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BLOW-UP SOLUTIONS

FOR A p-LAPLACIAN ELLIPTIC EQUATION

OF LOGISTIC TYPE WITH SINGULAR NONLINEARITY

Claudianor O. Alves — Carlos Alberto Santos — Jiazheng Zhou

Abstract. In this paper, we deal with existence, uniqueness and exact

rate of boundary behavior of blow-up solutions is for a class of logistic
type quasilinear problems in a smooth bounded domain involving the p-

Laplacian operator, where the nonlinearity can have a singular behavior.

In the proof of the existence of solution, we have used the sub and super
solution method in conjunction with variational techniques and comparison

principles. Related to the rate on boundary and uniqueness, we combine

comparison principle with our result of existence of solution.

1. Introduction

In this paper, we consider existence, uniqueness and exact rate of bound-

ary behavior of blow-up (large or explosive) solutions for the following class of

quasilinear problem of logistic type

(P)λ


−∆pu = λa(x)g(u)− b(x)f(u) in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω,
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where Ω ⊂ RN is a bounded domain with smooth boundary, λ > 0 is a real pa-

rameter, ∆p stands for the p-Laplacian operator given by ∆pu=div(|∇u|p−2∇u),

1 < p < +∞, a, b : Ω → R are appropriate functions with b 	 0, a can change

the signal and f : [0,+∞) → [0,+∞), g : (0,+∞) → [0,+∞) are continuous

functions satisfying some technical conditions, which will be stated later on. We

point out that the case λ = 0 is well known and our principal interest lies in the

case when g is singular at 0, i.e. g(s)→ +∞ as s→ 0+.

We say that a function u ∈ C1,ν
loc (Ω), for some ν ∈ (0, 1), is a solution of

problem (P)λ, if

u(x)→ +∞ as d(x) := dist(x, ∂Ω)→ 0,∫
Ω

|∇u|p−2∇u∇ϕ =

∫
Ω

[λa(x)g(u)− b(x)f(u)]ϕ, for all ϕ ∈ C∞0 (Ω),

where d(x) stands for the distance of a point x ∈ Ω to ∂Ω.

We have no intention to be too exhaustive in doing an overview of the context

of our work, but since this class of problems seems to be very wide we present

a number of works that motivated this paper even knowing that there are many

important papers out of our list. We begin with the work of Delgado, López-

Gómez and Suárez [2] from 2002 that showed existence of blow-up solution for

the problem 
−∆u = λu1/m − b(x)up/m in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω,

where λ ∈ R, 1 < m < p and b(x) ≥ 0. Motivated by that paper, in 2004, the

same authors studied in [3] the following problem
−∆u = a(x)uq − b(x)f(u) in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω,

where 0 < q < 1, a ∈ L∞(Ω), 0 < b ∈ Cµ(Ω) for some µ ∈ (0, 1) and f satisfies

some technical conditions, such as, f is an increasing continuous and verifies the

Keller–Osserman condition (with p = 2 see [11] and [17]), that is

(KO)

∫ ∞
1

F (t)−1/p dt <∞ where F (t) =

∫ t

0

f(τ) dτ .

In 2006, the same class of problem was considered by Du [5], with q = 1 and

f(u) = up. In 2009, Feng in [7] showed that the problem
−∆u = λg(u)− b(x)f(u) in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω,
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admits a unique solution for λ ∈ R, 0 < b ∈ Cµ(Ω) for some µ ∈ (0, 1) and f, g

being increasing continuous functions satisfying additional conditions.

As an exception to the previous works, in 2010, Wei in [20] studied the

problem (P)λ with negative exponents, more precisely, the singular problem
−∆u = a(x)u−m − b(x)up in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω,

where p > 1,m > 0 and a, b ∈ Cµ(Ω) for some µ ∈ (0, 1) with b being a positive

function.

Related to quasilinear problems, in 2012, Wei and Wang [21] worked with

the following quasilinear boundary problem
−∆pu = a(x)um − b(x)uq in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω,

where 0 < m < p− 1 < q, a ∈ L∞(Ω) and b being a non-negative function.

One year later, in [1], Chen and Wang improved the results found in [21],

because they showed that the problem−∆pu = a(x)g(u)− b(x)f(u) in Ω,

u = +∞ on ∂Ω,

has a solution, by supposing that a ∈ L∞(Ω), b ∈ Cµ(Ω) for some 0 < µ < 1,

b(x) ≥ 0, g is a nondecreasing and nonnegative continuous function with g(0) = 0

and f ∈ C1 is an increasing function with f(0) = 0 and f(s) > 0 for s > 0.

Moreover, f(s) grows more slowly than sq with q > p−1 and g(s) does not grow

faster than sp−1 at infinity.

Concerning the boundary behavior, in 2006, Ouyang and Xie [18] established

a blow-up rate of the large positive solutions of the problem−∆u = λu− b(‖x− x0‖)uq in B,

u = +∞ on ∂B,

where B = BR(x0) stands for the ball centered at x0 ∈ RN with radius R,

b : [0, R] → (0,∞) is a continuous function, q > 1 and λ ∈ R. Under additional

conditions on b, they obtained a rate of boundary behavior accurate of the unique

solution for the above problem.
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In 2009, Feng [7] obtained the exact asymptotic behavior and uniqueness of

solution for the problem−∆u = λg(u)− b(x)f(u) in Ω,

u = +∞ on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, λ ∈ R, 0 ≤ b ∈ Cµ(Ω) for

some µ ∈ (0, 1), b = 0 on ∂Ω and there exists an increasing positive function

h ∈ C1(0, δ0) for some δ0 > 0 verifying

lim
d(x)→0+

b(x)

h2(d(x))
= c0 > 0, lim

r→0+

1

h(r)

(∫ r

0

h(s) ds

)
= 0

and

lim
r→0+

[
1

h(r)

(∫ r

0

h(s) ds

)]′
= l1 > 0.

Related to f and g, it was assumed that 0 ≤ f, g ∈ C1([0,+∞)), f(0) = 0,

f ′ ≥ 0, f ′(0) = 0, f(s)/s, s > 0 increasing, f is RVq with q > 1; g increasing

with lim
s→0+

g′(s) > 0, g(s)/s, s > 0 in non-increasing and g belongs to RVq with

0 < q < 1. In that paper, an arbitrary function h : [so,∞) → (0,∞), for some

s0 > 0, belongs to class RVq, for some q ∈ R, if

lim
s→∞

h(ts)/h(s) = tq for all t > 0.

Still in 2009, Melián [8] established an exact boundary behavior and uniqueness

for the problem ∆pu = b(x)uq in Ω,

u = +∞ on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, q > p− 1 > 0 with b satisfying

lim
x→x0

d(x)γ(x)b(x) = Q(x0) for x0 ∈ ∂Ω,

for some γ ∈ Cµ(Ω) with 0 < µ < 1, γ(x) < 0 and Q(x) > 0 for all x ∈ ∂Ω.

In 2012, Li, Pang and Wang [13] also showed the boundary behavior and

uniqueness for the problem−∆pu = a(x)um − b(x)f(u) in Ω,

u = +∞ on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, 0 < m < p − 1, 0 ≤ a ∈ L∞(Ω),

f ∈ C1([0,∞))∩RVq, for some q > p− 1, with f(0) = 0 and f(s) > 0 for s > 0,

f(s)/sp−1, s > 0 increasing, b ∈ Cµ(Ω) for some 0 < µ < 1 with b ≥ 0, b(x) 6≡ 0

in Ω, Ω0 = {x ∈ Ω | b(x) = 0} ⊂ Ω is a non-empty and connected set with

C2-boundary and some additional conditions on b.
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In the same year, Chen and Wang [1] proved the boundary behavior and

uniqueness of solution for the problem−∆pu = a(x)g(u)− b(x)f(u) inΩ,

u = +∞ on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain with N ≥ 2, p > 1, 0 ≤ a ∈ L∞(Ω),

g ∈ C([0,∞)) ∩RVq, for some q ≤ p− 1 with g being nondecreasing, g(s)/sp−1,

s > 0 nonincreasing function satisfying g(0) = 0, f is such that f(0) = 0,

f(s) > 0 for s > 0 and f(s)/sp−1, s > 0 increasing, 0 ≤ b ∈ Cµ(Ω) for some

0 < µ < 1 with b 6≡ 0 in Ω and more hypotheses on b, f and g.

Still in 2012, Xie and Zhao [19] established the uniqueness and the blow-up

rate of the large positive solution of the quasilinear elliptic problem−∆pu = λup−1 − b(‖x− x0‖)f(u) in B,

u = +∞ on ∂B,

where N ≥ 2, 2 ≤ p < ∞, λ > 0 is a parameter and the weight function

b : [0, R] → (0,∞) is a continuous function satisfying additional assumptions.

Moreover, f is a locally Lipschitz continuous function with f(s)/sp−1 increasing

for s ∈ (0,+∞) and f(s) ∼ sq for large s > 0 with q > p− 1.

Motivated principally by the above papers and their results, we will study

existence and uniqueness of blow-up solution and the exact boundary behavior

rate. To do that, we denote by

a0 := essinf
Ω

a, b0 := essinf
Ω

b

and assume that f satisfies (KO) and the conditions:

(f0) 0 < lim inf
s→+∞

inf{f(t)/tp−1, t ≥ s}
f(s)/sp−1

≤ ∞,

(f1) (i) lim
s→0+

f(s)

sp−1
<∞ if a0 ≥ 0,

(ii) lim
s→+∞

f(s)

sp−1
<

1

||b||∞
if a0 < 0.

Remark 1.1. It follows from (KO) that

(f2) lim
s→+∞

f(s)

sp−1
= +∞

holds.

Associated with g : (0,+∞)→ (0,+∞), we assume that

(g0) (i) 0 ≤ lim
s→0+

g(s)

sp−1
≤ ∞,

(ii) 0 ≤ lim
s→+∞

g(s)

sp−1
< +∞.

Our first result is the following.
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Theorem 1.2. Assume a, b ∈ L∞(Ω) with b0 > 0. If f satisfies (KO), (f0),

(f1) and (g0), then there exist λ∗ ∈ (0,+∞] and a real number σo > 0 such

that the problem (P)λ has a solution u = uλ ≥ σo for each 0 < λ < λ∗ given.

Moreover, λ∗ = +∞, if a0 ≥ 0.

Related to condition (f0), it is important to observe that:

• if f(s)/sp−1, s ≥ s0 is nondecreasing, for some so > 0, then the limit at

(f0) is equal to 1,

• if

f(t) =

σ(t)tp−1 for 0 < t < 1,

tp−1e−t for t ≥ 1,

where σ ≥ 0 is a continuous function satisfying σ(1) = e−1 and lim
t→0

σ(t) =

0, then the limit at (f0) is null and f does not satisfy (KO). This example

shows the necessity of hypothesis (f0),

To state our second result, we need of more specifically assumptions on f

and g, namely:

(f1)′ 0 < lim
t→+∞

f(t)

tq
= f∞ < +∞ for some q > p− 1,

(g0)′ 0 ≤ lim
t→+∞

g(t)

tm
= g∞ < +∞ for some m ≤ p− 1,

and concerning to the potentials a and b, we will suppose that they are continuous

and satisfy

(a) there exist Q ∈ C(Ω) and a γ ∈ Cµ(Ω), for some 0 < µ < 1, such that

lim
x→x0

d(x)γ(x)b(x) = Q(x0), for each x0 ∈ ∂Ω

with Q(x) > 0, x ∈ ∂Ω and γ(x) ≤ 0 for all x ∈ Uδ, for some δ > 0,

(b) there exists R ∈ C(Ω) with R(x) ≥ 0 on Uδ, for some δ > 0, such that

lim
x→x0

d(x)η(x)a(x) = R(x0) for each x0 ∈ ∂Ω,

where η(x) = (p− 1−m)(p− γ(x))/(q − p+ 1) + p for x ∈ Ω and Uδ :=

{x ∈ Ω | d(x) < δ}.

Related to above notations, we have the following result.

Theorem 1.3. Assume (f1)′ and (g0)′. Suppose that a, b ∈ L∞loc(Ω) with

a ≥ 0 almost everywhere in Uδ, (a) and (b) hold true for some δ > 0. If

u ∈ C1(Ω) is a positive solution of (P)λ, then

lim
x→x0

d(x)α(x)u(x) = A(x0) for each x0 ∈ ∂Ω,

where α(x) = (p− γ(x))/(q − p+ 1), x ∈ Ω and A(x0) is the unique positive real

number satisfying

f∞Q(x0)Aq−m(x0)− (p− 1)α(x0)p−1(1 + α(x0))Ap−m−1(x0)− λg∞R(x0) = 0.
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Moreover, if a0, b0 ≥ 0, f(t)/tp−1 is nondecreasing and g(t)/tp−1 is nonincreas-

ing for t ∈ (0,+∞), then the problem (P)λ has at most one solution.

Related to assumption (g0)′, we would like to detach that if g is (p − 1)-

sublinear at infinity, that is, if g∞ = 0 with m = p− 1, then the behavior of the

solution is unaffected by g.

To highlight our last result, we state the corollary below, whose boundary

behavior’s proof follows from Theorem 1.3 by taking R(x) = γ(x) = 0 for x ∈ Ω

at hypotheses (a) and (b).

Corollary 1.4. Assume a ∈ L∞(Ω) and b ∈ C(Ω) with a0 ≥ 0 and b0 > 0.

If −∞ < m ≤ p− 1 < q, then the quasilinear problem
−∆pu = λa(x)um − b(x)uq in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω,

has a unique solution u = uλ ∈ C1(Ω) for each λ > 0 satisfying

lim
x→x0

d(x)p/(q−p+1)u(x) = b(x0)−1/(q−p+1)

(
(p− 1)(q + 1)pp−1

(q − p+ 1)p

)−1/(q−p+1)

,

for each x0 ∈ ∂Ω.

We would like point out that the main contributions of our results for this

class of problem are the following:

About Theorem 1.2. Our result extends the principal result found in [20]

to the context of the p-Laplacian operator. Here, we do not use the same ap-

proach explored [20], for example the degree theory, because in our context, it is

not clear that some estimates used in [20] also hold for p-Laplacian operator. In

our approach, one of the delicate points is to obtain a sub solution for a problem

with boundary datum finite. Another point is to control by above a sequence of

solutions of some problems with boundary datum finite. Even in the context of

p-Laplacian operator, our result improves and complements the previous results

principally because it does not requires that the term g be non-decreasing and

any kind of monotonicity under f . In fact, we just assume local behaviors at

zero and infinity of terms f and g permitting even singularity of g at zero.

About Theorem 1.3. This result improves some previous results for the

context of singular logistic equation by assuming less hypotheses under the terms.

In particular, it extends the principal result in [8]. This generalization is not

straightforward. One point of much sensitive is the absence of comparison prin-

ciple appropriate for this class of problems. Another one is related to structure
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of our logistic equation that does not permit us to use Poincaré–Bendixon’s The-

orem, as made in [8], to prove that the problem (4.1) has unique and explicit

solution. This fact is essential in the proof of Theorem 2.2.

We now briefly outline the organization of the contents of this paper. In Sec-

tion 2, by using a sub- and super-solution method in conjunction with variational

method, we prove the existence of solution for two auxiliary blow-up problems.

Section 3 is devoted to prove the existence of blow-up solution for (P)λ, while in

Sections 4 and 5, we study the rate boundary of the solutions.

2. Auxiliary problem

In this section, we are interested in the existence of solution for the following

quasilinear problem

(P)L


−∆pu = λa(x)g(u)− b(x)f(u) in Ω,

u > 0 in Ω,

u = L on ∂Ω,

where L > 1 is an appropriate real number. Associated with above problem, we

have the following result.

Proposition 2.1. Assume a, b ∈ L∞(Ω) with b0 > 0. If (f1), (f2) and (g0)

hold, then there exist λ∗ ∈ (0,+∞] and σo > 0, which does not depend on L > 0,

such that (P)L has a solution u = uλ,L ∈ C1(Ω) for each 0 < λ < λ∗ and L > L0

given, for some L0 > 0, satisfying σo ≤ u(x) ≤ L for all x ∈ Ω. Moreover,

uL1
≤ uL2

if L0 < L1 ≤ L2 and λ∗ = +∞ if a0 ≥ 0.

The proof of this proposition is based on the next two lemmas.

Lemma 2.2. Assume a, b ∈ L∞(Ω) with b0 > 0. If (f1) and (g0) hold, then

there exist λ∗ ∈ (0,+∞], L0 > 0 and a σo > 0, which does not depend on

L > 0, such that (P)L has a sub solution u = uλ,L ∈ C1(Ω) for each L > L0

and λ ∈ (0, λ∗) given. Moreover, σo ≤ u(x) ≤ L for all x ∈ Ω, and λ∗ = +∞ if

a0 ≥ 0.

Proof. In the sequel, we will divide our proof into two cases.

Case 1. a0 ≥ 0. From continuity of f and (f1), the function

f̃(s) = sp−1 sup

{
f(t)

tp−1
, t ≤ s

}
+ sp for s ∈ (0,+∞),

is continuous and verifies

(i)
f̃(s)

sp−1
, s > 0, is increasing,

(ii) f̃(s) ≥ f(s), s > 0,
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(iii) lim
s→0+

f̃(s)

sp−1
<∞,

(iv) lim
s→+∞

f̃(s)

sp−1
= +∞.

Now, by using [4, Theorem 1.1], we know that the problem
−∆pv = −‖b‖∞f̃(v) in Ω,

0 < v ≤ 1 in Ω,

v = 1 on∂Ω,

has a solution u ∈ C1(Ω). Since (iii) above holds, we are able to apply the strong

maximum principle of Vazquez to conclude that u is positive in Ω. Besides this,

u ≤ 1 in Ω follows from the standard comparison principle. So, u satisfies
−∆pu ≤ λa(x)g(u)− b(x)f(u) in Ω,

u ≥ γ1 > 0 in Ω,

u ≤ L on ∂Ω,

for all L ≥ 1 and λ > 0 given (that is, λ∗ =∞), where γ1 = minΩ u > 0.

Case 2. a0 < 0. By the continuity of g and (g0), the function

ĝ(s) = sp−1 sup

{
g(t)

tp−1
, t ≥ s

}
+ 1, s > 0,

is continuous and verifies

(i)
ĝ(s)

sp−1
, s > 0, is decreasing,

(ii) ĝ(s) > g(s), s > 0,

(iii) lim
s→0+

ĝ(s)

sp−1
=∞,

(iv) lim
s→+∞

ĝ(s)

sp−1
<∞.

Next, we denote by w ∈ C1,µ(Ω) the unique positive solution of the problem

(P3)


∆pu = up−1 in Ω,

0 < u ≤ 1 in Ω,

u = 1 on ∂Ω.

The existence of the above function can be found in [4].

Defining w0 = min
Ω
w > 0 and

ϕ(M) =
(Mw0)p−1

ĝ(Mw0)

[
1− ‖b‖∞

f̃(M)

Mp−1

]
for M > 0,
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it follows from the properties of f̃ that

lim
M→∞

ϕ(M) = −∞, lim
M→0

ϕ(M) ≥ 0 and ϕ(M̃) > 0, for some M̃ > 0,

where the last one is a consequence of (f1) (ii). Thereby, there is M0 > 0 such

that ϕ(M0) = sup{ϕ(M) | M > 0}. In the sequel, we denote by λ∗ the real

number given by

λ∗ := − sup{ϕ(M) |M > 0}
a0

= −ϕ(M0)

a0
> 0.

Thus, for λ ∈ (0, λ∗),

1− ‖b‖∞
f̃(M0)

Mp−1
0

≥ (−λa0)
ĝ(M0w0)

(M0w0)p−1
.

Now, once f̃(s)/sp−1 is increasing and ĝ(s)/sp−1 is decreasing in the interval

(0,+∞), we obtain

1− ‖b‖∞
f̃(M0w(x))

(M0w(x))p−1
≥ (−λa0)

ĝ(M0w(x))

(M0w(x))p−1
, for all x ∈ Ω.

Taking u = M0w ≥M0w0 := γ2 > 0, the last inequality gives
−∆p(u) ≤ λa0ĝ(u)− ‖b‖∞f̃(u) ≤ λa(x)g(u)− b(x)f(u) in Ω,

u ≥ γ2 in Ω,

u < L on ∂Ω,

for all L > M0. Hence, choosing σo = min{γ1, γ2} > 0 and L0 = max{1,M0},
we get the desired result. �

For the super solution, our result is the following lemmaa.

Lemma 2.3. Assume a, b ∈ L∞(Ω) with b0 > 0. If (f1), (f2) and (g0) hold,

then u(x) := L in Ω is a super solution of Problem (P)L satisfying u ≤ u for

each L > L0 given, where L0 ≥ 1 was given in Lemma 2.2.

Proof. Let λ ∈ (0, λ∗), where λ∗ > 0 was given in Lemma 2.1. By (f2) and

(g0) (ii), we can choose 0 < c3 < c4 and t∞ > 1 positive constants verifying

f(t) ≥ c4tp−1 and g(t) ≤ c3tp−1 for all t ∈ (t∞,+∞)

and λc3‖a‖∞ − b0c4 < 0. Defining u = L, with L ≥ max{L0, t∞}, we derive

−∆pu = 0 > (λ‖a‖∞c3 − b0c4)Lp−1 ≥ λ‖a‖∞g(u)− b0f(u) in Ω.

Consequently, u ∈ C1(Ω) and it satisfies
−∆pu ≥ λa(x)g(u)− b(x)f(u) in Ω,

u ≥ u in Ω,

u ≥ L on ∂Ω,

for all L ≥ max{L0, t∞}. �
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Proof of Proposition 2.1 (a sketch). We just outline some lines of the

proof, because it follows by applying well known arguments. First, as a conse-

quence of Lemmas 2.1 and 2.2, we have that the functions v = u−L ≤ 0 and v = 0

are sub and super solutions of the problem

(P1)

−∆pv = λa(x)g(v + L)− b(x)f(v + L) in Ω,

v = 0 on ∂Ω,

respectively, for each L ≥ L0 and 0 < λ < λ∗ given.

Hereafter, we will consider the function h : Ω× R→ R given by

h(x, t) =


λa(x)g(v + L)− b(x)f(v + L) if t ≤ v(x),

λa(x)g(t+ L)− b(x)f(t+ L) if v(x) ≤ t ≤ 0,

λa(x)g(v + L)− b(x)f(v + L) if t ≥ 0,

and the problem

(P2)

−∆pv = h(x, v) in Ω,

v = 0 on ∂Ω.

Our goal is proving that problem (P2) has a W 1,p
0 (Ω)-solution v0 satisfying

(2.1) v(x) ≤ v0(x) ≤ 0 a.e. in Ω,

because it is enough to conclude that v0 in a W 1,p
0 (Ω)-solution for (P1). To do

this, we define the energy functional associated with the above problem by

I(v) =
1

p

∫
Ω

|∇v|p −
∫

Ω

H(x, v), v ∈W 1,p
0 (Ω),

where H(x, t) =
∫ t

0
h(x, τ) dτ , and note that it is standard to show that I belongs

to C1(W 1,p
0 (Ω),R), I is weak s.c.i and bounded from below in W 1,p

0 (Ω). Then,

there is v0 ∈ W 1,p
0 (Ω) such that I(v0) = min{I(v) | v ∈ W 1,p

0 (Ω)}, that is,

I ′(v0) = 0. So, v0 is a weak solution of (P2) and by elliptic regularity theory v0 ∈
C1(Ω). Moreover, the monotonicity of the −∆p yields (2.1) occurs. Therefore,

the function u = uλ,L = v0 + L is a solution of (P)L with

0 < σo ≤ u(x) ≤ u(x) ≤ u(x) = L a.e. in Ω.

Now, if L0 < L1 ≤ L2, we can repeat the above arguments by using u = uL1

and u = L2 as sub and super solution of problem (P)L, respectively, where uL1

is the solution of the problem (P)L1 . So, we complete the proof. �
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3. Proof of the Theorem 1.2

In this section, we will finish the proof Theorem 1.2. To do that, we will

need of two auxiliary results. The first result is due to Matero [15].

Lemma 3.1. Assume that Ω is a smooth bounded domain in RN and a func-

tion h : (0,∞)→ (0,∞) is continuous, increasing and satisfies (KO). Then, the

quasilinear problem ∆pu = h(u) in Ω,

u = +∞ on ∂Ω,

admits a positive solution u ∈ C1(Ω).

The second one is a comparison principle appropriate as well for blow-up

solutions and includes singular nonlinearities and unbounded potentials α and β,

which is essential in our approach and its proof follows by exploiting arguments

as those found in [14]. The following lemma complements some results in [13]

and [6] by considering a more general hypothesis under h, and complements the

comparision principle of [16] because we do not request u2 ∈ L∞(Ω).

Lemma 3.2 (Comparison Principle). Suppose that Ω is a bounded domain

in RN and that α, β : Ω → [0,∞) are nonnegative continuous functions. Let

u1, u2 ∈ C1(Ω) be positive functions verifying
−∆pu1 ≥ α(x)h(u1)− β(x)k(u1) in Ω,

−∆pu2 ≤ α(x)h(u2)− β(x)k(u2) in Ω,

−∞ ≤ lim sup
d(x)→0

(u2 − u1) ≤ 0,

in the sense of distributions, where h, k : [0,∞) → [0,∞) are continuous func-

tions satisfying h(t), k(t) > 0 for t > 0. If∫
0<u2(x)≤1

h(u2)u2 dx <∞ or 0 < lim inf
d(x)→0

u1(x) ≤ ∞,

and either

(a) h(s)/sp−1 is decreasing, k(s)/sp−1 is non-decreasing and α ∈ L∞(Ω)

with α 6≡ 0, or

(b) h(s)/sp−1 is non-increasing and k(s)/sp−1 is increasing and β ∈ L∞(Ω)

with β 6≡ 0

holds true, for all s ∈
(

inf
Ω
{u1, u2}, sup

Ω
{u1, u2}

)
, then u1 ≥ u2 in Ω.
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Proof. It follows from the hypotheses about ui, that

(3.1) −
∫

Ω

[
|∇u2|p−2∇u2∇ϕ2 − |∇u1|p−2∇u1∇ϕ1

]
≥
∫

Ω

α(x)[h(u1)ϕ1 − h(u2)ϕ2] +

∫
Ω

β(x)[k(u2)ϕ2 − k(u1)ϕ1],

for all 0 ≤ ϕ1, ϕ2 ∈ C∞0 (Ω). Now, by considering the set

Ωε =

{
x ∈ Ω

∣∣∣∣ u2(x) +
ε

2
> u1(x) + ε

}
,

it follows from the hypothesis about the behaviors of ui on the boundary of Ω,

that Ωε ⊂ Ω for each ε > 0 given. Then, by density, we can consider the functions

v1, v2 ∈W 1,p
0 (Ω) given by

v1 =
[(u2 + ε/2)p − (u1 + ε)p]+

(u1 + ε)p−1
and v2 =

[(u2 + ε/2)p − (u1 + ε)p]+

(u2 + ε/2)p−1
,

with ε > 0, as test functions in (3.1). Since

∇v1 = −
[
1 + (p− 1)

(
u2 + ε/2

u1 + ε

)p]
∇u1 + p

(
u2 + ε/2

u1 + ε

)p−1

∇u2,

and

∇v2 =

[
1 + (p− 1)

(
u1 + ε

u2 + ε/2

)p]
∇u2 − p

(
u1 + ε

u2 + ε/2

)p−1

∇u1 in Ωε,δ,

we obtain that

I := |∇u2|p−2∇u2∇v2 − |∇u1|p−2∇u1∇v1(3.2)

=

{
[1 + (p− 1)

(
u1 + ε

u2 + ε/2

)p]
|∇u2|p

+

[
1 + (p− 1)

(
u2 + ε/2

u1 + ε

)p]
|∇u1|p

}
− p
(

u1 + ε

u2 + ε/2

)p−1

|∇u2|p−2∇u1∇u2

− p
(
u2 + ε/2

u1 + ε

)p−1

|∇u1|p−2∇u1∇u2

in Ωε. Now, setting w1 = u1 + ε, w2 = u2 + ε/2, V1 := ∇ ln(w1) = (∇u1)/w1

and V2 := ∇ ln(w2) = (∇u2)/w2 in Ωε, it follows from (3.2), that

I = {wp2 |V2|p + (p− 1)wp1 |V2|p + wp1 |V1|p + (p− 1)wp2 |V1|p}(3.3)

− pwp1 |V2|p−2V1V2 − pwp2 |V1|p−2V1V2

=wp2(|V2|p − |V1|p − p|V1|p−2V1(V2 − V1))

+ wp1(|V1|p − |V2|p − p|V2|p−2V2(V1 − V2)).
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Then, from (3.3) and [14, Lemma 4.2],

I ≥ c(p) |V2 − V1|2

(|V2|+ |V1|)2−p w
p
2 + c(p)

|V1 − V2|2

(|V1|+ |V2|)2−p w
p
1

= c(p)(wp1 + wp2)
|V1 − V2|2

(|V1|+ |V2|)2−p ,

if 1 < p < 2 and

I ≥ wp2
|V2 − V1|p

2p−1 − 1
+ wp1

|V1 − V2|p

2p−1 − 1
=

1

2p−1 − 1
(wp1 + wp2)|V1 − V2|p,

if p ≥ 2, where c(p) is a real positive constant depending on just p, that is, by

gathering these above informations, we obtain

(3.4) I ≥ C(p)(wp1 + wp2)
|V1 − V2|p+(2−p)+

(|V1|+ |V2|)(2−p)+ for all p > 1,

for some C(p) positive.

Now, (3.4) combined with (3.1) gives

(3.5) C(p)

∫
Ωε

(wp1 + wp2)
|V1 − V2|p+(2−p)+

(|V1|+ |V2|)(2−p)+

+

∫
Ωε

α(x)

[
h(u1)

wp−1
1

− h(u2)

wp−1
2

](
wp2 − w

p
1

)
≤
∫

Ωε

β(x)

[
k(u1)

wp−1
1

− k(u2)

wp−1
2

](
wp2 − w

p
1

)
≤ 0,

where we used the hypothesis under k(s), to obtain

(3.6)
k(u1)

wp−1
1

− k(u2)

wp−1
2

≤ k(u2)

up−1
2

[
up−1

1

wp−1
1

− up−1
2

wp−1
2

]
≤ 0 in Ωε.

Now, we should consider two cases. If
∫
u2(x)≤1

h(u2)u2 <∞, let us split Ωε in

D1(ε) = Ωε ∩ {u2 ≤ 1} and D2(ε) = Ωε ∩ {u2 > 1},

that is, Ωε = D1(ε) ∪D2(ε). First, note that

(3.7) α(x)

[
h(u1)

wp−1
1

− h(u2)

wp−1
2

](
wp2 − w

p
1

)
≥ −2pα(x)h(u2)u2 in D1(ε).

About D2(ε), let us show that there exists a K1 > 0, independent of ε > 0,

such that

(3.8)
h(u1)

wp−1
1

− h(u2)

wp−1
2

≥ −K1 in D2(ε).

In fact, if the last inequality does not occur, there would be εn ∈ (0, 1] and

xn ∈ Ωεn verifying

h(u1(xn))

wp−1
1 (xn)

− h(u2(xn))

wp−1
2 (xn)

→ −∞, when n→∞,
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that is, we would have that the limit h(u2(xn))/wp−1
2 (xn)→ +∞, which leads to

h(u2(xn))

up−1
2 (xn)

=
h(u2(xn))

wp−1
2 (xn)

wp−1
2 (xn)

up−1
2 (xn)

→ +∞,

implying that u2(xn)→ 0, but this is a contradiction by definition of D2(ε).

Next, we must prove that there isM > 0, which does not depend on ε ∈ (0, 1),

such that

(3.9) 0 < wp2(x)− wp1(x) ≤M for all x ∈ Ωε and for all ε ∈ (0, 1).

Indeed, arguing by contradiction, we assume that there are εn ∈ (0, 1] and

xn ∈ Ωεn , such that

Mn = (u2(xn) + εn/2)p − (u1(xn) + εn)p → +∞.

The above limit gives u2(xn)→ +∞, and thus, d(xn) = d(xn, ∂Ω)→ 0. Rewrit-

ing Mn as

Mn =

(
1 +

εn
2u2(xn)

)p
[u2(xn)p − u1(xn)p]

+

[(
1 +

εn
2u2(xn)

)p
−
(

1 +
εn

u1(xn)

)p]
u1(xn)p

and using the inequality u1(xn) ≤ u2(xn) in Ωεn , together with lim sup
x→∂Ω

(u2−u1)

≤ 0, we are led to lim sup
n→∞

Mn ≤ 0, which is a contradiction again.

By (3.8) and (3.9), have

(3.10) α(x)

[
h(u1)

wp−1
1

− h(u2)

wp−1
2

]
(wp2 − w

p
1) ≥ −α(x)K1M in D2(ε).

Now, assume 0 < lim inf
d(x)→0

u1(x) ≤ ∞. So, it follows from this assumption and

definition of Ωε that there exists K2 > 0, which does not depend on ε > 0, such

that

(3.11)
h(u1)

wp−1
1

− h(u2)

wp−1
2

≥ −K2 in Ω0,

where Ω0 =
⋃
ε>0

Ωε. So, it follows from (3.9) and (3.11), that

(3.12) α(x)

[
h(u1)

wp−1
1

− h(u2)

wp−1
2

](
wp2 − w

p
1

)
≥ −α(x)K2M in Ωε

holds true.

To finish the proof, first assume that (a) holds true. It follows from (3.7)

and either (3.10) or (3.12), that we are able to use the Fatou’s Lemma at (3.5),
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to obtain

0 ≤ C(p)

∫
Ω0

[
up1 + up2

] |∇ lnu1 −∇ lnu2|p+(2−p)+

(|∇ lnu1|+ |∇ lnu2|)(2−p)+

+

∫
Ω0

α(x)

[
h(u1)

up−1
1

− h(u2)

up−1
2

]
(up2 − u

p
1) ≤ 0,

where we used (3.6) and the hypothesis k(s)/sp−1 being non-decreasing in (0,+∞)

to infer the last inequality. So,

∇ lnu1 −∇ lnu2 ≡ 0 and α(x) ≡ 0 in Ω0,

that is, u2 = cu1 in Ω0 for some c > 1, because u2(x) > u1(x) for x ∈ Ω. Since

α(x) ≡ 0 in Ω0 and α 6= 0 in Ω, we obtain that Ω0 ( Ω. Since u1 = cu2 and

u1 = u2 on on ∂Ω0, we must have c = 1. This is a contradiction.

Finally, assuming (b) and applying the Fatou’s Lemma in (3.5), we are led

to inequality

0 ≤ C(p)

∫
Ω0

(up1 + up2)
|∇ lnu1 −∇ lnu2|p+(2−p)+

(|∇ lnu1|+ |∇ lnu2|)(2−p)+

+

∫
Ω0

β(x)

[
k(u2)

up−1
2

− k(u1)

up−1
1

]
(up2 − u

p
1) ≤ 0,

which permits us to apply the same arguments as done in (a) to finish the proof

of Lemma 3.2. �

Proof of Theorem 1.2 (completed). First of all, we consider the following

auxiliary blow-up problem

(P6)


−∆pu = λ‖a‖∞ĝ(u)− b0f̂(u) in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω,

where ĝ was fixed in the proof of Lemma 2.2 and f̂ is given by

f̂(s) = sp−1 inf

{
f(t)

tp−1
, t ≥ s

}
for s > 0.

Combining the continuity of f with (f1), (g0) and (KO), we derive that f̂ is

continuous and satisfies:

(iv)
f̂(s)

sp−1
, s > 0 is nondecreasing,

(v) f̂(s) ≤ f(s), s > 0,

(vi) lim
s→0+

f̂(s)

sp−1
= 0,
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(vii) lim
s→+∞

f̂(s)

sp−1
=∞.

Next, we fix the function h : (0,+∞)→ R by

h(t) = b0f̂(t)− λ ‖a‖∞ĝ(t) = tp−1

[
b0
f̂(t)

tp−1
− λ‖a‖∞

ĝ(t)

tp−1

]
.

Using the properties on f̂ and ĝ, we see that

h(t0) < 0 for some t0 > 0, lim
t→+∞

h(t) = +∞.

Moreover, h is increasing in (t1,+∞), where t1 > 0 is the unique number verify-

ing h(t1) = 0, or equivalently,

b0
f̂(t1)

t1
p−1 = λ‖a‖∞

ĝ(t1)

t1
p−1 .

Considering h̃(t) = h(t + t1) for t ∈ (0,+∞), we have that h̃ is a continuous,

positive and increasing function verifying (KO). In fact, h̃ satisfies the hypothesis

(KO), because

lim
s→+∞

f̂(s+ t1)

(s+ t1)p−1
= +∞ and lim

s→+∞

ĝ(s+ t1)

(s+ t1)p−1
= 0,

that is, there exists a s0 > 0 such that

ĝ(s+ t1)

(s+ t1)p−1
<

b0
2λ‖a‖∞

f̂(s+ t1)

(s+ t1)p−1
for all s > s0.

Consequently,

H̃(t) :=

∫ t

0

h̃(s) ds =

∫ s0

0

h̃(s)ds+

∫ t

s0

[b0f̂(s+ t1)− λ‖a‖∞ĝ(s+ t1)] ds

>

∫ t

s0

(s+ t1)p−1

[
b0

f̂(s+ t1)

(s+ t1)p−1
− λ‖a‖∞

ĝ(s+ t1)

(s+ t1)p−1

]
ds

>

∫ t

s0

(s+ t1)p−1 b0
2

f̂(s+ t1)

(s+ t1)p−1
ds =

b0
2

∫ t

s0

f̂(s+ t1) ds,

for all t > s0. Thus,∫ +∞

s0

H̃(t)−1/p dt <

(
2

b0

)1/p ∫ +∞

s0

(∫ t+t1

s0+t1

f̂(τ)dτ

)−1/p

dt

<

(
2

b0

)1/p ∫ +∞

s0

(∫ t

s0+t1

f̂(τ) dτ

)−1/p

dt < +∞.

Here, we have used (f0) and the fact that f̂ verifies (KO). Therefore, by Lem-

ma 3.1, the blow-up problem∆pu = h̃(u) in Ω,

u = +∞ on ∂Ω
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admits a solution ξ ∈ C1(Ω). Thus, w = ξ + t1 is a solution of (P6).

In the sequel, we fix an unbounded sequence (Ln) ⊂ (0,+∞) satisfying

Ln < Ln+1 for all n ∈ N with L1 = L0+1, where L0 was given in Proposition 2.1.

So, it follows from Proposition 2.1 that there exists a sequence (un)n∈N ⊂ C1(Ω)

satisfying 
−∆pun = λa(x)g(un)− b(x)f(un) in Ω,

un ≥ un−1 ≥ γ0 in Ω,

un = Ln on ∂Ω.

Consequently, 
−∆pun ≤ λ‖a‖∞ĝ(un)− b0f̂(un) in Ω,

−∆pw = λ‖a‖∞ĝ(w)− b0f̂(w) in Ω,

lim sup
d(x,∂Ω)→0

(un − w) = −∞.

Then, by Lemma 3.2, γ0 < u1 ≤ u2 ≤ . . . ≤ un ≤ un+1 ≤ · · · ≤ w.
Now, by using standard arguments, we are able to show that there exists

a u ∈ C1(Ω) such that un → u in C1
loc(Ω) and u is a solution of (P )λ. This

completes the proof of Theorem 1.2. �

4. Proof of the Theorem 1.3

The proof of Theorem 1.3 is a consequence of the three technical lemmas

below. The proof of the first and last ones were inpired in ideas found in [8] for

a particular case of (P)λ, more specifically, for λ = 0 and f(u) = uq, u ≥ 0 with

q > p− 1.

The first of them establishes the behavior of the solution near of the bound-

ary. More exactly, the results that we will use have the following statement:

Lemma 4.1. Assume a, b ∈ L∞loc(Ω) and that (a), (b), (f1)′ and (g0)′ hold.

If u ∈ C1(Ω) is a solution of (P)λ, then there exist positive constants c1, c2, δ,

such that

c1d(x)−α(x) ≤ u(x) ≤ c2d(x)−α(x), x ∈ Uδ,
where α(x) = (p− γ(x))/(q − p+ 1) for all x ∈ Uδ and Uδ was defined in hy-

pothesis (b).

The second one proves an exact rate boundary behavior for an one-dimen-

sional problem.

Lemma 4.2. Let −∞ < m ≤ p−1 < q, γ ≤ 0, and η = [(p− 1−m)(p−γ)]/

(q − p+ 1) + p > p be a real numbers. If Q,R > 0 are real constants and

u ∈ C1(0,+∞) is a solution of problem

(4.1)

−(|u′|p−2u′)′ = Rx−ηum −Qx−γuq in (0,∞),

u > 0 in (0,∞), u(x)
x→0−→ ∞,
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then u(x) = Ax−α for x > 0, where α = (p− γ)/(q − p+ 1) and A > 0 is the

unique solution of

(4.2) QAq−m − αp−1(1 + α)(p− 1)Ap−m−1 −R = 0.

Finally, the last lemma studies the behavior of the solution for a class of

problem in the half space D = {x ∈ RN , x1 > 0}.

Lemma 4.3. Let −∞ < m ≤ p− 1 < q, γ ≤ 0, and η > p be a real numbers

as above. If Q,R > 0 are real constants and u ∈ C1(D) is a solution of the

problem

(4.3)


−∆pu = Rx−η1 um −Qx−γ1 uq in D,

u > 0 in D

u = +∞ on ∂D,

then u(x) = Ax−α1 for x ∈ D, where α and A were obtained in Lemma 4.2.

Proof of Theorem 1.3 (conclusion). Next, we will divide our proof in two

parts. The first one is related to behavior of the solution near of the boundary,

while the second one is associated with the uniqueness.

Part 1. Behavior near to boundary. Consider x0 ∈ ∂Ω. We can assume that

x0 = 0 and ν(x0) = −e1, where ν(x0) stands for the exterior normal derivative

at x0 and e1 is the first vector of canonical basis of RN . Take xn ⊂ Ω such

that xn → x0 = 0 and denote by ξn = xn − tne1, where tn > 0 is such that

ξn ∈ ∂Ω. Now, fixing zn = ξn − tnν(ξn), we have that d(zn) = tn, where

dn := d(zn) = inf{|zn − ξ| | ξ ∈ ∂Ω} = |zn − ξn|, for n ∈ N.

Now, fixing αn = α(zn) and

vn(y) = dαnn u(ξn + dny), y ∈ Ωn = {y ∈ RN , ξn + dny ∈ Uδ},

where Uδ is a neighbourhood of ∂Ω given in Lemma 4.1, it follows that

|∇vn(y)|p−2∇vn(y) = d(αn+1)(p−1)
n |∇u(ξn + dny)|p−2∇u(ξn + dny),

for ∈ Ωn. By change variable z = ξn + dny, we have that y ∈ Ωn if and only if

z ∈ Uδ, and so,∫
Ωn

|∇vn(y)|p−2∇vn(y)∇φ(y) dy

= dαn(p−1)+p−N
n

∫
Uδ

|∇u(z)|p−2∇u(z)∇φ
(
z − ξn
dn

)
dz

= dαn(p−1)+p−N
n

∫
Uδ

[λa(z)g(u(z))− b(z)f(u(z))]φ

(
z − ξn
dn

)
dz
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= d−Nn

∫
Uδ

[
λdη(zn)

n a(ξn + dny)dmαnn g(u(ξn + dny))

− dγ(zn)
n b(ξn + dny)dqαnn f(u(ξn + dny))

]
φ

(
z − ξn
dn

)
dz,

that is ∫
Ωn

|∇vn(y)|p−2∇vn(y)∇φ(y) dy(4.4)

= d−Nn

∫
Uδ

[
λdη(zn)−η(ξn+dny)

n dη(ξn+dny)
n

· a(ξn + dny)dmαnn g(u(ξn + dny))

− dγ(zn)−γ(ξn+dny)
n dγ(ξn+dny)

n

· b(ξn + dny)dqαnn f(u(ξn + dny))
]
φ

(
z − ξn
dn

)
dz

=

∫
Ωn

[
λdη(zn)−η(ξn+dny)

n dη(ξn+dny)
n a(ξn + dny)dmαnn g(u(ξn + dny))

− dγ(zn)−γ(ξn+dny)
n dγ(ξn+dny)

n

· b(ξn + dny)dqαnn f(u(ξn + dny))]φ(y) dy
]
,

for each φ ∈ C∞0 (Ωn). Since Ωn → D := {y ∈ RN , y1 > 0} when n → +∞,

it follows that there exists an n0 ∈ N such that K ⊂⊂ Ωn and ξn + dny ∈ Uδ
for all y ∈ K and n > n0, for each compact set K ⊂⊂ D given. Thus, from the

regularity of distance function, see for instance [9, Lemma 14.16],

(4.5)
d(ξn + dny)

d(zn)
=
d(ξn + dny)− d(ξn)

d(zn)
=
〈∇d(ςn), dny〉

dn

→ 〈∇d(0), y〉 = 〈e1, y〉 = y1,

uniformly in y ∈ K, for some ςn between ξn + dny and ξn.

Thereby, the hypothesis (b) combined with the above convergences gives

(4.6) dη(ξn+dny)
n a(ξn + dny)

=

(
d(zn)

d(ξn + dny)

)η(ξn+dny)

d(ξn + dny)η(ξn+dny)a(ξn + dny)→ y
−η(0)
1 R(0),

for y ∈ K. With the same type of arguments, by combining (a) with the con-

vergence at (4.5), we see that, for y ∈ K,

(4.7) dγ(ξn+dny)
n b(ξn + dny)

=

(
d(zn)

d(ξn + dny)

)γ(ξn+dny)

d(ξn + dny)γ(ξn+dny)b(ξn + dny)→ y
−γ(0)
1 Q(0).
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To complete our analysis of the convergence, we note that applying Lem-

ma 4.1, we get

vn(y) ≤ c2dαnn d(ξn + dny)−α(ξn+dny)

= c2

(
dn

d(ξn + dny)

)α(ξn+dny)

dαn−α(ξn+dny)
n ,

for y ∈ K, and

vn(y) ≥ c1dαnn d(ξn + dny)−α(ξn+dny)

= c1

(
dn

d(ξn + dny)

)α(ξn+dny)

dαn−α(ξn+dny)
n ,

for y ∈ K. Furthermore, from (b), we have∣∣ ln dαn−α(ξn+dny)
n

∣∣ =
∣∣(α(zn)− α(ξn + dny)) ln dn

∣∣ ≤ ĉdµn| ln dn| → 0

uniformly in y ∈ K, for some ĉ > 0, implying that

(4.8) dαn−α(ξn+dny)
n → 1 uniformly in y ∈ K.

Gathering (4.5), (4.8), the regularity of the distance function with the fact that

(vn) is uniformly bounded on compacts set in D, we derive that there is a func-

tion v such that vn(y) → v(y) and c1y
−α0
1 ≤ v(y) ≤ c2y

−α0
1 , for each y ∈ D.

After that, by (g0)′, we get

dmαnn g(u(ξn + dny)) = dmαnn um(ξn + dny)u−m(ξn + dny)g(u(ξn + dny))(4.9)

= vmn (y)u−m(ξn + dny)g(u(ξn + dny))→ g∞v(y)m,

for y ∈ D, and by (f1)′, for y ∈ D,

dqαnn f(u(ξn + dny)) = dqαnn uq(ξn + dny)u−q(ξn + dny)f(u(ξn + dny))(4.10)

= vqn(y)u−q(ξn + dny)f(u(ξn + dny))→ f∞v(y)q.

Finally, as η, γ ∈ Cµ(Ω) for some 0 < µ < 1, the same arguments used in the

proof of (4.8) can be used to deduce that

dη(zn)−η(ξn+dny)
n , dγ(zn)−γ(ξn+dny)

n → 1 with n→ +∞, for each y ∈ D.

Now, given φ ∈ C∞0 (D) and recalling that Ωn → D, we have suppφ ⊂ Ωn
for n large enough. Thereby, passing the limits in (4.4), and using (4.6), (4.7),

(4.9) and (4.10), we conclude that vn → v in C1
loc(D) and v is a solution of the

problem 
−∆pu = λg∞R(0)y

−η(0)
1 um − f∞Q(0)y

−γ(0)
1 uq in D,

c1y
−α(0)
1 ≤ u ≤ c2y−α(0)

1 in D,

u = +∞ on ∂D.
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Hence, fixing Q = f∞Q(0), R = λg∞R(0) and α = α(0), it follows from

Lemma 4.3, that

v(y) = Ay
−α(0)
1 , y ∈ D,

where A = A(0) > 0 is the unique solution of

f∞Q(0)Aq−m − (p− 1)α(0)p−1(1 + α(0))Ap−m−1 − λg∞R(0) = 0.

Now, by taking y = e1 and using the definition of vn, we obtain that

(4.11) lim
n→+∞

dαnn u(xn) = A.

To complete our proof, let us note that

(4.12) d−αnn dα(xn)
n , d−α(xn)

n d(xn)α(xn) → 1

hold true by following the same arguments like those used to prove (4.8), because

α ∈ Cµ(Ω) for some 0 < µ < 1, and d(xn)/dn → 1, is true as well, by repeating

the same ideas used to prove (4.5). Therefore, from (4.11) and (4.12)

lim
n→+∞

d(xn)α(xn)u(xn)= lim
n→+∞

[
d−αnn dα(xn)

n

][
d−α(xn)
n d(xn)α(xn)

][
dαnn u(xn)

]
=A.

Part 2. Uniqueness. Let u, v be two solutions of (Pλ). By the above infor-

mation,

lim
x→x0

u(x)

v(x)
= 1 for each x0 ∈ ∂Ω,

that is, by combining this limit with the compactness of ∂Ω, there exists a δ > 0

such that

(4.13) (1− ε)v(x) < u(x) < (1 + ε)v(x), x ∈ Uδ.

for each ε > 0 given.

Besides this, using that f(t)/tp−1 is nondecreasing and g(t)/tp−1 is nonin-

creasing in the interval (0,+∞), we deduce that (1− 2ε)v and (1 + 2ε)v are sub

and super solutions of the problem

(4.14)

−∆pw = λa(x)g(w)− b(x)f(w) in Uδ,

w = u on ∂Uδ,

where Uδ := {x ∈ Ω, d(x) > δ}. Since u is a solution of (4.14) as well, the

lim sup
x→x0

[u−(1+2ε)v] = −εv(x0) < 0, and the lim sup
x→x0

[(1−2ε)v−u] = −εv(x0) < 0

for each x0 ∈ ∂Uδ, it follows from Lemma 3.2,

(1− 2ε)v(x) ≤ u(x) ≤ (1 + 2ε)v(x), x ∈ U δ.

Now, combining the last inequality with (4.13), we are led to

(1− 2ε)v(x) ≤ u(x) ≤ (1 + 2ε)v(x), x ∈ Ω.

So, taking ε→ 0, we obtain u = v in Ω. �
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5. Proofs of lemmas

Proof of Lemma 4.1. For each x ∈ Uδ, where δ > 0 is given by hypotheses

(a) and (b), define the function

v(y) = vx(y) = d(x)α(x)u(x+ d(x)y), y ∈ B1/2(0).

As u ∈ C1(Ω) is a solution of (P)λ, the change of variable z = x+d(x)y leads to∫
B1/2(0)

|∇v|p−2∇v∇ϕ(y) dy

= d(x)α(x)(p−1)+p−N
∫
Bd(x)/2(x)

|∇u(z)|p−2∇u(z)∇ϕ
(

1

d(x)
(z − x)

)
dz

= d(x)α(x)(p−1)+p−N
∫
Bd(x)/2(x)

[λa(z)g(u(z))− b(z)f(u(z))]ϕ

(
1

d(x)
(z − x)

)
dz,

for each ϕ ∈ C∞0 (B1/2(0)).

Now, gathering the compactness of ∂Ω, (f1)′ and (g0)′, we derive that∫
B1/2(0)

|∇v|p−2∇v∇ϕ(y) dy(5.1)

≤ d(x)−N
∫
Bd(x)/2(x)

d(x)α(x)(p−1)+p
[
λa(x+ d(x)y)D2u

m(x+ d(x)y)

− b(x+ d(x)y)D′1u
q(x+ d(x)y)

]
ϕ

(
1

d(x)
(z − x)

)
dz

= d(x)−N
∫
Bd(x)/2(x)

[
λD2a(x+ d(x)y)d(x)α(x)(p−1)+pd(x)−mα(x)vm(y)

−D′1b(x+ d(x)y)d(x)α(x)(p−1)+pd(x)−qα(x)vq(y)
]
ϕ

(
1

d(x)
(z−x)

)
dz

= d(x)−N
∫
Bd(x)/2(x)

[
λD2a(x+ d(x)y)d(x)η(x)vm(y)

−D′1b(x+ d(x)y)d(x)γ(x)vq(y)
]
ϕ

(
1

d(x)
(z − x)

)
dz,

for all ϕ ∈ C∞0 (B1/2(0)) with ϕ ≥ 0 and for all x ∈ Uδ, where δ > 0 is such that

g(u(x)) ≤ D2u(x)m and f(u(x)) ≥ D′1u(x)q for all x ∈ Uδ,

for some real constants D2, D
′
1 > 0. Here, we have used that u(x) → ∞ as

d(x)→ 0. Moreover, the inequality

d(x)/2 ≤ d(x+ d(x)y) ≤ 3d(x)/2, for all x ∈ Uδ

together with (a) and (b) gives

b(x+ d(x)y) ≥ C̃d(x+ d(x)y)−γ(x+d(x)y) ≥ Cd(x)−γ(x+d(x)y),

a(x+ d(x)y) ≤ D̃d(x+ d(x)y)−η(x+d(x)y) ≤ Dd(x)−η(x+d(x)y),
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for x ∈ Uδ, for suitable δ > 0 and some positive constants C̃, D̃, C and D.

Therefore,

λD2a(x+ d(x)y)d(x)η(x)vm(y)−D′1b(x+ d(x)y)d(x)γ(x)vq(y)

≤ λD3d(x)η(x)−η(x+d(x)y)vm(y)−D1d(x)γ(x)−γ(x+d(x)y)vq(y),

for x ∈ Uδ, y ∈ B1/2(0) and D1, D3 > 0.

Now, substituting this inequality in (5.1) and returning to the variable y

in B1/2(0), we obtain∫
B1/2(0)

|∇v|p−2∇v∇ϕ(y) dy

≤
∫
B1/2(0)

[
λD3d(x)η(x)−η(x+d(x)y)vm(y)−D1d(x)γ(x)−γ(x+d(x)y)vq(y)

]
ϕ(y) dy,

that is,∫
B1/2(0)

|∇v|p−2∇v∇ϕ(y) dy ≤
∫
B1/2(0)

[
λ

3D3

2
vm(y)− D1

2
vq(y)

]
ϕ(y) dy,

for x ∈ Uδ, for some suitable δ > 0, because

d(x)η(x)−η(x+d(x)y), d(x)γ(x)−γ(x+d(x)y) → 1 as d(x)→ 0.

On the other hand, from Theorem 1.2, there exists U ∈ C1(B1/2(0)) satisfying
−∆pU = λ

3D3

2
Um − D1

2
Uq in B1/2(0),

U > 0 inB1/2(0),

U = +∞ on ∂B1/2(0).

Then, by Lemma 3.2, v(y) ≤ U(y) in B1/2(0), that is

d(x)α(x)u(x+ d(x)y) ≤ U(y) for all y ∈ B1/2(0) and x ∈ Uδ,

showing that

(5.2) u(x) ≤ U(0)d(x)−α(x) for x ∈ Uδ.

Now, let us prove the other inequality. Denote by x ∈ ∂Ω the point that

carries out the distance of x on ∂Ω, and fix zx = x+ d(x)ν(x), where ν(x) is the

exterior unity normal vector to the ∂Ω at x. Since ∂Ω is smooth, we have that

zx ∈ Ωc for x ∈ Uδ/2 for some δ > 0. This way, we can define

w(y) := d(x)α(x)u(zx + d(x)y), y ∈ Qx = {y ∈ A | zx + d(x)y ∈ Uδ},

where A = {y ∈ RN | 1 < |y| < 3}.
From the hypotheses (a) we can fix δ > 0 small enough such that

b(zx + d(x)y) ≤ C1d(zx + d(x)y)−γ(zx+d(x)y),(5.3)

1/2 ≤ d(x)η(x)−η(zx+d(x)y), d(x)γ(x)−γ(zx+d(x)y) ≤ 3/2,(5.4)



Blow-up Solutions for a p-Laplacian Elliptic Singular Equation 771

for all x ∈ Uδ/2 and some C1 > 0. In the sequel, by using (f1)′ and the fact that

u(x)→∞ as |x| → ∞, we can also fix C2 > 0 verifying

(5.5) f(u(x)) ≤ C2u(x)q for all x ∈ Uδ/2.

Thus, given ϕ ∈ C∞0 (Qx) with ϕ ≥ 0, (5.3) together with (5.5) and the positivity

of a on Uδ yield∫
Qx

|∇w|p−2∇w∇ϕdy(5.6)

= d(x)(α(x)+1)(p−1)

∫
Qx

|∇u(zx + d(x)y)|p−2∇u(zx + d(x)y)∇ϕdy

≥ −
∫
Qx

C1C2d(x)γ(x)−γ(zx+d(x)y)wq(y)ϕdy.

From (5.4) and (5.6),

(5.7)

∫
Qx

|∇w|p−2∇w∇ϕ(y) dy ≥ −
∫
Qx

C3w
q(y)ϕ(y) dy

for x ∈ Uδ/2 and some C3 > 0.

On the other hand, set Ẑ ∈ C1(1, 3) denotes the positive solution of
−(rN−1|Z ′|p−2Z ′)′ = −C3r

N−1Zq in (1, 3),

Z > 0 in (1, 3),

Z(1) = K, Z(3) = 0,

then Z(y) = Ẑ(|y|) ∈ C1(A) is a radially-symmetric solution of the problem

(5.8)


−∆pZ = −C3Z

q in A,

Z > 0 in (1, 3),

Z(1) = K, Z(3) = 0.

Since Qx ⊂ A, it follows that Z(y) < w(y), y ∈ ∂Qx. So, the inequality (5.7)

combined with (5.8) and Lemma 3.2 give

d(x)α(x)u(zx + d(x)y) = w(y) ≥ Z(y) in Qx, for all x ∈ Uδ/2,

that is, taking y = −2ν(x) and remembering that x = zx−2d(x)ν(x), we obtain

(5.9) u(x) ≥ Z(−2ν(x))d(x)−α(x) = Ẑ(2)d(x)−α(x), x ∈ Uδ/2.

Now, the lemma follows gathering (5.2) and (5.9) by considering the smallest

δ > 0 that we have considered in this proof. �

The proof of Lemma 4.2 is based upon ideas found in [10]. Here, we are able

to prove that the solutions of the problem (4.1) are of the form u(x) = Ax−α,

with A verifying (4.2), by using a result of [10] instead of the Poincaré–Bendixon’s

Theorem as used in [8].
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Given positive numbers T1, T2 and h, we let X := {w ∈ C1([T1, T2]) | w ≥ h}
and the continuous function H : [T1, T2]→ R defined by

H(s) := sN−1
[∣∣(w1/p

2

)′∣∣p−2(
w

1/p
2

)′
w

(1−p)/p
2

−
∣∣(w1/p

1

)′∣∣p−2(
w

1/p
1

)′
w

(1−p)/p
1

]
(w1 − w2)(s)

for w1, w2 ∈ X given. In [10], it was proved the following result

Lemma 5.1. Assume that w1, w2 ∈ X, then

H(U)−H(S) ≤
∫ U

S

[(
rN−1

∣∣(w1/p
2 )′

∣∣p−2(
w

1/p
2

)′)′
w

(p−1)/p
2

−
(
rN−1

∣∣(w1/p
1

)′∣∣p−2(
w

1/p
1

)′)′
w

(p−1)/p
1

]
(w1 − w2) dr

for all U, S such that T1 ≤ S ≤ U ≤ T2 hold.

Proof of Lemma 4.2. It is easy to check that u0(x) := Ax−α, x > 0 is

a solution of (4.1), where A > 0 is the unique solution of (4.2). In the sequel,

we will show that u0 is a maximal solution for (4.1). To see why, our first step

is showing that if u ∈ C1(0,∞) is a solution of (4.1), then

(5.10) u(x) ≤ cx−α, for all x > 0,

for some positive constant c. Fixed x > 0, define v(y) = vx(y) = xαu(x + xy)

for |y| < 1/2, and note that v satisfies

(5.11)


−(|v′|p−2v′)′ = R(1 + y)−ηvm −Q(1 + y)−γvq if |y| < 1/2,

v > 0 if |y| < 1/2,

v(1/2) = xαu(3x/2) and v(−1/2) = xαu(x/2).

On the other hand, it follows from Theorem 1.2 that there exists U in

C1(−1/2, 1/2) satisfying

(5.12)


−(|U ′|p−2U ′)′ = R(1 + y)−ηUm −Q(1 + y)−γUq, if ||y| < 1/2,

U > 0 if |y| < 1/2,

U(1/2) = U(−1/2) = +∞.

By combining (5.11) with (5.12) and Lemma 3.2, we deduce that v(y) ≤ U(y)

for |y| < 1/2, and a consequence of this, by taking y = 0, we obtain that

u(x) ≤ U(0)x−α for x > 0 (c = U(0) > 0), proving (5.10).

After the previous study, we are able to prove that

(5.13) u(x) ≤ u0(x) for all x > 0.

To this end, we assume that there exists τ0 > 0 such that u ≤ ζτ0 does not

hold in (τ0,∞), where ζτ (x) := u0(x − τ) for x > τ for each τ > 0 given.
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Thereby, there exist t0 ∈ [τ0,∞) and s0 ∈ [t0,∞] such that u(t0) = ζτ0(t0),

u(s0) = ζτ0(s0), if s0 <∞ and u(x) > ζτ0(x) in (t0, s0).

A straightforward computation gives that ζτ0 satisfies

(5.14) −
(
|ζ ′τ0(x)|p−2ζ ′τ0(x)

)′ ≥ Rx−ηζmτ0 −Qx−γζqτ0 in (t0, s0).

Putting N = 1, w
1/p
1 = u and w

1/p
2 = ζ into Lemma 5.1, (5.14) together with

the fact that u is a solution of (4.1) yields

H(s2)−H(s1) ≤
∫ s2

s1

[
(|ζ ′τ0 |

p−2ζ ′τ0)′

ζp−1
τ0

− (|u′|p−2u′)′

up−1

]
(up − ζpτ0) dx

≤
∫ s2

s1

[
Qx−γζqτ0 −Rx

−ηζmτ0
ζp−1
τ0

− Qx−γuq −Rx−ηum

up−1

]
(up − ζpτ0) dx

=

∫ s2

s1

[
Qx−γ(ζq−p+1

τ0 − uq−p+1) +Rx−η(um−p+1 − ζm−p+1
τ0 )

]
(up − ζpτ0) dx < 0,

for all t0 ≤ s1 < s2 < s0, where

(5.15) H(x) =
[
|ζ ′τ0 |

p−2ζ ′τ0ζ
(1−p)
τ0 − |u′|p−2u′u(1−p)](up(x)− ζpτ0(x)),

for x ∈ (t0, s0). The above inequality implies that H is decreasing in (t0, s0).

Thus, if s0 < +∞, then H(t0) = H(s0) = 0, that is impossible. If s0 = +∞,

then lim
x→+∞

H(x) = H∞ ∈ [−∞, 0), because H(t0) = 0 and H is decreasing.

Moreover, by combining the definition of ζτ0 and (5.10), we obtain

lim
x→+∞

|ζ ′τ0 |
p−2ζ ′τ0ζ

(1−p)
τ0 (x) = lim

x→+∞
(up − ζpτ0)(x) = 0.

Then, by (5.15) and H∞ ∈ [−∞, 0),

lim
x→+∞

|u′|p−2u′u(1−p)(x) = +∞,

showing that u′ > 0 for x large enough, which is impossible, because u > 0 in

[0,∞) and u(x)
x→∞−−−−→ 0. Hence,

u(x) ≤ ζτ (x) for all x ∈ (τ,+∞), for all τ > 0,

implying that

u(x) ≤ lim
τ→0

ζτ (x) = u0(x) for all x ∈ (0,+∞),

showing (5.13), and thus, u0 is a maximal solution for (4.1).

To complete the proof of Lemma 4.2, we will show that u0 is also a minimal

solution for (4.1). In the sequel, we define ξε(x) = u0(x + ε) in (0,+∞) for

each ε > 0 and we use a similar argument to conclude that for each ε > 0 the

inequality below holds

u(x) ≥ ξε(x) for all x ∈ (0,+∞).
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The above estimate leads us to

u(x) ≥ lim
ε→0

ξε(x) = u0(x) for all x ∈ (0,+∞),

from where it follows that u0 is a minimal solution. Once u0 is at the same time

a maximal and minimal solution, we can conclude that u(x) = Ax−α, for x > 0

is the unique solution of (4.1), finishing the proof of the lemma. �

Proof of Lemma 4.3. In this proof, our first step is to show that u0(x) =

u0(x1, . . . , xn) = Ax−α1 is a solution of (4.3), where A > 0 is the unique solution

of (4.2). Below, we prove that (4.3) admits a minimal and a maximal solutions

depending on just x1. In fact, we will begin showing the existence of the maximal

solution, which we will be denoted by umax.

To do this, let {Dk} be a sequence of smooth bounded domains Dk ⊂⊂ Dk+1

such that D =
∞⋃
k=1

Dk. Related to {Dk}, we consider the problem

(5.16)


−∆pu = Rx−η1 um −Qx−γ1 uq in Dk,

u > 0 in Dk,

u = +∞ on ∂Dk.

By Theorem 1.2, there exists a solution uk ∈ C1(Dk) of (5.16) satisfying

u0(x) ≤ uk+1(x) ≤ uk(x), x ∈ Dk,

because we are able to apply Lemma 3.2. Thus, there is w ∈ C1(D) such that

uk → w in C1
loc(D), w is a solution of (4.3) and w(x) ≥ u0(x) for all x ∈ D.

Let v ∈ C1(D) be another solution of (4.3). By Lemma 3.2, v ≤ uk in Dk

for all k. Then, v ≤ w in D, showing that w is a maximal solution for (4.3). In

the sequel, we denote by umax the function w and set

w̃(x) = umax(x1, x
′ + t), for x1 > 0 and x′ ∈ RN−1,

for each t ∈ RN−1 given. Since, w̃ is a solution of (4.3) as well, it follows that

w̃ ≤ umax in D, or equivalently,

umax(x1, x
′ + t) ≤ umax(x1, x

′) for each x1 > 0 and t, x′ ∈ RN−1.

Once t ∈ RN−1 is arbitrary, the above inequality implies that

umax(x1, x
′) = umax(x1, y

′) for all x′, y′ ∈ RN−1,

showing that umax depends just on x1. Thereby, umax is a solution of problem

(4.1), and by Lemma 4.2,

umax(x1, . . . , xn) = Ax−α1 , x1 > 0 and (x2, . . . , xn) ∈ RN−1.
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To finish the proof, our next step is showing the existence of a minimal

solution for (4.3), denoted by umin, which will also depend on just x1. To do

this, setting D′k = B2k(0) ∩D, we have that

D′k ⊂ D′k+1, Bk(0) ∩ ∂D ⊂ ∂D′k and D =

∞⋃
k=1

D′k.

From now on, for each k ∈ N, we fix ψk ∈ C∞(D′k) satisfying 0 ≤ ψk ≤ 1−1/(2k)

on ∂D′k, ψk = 1 − 1/(2k) on ∂D ∩ Bk(0), ψk = 0 in ∂D′k \ (B2k(0) ∩ ∂D),

0 < ψk < 1−1(2k) on ∂D∩(B2k(0)\Bk(0)) and ψk+1 > ψk on ∂D′k∩∂D′k+1∩∂D.

By a result found in [8], there exists a unique solution uk,n ∈ C1(D′k) of the

problem 
−∆pu = −Qx−γ1 uq in D′k,

u > 0 in D′k,

u = nψk on ∂D′k,

and uk,n is increasing with k and n. That is, uk,n is a sub solution of the problem

(5.17)


−∆pu = Rx−η1 um −Qx−γ1 uq in Dr

k,

u > 0 in Dr
k,

u = uk,n on ∂Dr
k,

where Dr
k = B4k(0) ∩ {x ∈ D, x1 > r} ⊂ D′k for each r ∈

(
0, (A/n)1/α

)
.

Since u0 is a super solution of (5.17) with uk,n < u0 on ∂Dr
k, it follows

from Lemma 3.2 that uk,n ≤ u0 in Dr
k. So, by a result in [12], there exists

a vrk,n ∈ C1(Dr
k) solution of the problem (5.17) satisfying uk,n ≤ vrk,n ≤ u0 in Dr

k.

Then, after a diagonal process, there is vk,n ∈ C1(D′k) such that vrk,n → vk,n in

C1(D′k) as r → 0. Moreover, uk,n ≤ vk,n ≤ u0 in D′k and vk,n is a solution of

the problem 
−∆pu = Rx−η1 um −Qx−γ1 uq in D′k,

u > 0 in D′k,

u = nψk on ∂D′k.

Applying the Lemma 3.2, we deduce that vk,n satisfies vk,n ≤ vk+1,n, and vk,n ≤
u0 in D′k. Thus, vk,n → vn and uk,n → un in C1

loc(D) with un ≤ vn ≤ u0 in D,

where vn satisfies 
−∆pu = Rx−η1 um −Qx−γ1 uq in D,

u > 0 in D,

u = n on ∂D,
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and un ∈ C1
loc(D) satisfies

−∆pu = −Qx−γ1 uq in D,

u > 0 in D,

u = n on ∂D.

That is, after a diagonal process, we have vn → v := umin in C1
loc(D). Besides

this, following the arguments concerning to umax, we show that umin is a minimal

solution for (4.3), which depends on just x1. So, umin is a solution of problem

(4.1) and from Lemma 4.2, we have that

umin(x1, . . . , xn) = Ax−α1 , x1 > 0 and (x2, . . . , xn) ∈ RN−1,

with A > 0 being the unique solution of (4.2). Hence, given a u ∈ C1(D) solution

of (4.3), we must to have

u(x1, . . . , xn) = Ax−α1 , x1 > 0 and (x2, . . . , xn) ∈ RN−1. �
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Universidade Federal de Campina Grande

58429-900, Campina Grande – PB, BRAZIL

E-mail address: coalves@dme.ufcg.edu.br

Carlos Alberto Santos and Jiazheng Zhou
Departamento de Matemática
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