρ2 = 0.5756, ρ3 = 10,

then provided that the inequality, where we have rounded

3200

39

(
ρ2 −

121

200

(
ρ32 +

√
ρ2
))

to five decimal places of accuracy,

0 < λ < 0.10011
(
fM[0,1]×[0,23.024]

)−1
is satisfied, by Corollary 2.7 we deduce the existence of at least two positive

solutions, y1 and y2, to problem (3.1) such that y1 and y2 satisfy the localization:

y1 ∈ V̂0.5756 \ V̂0.0001, y2 ∈ V̂10 \ V̂0.5756.

We note that the value of ρ2 selected above has the property that it maximizes

the upper bound for λ (at least if we use four decimal places of accuracy).



Coercive Functionals and Multiplicity of Solution 419

Remark 3.2. Whereas Example 3.1 demonstrated the application of one of

our results, we now wish to compare and contrast our methodology with that

presented by Cianciaruso, Infante, and Pietramala [6]. To this end suppose that

the boundary conditions in (3.1) were replaced by the boundary conditions

y(0) =
197

195
y

(
1

40

)
− y
(

1

50

)
, y(1) = 0.

It can be shown that ∫ 1

0

∫ 1

0

G(t, s) dα(t) ds =
201

80000
> 0,

C0 =
1

200
> 0 and ϕ(γ) =

1

200
> 0,

where, recall, γ(t) := 1−t. It can then be shown that if we use the nonlinear func-

tion H(z) = z3 +
√
z, then the conditions in, for example, Corollary 2.7 are sat-

isfied for any ρ1, ρ3 ∈ (0,+∞) and, approximately, any ρ2 ∈ (0.000025, 14.1327).

All in all, then, our results can be reasonably applied to this problem.

We now consider what happens were to use instead the methodology by

Cianciaruso, Infante and Pietramala [6]. In this eventuality we might begin by

writing

ψ(y) :=

(
197

195
y

(
1

40

)
− y
(

1

50

))3

+

√
197

195
y

(
1

40

)
− y
(

1

50

)
,

where ψ is a nonlinear functional, and, among conditions, we would need to find

a linear functional αρ(y) such that (see [6, Lemma 2.3])

(3.6) ψ(y) ≥ αρ(y),

whenever y ∈ ∂Ωρ ∩ K′ := {y ∈ C ([0, 1]) : ‖y‖ = ρ} ∩ K′, for some ρ > 0 and

where

K′ :=
{
y ∈ C

(
[0, 1]

)
: y ≥ 0, min

t∈[a,b]
y(t) ≥ η0‖y‖

}
.

The constant η0 appearing in the definition of K′ will generally depend on a

and b, i.e. η0 := η0(a, b). For example, for G defined by (3.2) it is known that

η0 := min{a, 1− b}.
Note that, as described in [6, Lemma 2.3], the functional αρ must be asso-

ciated to a positive Stieltjes measure. Consequently, the natural choice of

αρ(y) := A

(
197

195
y

(
1

40

)
− y
(

1

50

))
,

for some constant A > 0, is not admissible since this functional is associated to

a signed Stieltjes measure. Were the above functional admissible, then verify-

ing (3.6) would be straightforward since it would amount to determining whether

there is z > 0 such that z3 +
√
z ≥ Az for some A ≥ 0. But this we cannot do on
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account of the restricted nature of αρ. Instead one must try less straightforward

choices for αρ.

For example, we could choose αρ(y) := Ay(1/40), for some constant A > 0,

as a natural alternative choice. Then we would have to show that

(3.7) Ay

(
1

40

)
≤
(

197

195
y

(
1

40

)
− y
(

1

50

))3

+

√
197

195
y

(
1

40

)
− y
(

1

50

)
for all y ∈ ∂Ωρ ∩K′. In fact, one can study inequality (3.7) numerically by, say,

putting ξ1 := y(1/40) and ξ2 := y(1/50) and then studying the problem

Aξ1 ≤
(

197

195
ξ1 − ξ2

)3

+

√
197

195
ξ1 − ξ2.

One then needs to show, in addition, that the relative values of ξ1 and ξ2 are

such that y is an element of K′. While, in principle, this can be accomplished,

it is more technical and complicated. So, we see that when dealing with a sign-

changing measure, the method utilized here works somewhat more naturally

than that of [6]. Therefore, it may be simpler to check the three, straightforward

numerical conditions of, say, Corollary 2.7 rather than embarking on a sequence

of technical calculations requiring, in part, the numerical solver of a computer

algebra system.

To conclude this paper we provide an example of the application of the

results to a model problem in beam deflection in order to demonstrate that our

methodology can be applied to a problem arising from modeling. This example

will also illustrate how our theory can treat a Green’s function different from the

examples just given.

Before presenting the example let us note that some additional background

on the modeling of elastic beams with nonlocal controllers can be found in the

paper by Infante and Pietramala [22]. In particular, they consider the problem

u(4)(t) = g(t)f
(
t, u(t)

)
, t ∈ (0, 1)

subject to the nonlocal BCs

u(0) = u′(0) = u′′(1) = 0 and u′′′(1) + k0 +B
(
α[u]

)
= 0,

where k0 is a constant, B is a continuous function, and α is a functional that

represents a nonlocal element. The condition

u′′′(1) + k0 +B
(
α[u]

)
= 0

describes some sort of controller that affects the shearing force at the right end

of the beam. For example, if the condition reads u′′′(1) +B(u(η)) = 0 for some

0 < η < 1, then this would describe a sort of feedback mechanism in which the

spring reacts to the displacement from equilibrium at the point η units along the

length of the beam.
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So that our example is related to [22] we will also study the situation of

a controller at the right end (t = 1) of the beam such that the controller affects

the shearing force. In addition, we will impose a controller at the left end (t = 0)

that affects the displacement of the beam at this point.

Example 3.3. Let us consider the problem

(3.8) y(4)(t) = f
(
t, y(t)

)
, t ∈ (0, 1)

subject to the boundary conditions

(3.9) y(0) = y′(0) = 0 = y′′(1) = y′′′(1).

As mentioned in Cianciaruso, Infante, and Pietramala [6] this can model the

stationary states of the deflection of an elastic beam – see also the exposition

regarding this problem in [2], [5], [35], [39], [51]. In the case of boundary con-

ditions (3.9) the beam would be assumed to be clamped at the left end (i.e.

neither position deflection nor nonzero derivative) and with free deflection at

the right end but subjected to a zero bending moment (namely, y′′(1) = 0) and

a zero shearing force (namely, y′′′(1) = 0). It is known that the Green’s function

associated to the problem with the homogeneous boundary conditions (3.9) is

(3.10) G(t, s) :=


1

6

(
3t2s− t3

)
, s ≥ t,

1

6

(
3s2t− s3

)
, s ≤ t.

For this problem it can be shown (see, for example, Cianciaruso, Infante, and

Pietramala [6] or Infante and Pietramala [22]) that for this Green’s function the

function s 7→ G (s) is

(3.11) G (s) :=
1

2
s2 − 1

6
s3.

To provide an example of how our theory can be applied to a problem similar

to (3.8)–(3.9), let us consider problem (3.8) but now subject to the following

nonlocal boundary conditions:

(3.12) y(0) = H1(ϕ1(y)), y′(0) = 0, y′′(1) = 0, y′′′(1) = −H2(ϕ2(y)).

The boundary conditions in (3.12) indicate that the deflection of the bar at the

left end is affected by a controller, mathematically described as the nonlocal

element H1

(
ϕ1(y)

)
, whereas there exists a different controller, mathematically

described as the nonlocal element H2

(
ϕ2(y)

)
, affecting the shearing force at the

right end of the beam. Here we will assume that

ϕ1(y) := y

(
1

40

)
, ϕ2(y) := y

(
3

4

)
.

Of course, more complicated nonlocal elements could also be utilized.
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In order to see how our theory could apply to problem (3.8), (3.12) we first

calculate the coercivity constants C0 and D0. Using (3.10)–(3.11) together with

the definition of ϕ1 we note that for 0 ≤ s ≤ 1/40 we have that

1

G (s)

∫ 1

0

G(t, s) dα1(t) =

1

6

(
3

40
s2 − s3

)
1

2
s2 − 1

6
s3

,

whereas for 1/40 ≤ s ≤ 1 we have that

1

G (s)

∫ 1

0

G(t, s) dα1(t) =

1

6

(
3

1600
s− 1

64000

)
1

2
s2 − 1

6
s3

.

Then we see by direct computation that

C0 := inf
s∈(0,1]

1

G (s)

∫ 1

0

G(t, s) dα1(t) =

[
1

G (s)

∫ 1

0

G(t, s) dα1(t)

]
s=1

=
119

128000
.

In a similar way, we compute D0. To this end we note that, if 0 ≤ s ≤ 3/4, then

1

G (s)

∫ 1

0

G(t, s) dα2(t) =

1

6

(
9

4
s2 − s3

)
1

2
s2 − 1

6
s3

whereas, if 3/4 ≤ s ≤ 1, then

1

G (s)

∫ 1

0

G(t, s) dα2(t) =

1

6

(
27

16
s− 27

64

)
1

2
s2 − 1

6
s3

.

Then direct computation again yields

D0 := inf
s∈(0,1]

1

G (s)

∫ 1

0

G(t, s) dα2(t) =
81

128
.

Let us now consider the integral equation

(3.13) y(t) = γ1(t)H1(ϕ1(y)) + γ2(t)H2(ϕ2(y)) +

∫ 1

0

G(t, s)f(s, y(s)) ds,

where we define the functions γ1 and γ2 as follows:

γ1(t) ≡ 1, γ2(t) :=
1

6

(
3t2 − t3

)
.

Then a solution of problem (3.15) is a solution of problem (3.8), (3.12).
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Now note the following:

ϕ1(γ1) = γ1

(
1

40

)
= 1 ≥ 119

128000
· 1 = C0‖γ1‖,

ϕ1(γ2) = γ2

(
1

40

)
=

119

384000
=

119

128000
· 1

3
= C0‖γ2‖,

ϕ2(γ1) = γ1

(
3

4

)
= 1 ≥ 81

128
· 1 = D0‖γ1‖,

ϕ2(γ2) = γ2

(
3

4

)
=

27

128
=

81

128
· 1

3
= D0‖γ2‖.

Therefore, condition (H3) is verified. Condition (H2) has already been verified

by calculating the coercivity constants as above. Condition (H1) is obvious.

Finally, condition (H4) is also easy to verify since we have already provided the

formula for the map s 7→ G (s) and parts (1)–(2) of (H2) are obvious. Therefore,

conditions (H1)–(H4) are satisfied.

Finally, depending upon the choice of the functions H1, H2, and f we may

then apply our previous existence theorems. For example, if, say,

H1(z) :=
1

20

(
z3 +

√
z
)
, H2(z) :=

√
z,

then we will be able to apply Theorem 2.5 and thus deduce that problem (3.8),

(3.12) will have at least two positive solutions provided that there exist numbers,

say, ρ1 > ρ2 > ρ3 such that

(3.14) ρ21 +
1
√
ρ1

> 20

and, recalling that λ = 1 here in light of the right-hand side of equation (3.8),

(3.15)
1

20

(
ρ32 +

√
ρ2
)

+
119

384000

√
128000

119
ρ2

+
(
fM[0,1]×[0,128000/119ρ2]

) ∫ 1

0

∫ 1

0

G(t, s) dα1(t) ds < ρ2

and

(3.16) ρ23 +
1
√
ρ3

> 20.

Similar statements may be made for other choices of the functions H1 and H2.

Now, conditions (3.14) and (3.16) are clearly able to be satisfied either for either

ρ1 > 0 or ρ3 > 0 sufficiently small or, alternatively, for either ρ1 > 0 or ρ3 > 0

sufficiently large. Moreover, since

1

20

(
ρ32 +

√
ρ2
)

+
119

384000

√
128000

119
ρ2 < ρ2
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is true for (approximately) 0.00362 < ρ2 < 4.40759, it follows that inequal-

ity (3.15) is not vacuous. All in all, then, the existence theorems of Section 2

can be readily applied to problem (3.8), (3.12).

Acknowledgments. I would like to thank the five anonymous referees for

their constructive comments, which led to an improved presentation of the re-

sults.
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