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STRONG CONVERGENCE
OF BI-SPATIAL RANDOM ATTRACTORS
FOR PARABOLIC EQUATIONS
ON THIN DOMAINS WITH ROUGH NOISE

Fuznar L1 — YANGRONG L1 — RENHAI WANG

ABSTRACT. This article concerns bi-spatial random dynamics for the sto-
chastic reaction-diffusion equation on a thin domain, where the noise is
described by a general stochastic process instead of the usual Wiener pro-
cess. A bi-spatial attractor is obtained when the non-initial state space is
the p-times Lebesgue space, meanwhile, measurability of the attractor in
the Banach space is proved by using measurability of both cocycle and ab-
sorbing set. Finally, the p-norm convergence of attractors is obtained when
the thin domain collapses onto a lower dimensional domain. The method
of symbolical truncation is applied to provide some uniformly asymptotic
estimates.

1. Introduction

The subject of a thin domain problem is to consider both existence and
convergence of an attractor when the equation is defined on a thin domain, which
collapses onto a lower dimensional domain. Some pioneered works were given
by Hale, Raugel and Sell (see [16], [31]), with notable developments for a large
number of (deterministic) dissipative equations (see [1], [3], [4], [14], [19], [30],
and the references therein).
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Such a thin domain problem was generalized to the stochastic PDE (see [6],
[9], [10]). In particular, D. Li et al. [20], [21] had investigated the following
stochastic reaction-diffusion equation with Neumann boundary conditions

duf — AuE dt + M\uf dt = (F(t,z,u°) + G(t,x)) dt + h(x)dW, t >,
1.1 ous
(1) 8—320, on 00, w(r,x) =u(z), z€O., TER,
where A\ > 0, v, is the unit outward normal vector on 90. for € € (0,1]. The
n + 1-dimensional thin domain O is given by

Oc={x=(a"2ps1) 2" = (z1,...,2n) €Q, 0 < zpy1 <eg(z¥)},

where @ is a bounded smooth domain in R" and g € C?(Q, (0, +c0)).
In this article, we use a general stochastic process W to replace the Wiener
process used in [20], [21]. Let

Q:{WGC(RR);W(O)ZO, lim —~ = }

and take the Frechét metric

oo

N 1 k(w, w™*
(1.2) o(w,w ):];2%
where gy, is the metric in C([—k, k], R). Then, (Q,F) is a measurable space,
where F = B(Q) is the Borel algebra on (2, o). We denote a group {6; : t € R}
of self-mappings on by w(-) =w(t + ) —w(t) for (w,t) € Q@ x R.

Now, we take a general probability measure P on (2, F) such that W (t,w) :=
w(t) (t € R) is a stochastic process on the probability space (€2, F, P), meanwhile,
it ensures that 6; is measure preserving and ergodic with respect to P.

We remark here that one can obtain different stochastic processes from differ-
ent probability measures. In particular, by [8], one can obtain the usual Wiener
process by taking P a Wiener measure, which is widely used in the literature (see
[5], [7], [12], [33] and the references therein). In fact, the above class of processes
contains any continuous stochastic process with tligloo W (t)/t = 0, such as the

Wong—Zakai-type noise used in the more recent paper [35].

The subject of this article is to consider strong attraction and strong con-
vergence of the L2-attractor. More precisely, we will prove the existence of
a bi-spatial random attractor A. for equation (1.1) in (L%, LP), where p > 2.
Also, we consider the p-norm convergence from A. to the attractor Ag of the
following limiting equation:

n
d — 1 > (gu,)y, dt + MO dt = (Fo(t,y*, u®) + Go(t)) dt + ho AW,
(1.3) 9=
ou’

o =0 on 0Q, uO(T,y*) :ug(y*), yreq,t>1, TER,
)
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where Fy(t,y*,u°) = F(t, (y*,0),u%), Go(t,y*) = G(t, (y*,0)), ho(y*) = h(y*,0)
and v is the unit outward normal vector on 9Q.

In Section 2 some abstract existence results given in Li et al. [24] can be
applied to the thin-domain problem if we make a transformation from the varying
thin domain to a fixed domain. Under such a fixed domain, we can show that
the random dynamical system has an (L%, LP)-attractor, see Theorem 4.6.

However, the abstract result on upper semi-continuity of the attractor cannot
simply be applied to the thin domain problem. In fact, in Section 5, we consider
the convergence from a n + 1-dimensional function to the lower dimensional
average function. This convergence together with some priori estimates in LP
can help us to prove directly the upper semi-continuity from A. to Ag under the
p-norm, see Theorem 5.2.

It is worth pointing out that random invariant manifolds and random attrac-
tors in such a Banach space had been considered by [23], [27], [28], [34], [39],
[40], where the non-thin domain problem had been investigated.

Another issue is measurability of the pullback attractor in L, which is a main
subject different from deterministic pullback attractors (see [22], [29], [36]). How-
ever, the random attractor is still the omega-limit set of the absorbing set under
the solution operator (cocycle). So, in Section 3, we show that the solution
operator is F-measurable in both state spaces L? and LP, which leads to the
measurability of the attractor.

2. Transformation of the thin domain and well-posedness

2.1. Assumptions. Let O = Q x (0,72) and 0= Q@ x [0,72), where 5 >
71 > 0 such that 1 < g(2*) < 75 for all z* € Q. Note that u € L°°((5) if and

only if u € L*°(O) with the same norms.

AssUMPTION 2.1. The nonlinearity f: R x O x R — R is continuous and
satisfies the following conditions: for all x € O and ¢, s € R,

(2.1) ft,x,s)s < —aq|s|? + 1 (t, ),

(22) ‘f(t,mas” < a2|s|p*1 =+ ¢2(t’1’)7

ey AEED o OB < afsp s vt
ey 255 <va),

Wherep > 27 ai?ﬁ > 07 ¢1 e LllocmLIQO(j(R7 LOO(O))7 w27¢)37w4 6 LIQO(;(R7 LOO(O))'

ASSUMPTION 2.2. G € L% (R,L*°(0)) and h € C?(Q x [0,72])-

loc
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AssuMPTION 2.3. Tempered conditions: for any 7 € R and o > 0,
(2.5) / (G (9) 13 + N[ (5)lloo + [92(5)lI3 + 1a(5)]15) ds < oo,

0
(2.6) 6‘”/ /(|G (s + )5 + [91(s + Plloo + lltbals +7)]3) ds — 0,

— 00
as r — —oo, where we use || - || to denote the norm in L ((5)

ASSUMPTION 2.4. By the same method as defining Fy, Go and hg in the
limiting equation (1.3), we define the restrictions ¢, (j = 1,...,4). Then, we
assume P19 € Li,. N L7, (R, L>(Q)) and 20,930,410 € L, (R, L=(Q)).

2.2. Transformation of the thin domain. We consider a transformation
T. from O, onto O = @ x (0, 1), defined by

* * x  LTn+l *
y Yn :T , Ty = 5 f H == s, EO.
0 snet) = T ) = (27, 22 ) vl z = (0% as) €O,

Then, the bijective mapping 7 has the Jacobian matrix:

Oy, um
J = LACTEEIYIES) =1 _Ynt1

I 0
1
8(.’1}1, ey $n+1)

(Gyrr 2 Gy) —
. e eg(yr)

with the positive determinant |J| = 1/eg(y*). By [17], [21], we have V,u(z) =
J*Vyu(y) and

Ayu(z) = |J|divy (|| JT*Vyu(y)) = ;divy(Tau(y)),

where u(y) = u(z) (y = Tex € O), J* is the transport of J and Y. is the operator

given by
Uy, — Gy Yn+1Uy,,
(2~7) Teu(y) = Uy, — Gy, Yn+1Uy,, 4
n 1 n
- Z Yn+19y; Uy; + % (1 + Z(Eyn+1gyi)2) Uy i1
=1 i=1

We can rewrite the problem (1.1) as an equation defined on O:

1
du® — —div, (Tou®) dt + Au® dt
g
28) = (Fe(t,y,u®) + Ge(t,)) di + he(y) AW,
T.u-v=0, ondO, u(r,y) = S (T (y)), yeO, T eR.

3
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where v is the unit outward normal vector on 9O, and
F&‘(ta y*a Yn+1, u’) = F(ta y*7 5g(y*)yn+17 u)a
Ge(t, ¥ ynt1) = G(t,y",€9(y" )Yn+1),
he(Y", Yn+1) = h(y", €9(y" ) yn+1)-
We take the equivalent norms on X = L?(0) and Y = LP(O) by

2 2
= [ gwtdy, weX ad [olp= [ gll?dy. vev.
o o
Also, we consider a family of new norms and bilinear forms on Z = H(0):
||u\|%,51 =ac(u,u) + ull? and ac(u,v) = (J*Vyu, J*Vyv),,

for u,v € Z. It is necessary to make clear the uniformness of the norm equiva-
lences in small e, which slightly generalizes the results in [16], [17].

LEMMA 2.5. There existeg € (0,1) andn1,m2 > 0 such that, for alle € (0,eq],

g I g I
@9) il < (ull + 2220 ) < iy < o (s + o),

PROOF. Let

1

n
2
’yg:malcg g,,(y) and ey = ——.

YyeQR i—1 v 1+\/2’y3

Then, for all £ € (0, &),

n

2
Ynt1 1
fully = ol + [ o2 (1 = 2 g )+ g )
=1
n

o0l 1 1 O
>l Sl [ (5 - 200 )
i=1 oY i=1
2 . N - 2 Loy
2 H“”g"‘?ZHuyl + 252g uyn+1
i=1 o

n 2
" , N1 gl
> (yfuf? + 2 |mn+wnn)+.
( 2 ; v 4’7253 Ynt1 4y, g2

By taking 11 = min{~1/2,1/(4vy2)}, we obtain the second inequality in (2.9). It
is similar to prove the third inequality by taking ny, = max{2vys,2/v;} with the
same €g. The first inequality is obvious. U

Now, we define an unbounded operator on X by

Acu = 1 divy(Yeu), andso (Acu,v)g=ac(u,v), forue D(A.), veY.
g
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where D(A.) = {u € H2(O) : Tou-v = 0 on d0}. Therefore, equations (2.8)
can be rewritten as an abstract equation on X.
du® aw

T ASE )‘E:Fet; ’ ‘ Eta hsia
(2.10) o T AUt (t,y,u®) + Ge(t,y) + i

w(r)=ui, yeO, t>T.

2.3. Well posedness of solutions. We use a transformation of variables:
vE(t, Ty w, vr) = us (b, T, w, ur) — hez(6iw), where

(2.11) z2(w) = — /0 eMw(s)ds, weQ.

It is easy to see the mapping ¢ — z(f,w) is continuous for each w € Q. By
, liim w(t)/t = 0 and (2.11), it follows from [2, Proposition 4.1.3] that there
— 4o

exists another tempered random variable r(w) such that
(2.12)  Z(0w) = |2(0w)| + |2(0w) P < Mt p(w), forallt € R, we Q.

Then, the equation (2.10) can be translated into a random equation:

dv®
(213) | dr AT = Lol 0" +hea(B) + Geltyy) — Achez(6w),

(T, Twyur) =v, yeO, t>T

The following well-posedness of problem (2.13) can be found in [21].

LEMMA 2.6. For any Tt € R, w € Q, v, € X and ¢ € (0,eq), problem (2.13)
has a unique solution

(2.14) o°(-,m,w,v,) € C([r,00), X) NLP((r, 7+ T),Y)NL*((r,7+T), Z)

for every T > 0. Moreover, this solution continuously depends on v, and t.

3. Lusin continuity in samples and random cocycle

In this section, we prove F-measurability (actually Lusin continuity) of the
solution mapping from €2 to X. The following result generalizes the correspond-
ing result given in [11] from the Wiener process to a general process. Let

(3.1) Qi ={weQ:|wt) <ieMV/2 for all t € R}, for all i € N.

LEMMA 3.1.

(a) Q= U Qi and {Q;} is an increasing sequence of closed sets in (2, 0).
i=1

(b) For each I € N, the mapping w — z(6w) is continuous on (2, 0),

uniformly in t on a compact intervals. More precisely, for any [a,b] C R,

(3.2) sup |z(0iwi) — z(0rwo)| — 0,  as o(wg,wo) = 0, wk,wy € Q.
t€la,b]
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PRrROOF. (a) Given any w € 2, we know . lirin w(t)/t = 0, which implies

— o0

W)Wl ot
tl}gloo eMt|/2 B tl}gloo t . e>\|t|/2 =0

Hence, by the continuity of ¢ — w(t), there is ig = ip(w) € N such that |w(t)| <
igeMt/2 for all t € R, which means w € Q;,. Therefore, Q = (J Q;. The other

i=1
assertions are obvious.

(b) Assume [a b] [—no,no] with ng € N. Let ny > ng, since wg,wo € Q,
it follows from ( , we can find

My, - ‘/”0 (wk(s) —wo(s)) ds

—ni —MNno
< / e |wr(s) — wo(s)|ds + / e |wi(s) — wo(s)| ds
— 00 —MNn1
—no

—m
< / e*2Ie /2 ds + pp, (wi, wo) / erqds

—00 —ny

471 1
< BN e M 4 Xpnl (Wk»wo)-
Let k,n1 — oo, we have My — 0. Suppose t € [a,b] C [—ng,ngl, by (2.11), we

have

|2(0iwy) — z(Orwo)| = A ’/ Twr(s+1t) —wo(s+t) —wk(t) +wo(t))ds

< )\’/ S(wr(s+1t) —wo(s+1))ds | + |wr(t) —wo(t)]

S Ae A +pno(wkvw0)

/_ e (wr(s) — wo(s)) ds

t
< e M (Mk + / eks\wk(s) — wo(s)] dS) + P (Wk, wo)

—ng

< /\e)\noMk + (62/\710 + 1)pn0 (wk7w0)’
which converges to zero as k — oo uniformly in ¢ € [a, b]. O

LEMMA 3.2. For each I € N, the mapping w — v¢(t,7,w,v;) is continuous
from (Qr,0) to (X, -lg), where v is the solution of equation (2.13).

PRrROOF. We omit the superscript © when there is no ambiguity. Let wy,wy €
Qr such that p(wg,wp) — 0 as k — oo. We denote by vy := v(t, 7, wk,vr),
vo = v(t, T,wo, v, ) and Vi, := vy —vg, where t € [7,7+T] with T > 0. By (2.13),
we have

dv;
(3.3) di F AV + AV = Fo(t,y, vp + hez(Bwr))

— F.(t,y,v0 + he2(01wo)) — Ache(2(0iwr) — 2(0:w0))
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with the initial data V4 (7) = v, — v, = 0. We multiply (3.3) with gV} and then
integrate over O to obtain

Ld
2dt

By the mean valued theorem and the condition (2.3),

(3.4) IVillZ + MIVellz + ac(Vi, Vi) = J1 + Jo.

Ji i = (Fe(t,y, v + hez(0iwr)) — Fe(t, y, v0 + hez(Bwn)), Vk)g

oF,
:/ g 5 (Vi + he(2(0rwy) — 2(0:w0))) Vi dy
o S
< BIIVillZ + Clz(0swr) — Z(9two)|/ g (193] + [ox]P~2 + [vo[P~2) [Vi| dy
o
< 5||Vk||3 + CZ|s(t) |12 + CZi(1 + [voll? + llvellR),

where Z), =  sup  |z(0iwy)—2(0wo)|, and we have used the facts: h. € L>(O)

te(r,7+T]
and sup sup |z(fwk)| < +oo. While
k te[r,7+T)
Jy = — (Ach (2(8wi) — 2(01w0)), Vi) g = —ae(he (2(6iwi) — 2(01w0)), Vi)

1 1 1 1

<5 ae(Vi Vi) + 5 Ziac(he, he) < 5 ae(Vis Vi) + 5 Ziac | hell
1 o 1 g

< 5 aelVi Vi) + 2 22 (el + 5| 5.2 o oty onn)| )
1

<5 ae(Vi, Vi) + CZ3.

The above estimates yield
d
(35) = IVilly < ClIVillg + C 2 (1 + Ilvollf + lokll}) + CZE (1 + s ®)IIZ)-

By the Gronwall inequality over [r,t] with ¢ € [, 7 4+ T}, we find

T4+T
IVi(@)ll; < Ce™ (Zk/ (1 + l[lvo(s) 17 + llve(s)}) ds

2 [ 0 ) o)

T+T

< C(Zk + 224 7y, / ok ()17 ds>,

where we have used the facts: 13 € L (R,L>*(0)) and vy € L} (R, LP(O)).

loc loc

By an energy inequality on vy (see [20, (47)]),

d
okl + Mokllg + elloell}
<O+ [2(0wmn))” + c(IGOI% + 91 oo + 112 ()11Z)-
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The Gronwall inequality implies that

\ T+T

AT

e / o (s) 2 dslvg |2
:

T+T
< Cllollg + C/ L+ G + 11 (s)lloc + ll2(5)]1%) ds < +oc.

By Lemma 3.1 (b), we know Z; — 0, and thus ||V, (¢)[|2 — 0 as k — oo, uniformly
inter,7+T]. O

COROLLARY 3.3. w—v°(t, 7,w,v,) is (F, B(X)) measurable, for X = L*(O).

PRrROOF. By Lemma 3.1 (a) and the countable additivity of P, it is easy to
see lim P(€Q;) = P(Q) = 1. Then Lemma 3.2 implies Lusin/basic continuity of
1—> 00
the mapping, which further implies the needed measurability. O

Next, we need to prove that the solution mapping is F-measurable in ¥ =
L?(0O). In this case, we recall the concept of a quasi-continuous mapping, which
is introduced by Li and Guo [25] and developed by Gess [15].

Let M be a Polish space and X a separable Banach space. A mapping
®: M — X is said to be quasi-continuous if ®m; — &m weakly in X, whenever
{®m;}$2, is bounded in X and m; — m in M. The following result can be found
in a recent article by Cui, Langa and Li [11].

LEMMA 3.4.

(a) (Measurability) ® is (B(M),B(X)) measurable if &: M — X is quasi-
continuous.

(b) (Inheritability) Let Y — X and X* < Y* densely. Then, &: M — Y is
quasi-continuous if ®: M +— X is quasi-continuous and ®(M) C V.

LEMMA 3.5. Fort > 7, the solution mapping w — v¢(t, 7,w,v,) is (F,B(Y))
measurable, where Y = LP(O).

PrROOF. By Lemma 3.2, the solution mapping is continuous from (€2, p)
to X for each I € N, and so it is quasi-continuous from ; to X. By Lemma 2.6,
v(t, T, w,v;) €Y fort > 7 and v, € X. Since Y — X and X* — Y™ densely, it
follows from inheritability given in Lemma 3.4 (b) that the solution mapping is
quasi-continuous from € to Y. Then, by the measurability of a quasi-continuous
mapping (see Lemma 3.4 (a)), the solution mapping is (B(Q5),B(Y)) measur-

able for each I € N. By Lemma 3.1, each Q; is closed in 2 and |J Q; = Q.

i=1
Therefore, it is easy to prove that the solution mapping is (F,B(Y)) measur-

able. O
Now, we define a family of mappings ¢.: Rt x R x 2 x X — X by

O (t, Ty w,v.) =05 (L4 7,7, 0_rw, v7).
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Recall that the concept of random cocycle which is given by Wang [32].

DEFINITION 3.6. A mapping ¢: RT x R x Q x X — X is called a random
cocycle on X if

(a) ¢is (B(RT) x B(R) x F x B(X),B(X)) measurable;

(b) it holds the cocycle property: for all t,s € RT, 7 € R and w € Q,

ot +s,T,w) = P(t, T+ 5,0,w)d(s, T,w), &(0,7,w)=idx.

Applying Lemmas 2.6, 3.2, 3.5 and Corollary 3.3, we have proved the follow-
ing result.

THEOREM 3.7. For each e € (0,e0], ¢e is a continuous random cocycle on X .
Its restriction on Y is a quasi-continuous random cocycle on Y .

Finally, we take a universe © of all set-valued mappings D: R x Q — 2% \ ()
such that, for any v > 0,

: —~t _ 2 _
tlgrnooe ID(r—t,0_w)||x =0, 7T€eR, weq,

where ||D|| denote the supremum of norms for all elements, and X = L?(0).
It is similar to define the universe Do on L?(Q).

4. Random attractors in p-times Lebesgue space

We need the following basic estimates for the solution v°(s,7 — ¢,0_,w, vg)
in X (see [20]).

LEMMA 4.1. [20]. Let €g be the positive number given in Lemma 2.5. Then,
foreach D€ ®, 7 € R and w € Q, there exist T = T(D, T,w) > 2 such that for
allt > T, vy € D(T —t,0_w) and € € (0,0),

T

(41) oo (r, 7 = t,0-rw,v0) | 72 +/ [ (s)lIp ds < erpr(r,w)

T—t
where p1 is tempered and given by

0
p(1,w) =r(w) +/_ e’\s(l—i—\Il(s—i—T)) ds,
with W(s) = [G(s)1% + [¥1(5)loo + t2(s) |12 + [[¥a(s)[2% and r(w) is given
in (2.12).

The following Gronwall-type lemma will be used frequently, which can be
founded in [26].

LEMMA 4.2. Let z, z1 be nonnegative locally integrable such that Z2+az < z;.
Then, for any 7 € R and p > 0,

T

(4.2) z(1) < l/ e 2(r) dr —|—/ e 2 (r) dr.
T—p

T—p
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LEMMA 4.3. For any D € ©, 7 € R and w € €, there exist T > 2 such that

(4.3) sup sup sup |[[v°(s, 7 —t,0_rw,v)|b < capa(T,w),
s€[r—1,7]t>T e€(0,e0)
whenever vy € D(T —t,0_w), where py is a finite function given by

0
pa(rw) = (1+0-7)py (1,0) + / [l (s + )% ds.

—o0
PROOF. We multiply (2.13) with g|v|P~2v and integrating over O to obtain

1d _
@d) S+ Aol + [ g op~2ody

= (F.(t,y,u), \v|p_2v)g + (G:(t,y), |v|p_2v)g — (Achez(Oyw), |v|p_2v)g.

The Laplace term is non-negative. Indeed,
/ gAv - [u[P 2 dy
o

1 SOOI 1 ~ 2~
= —7/ AP0 de = 7/ V0 - Vi ([0]P20) dz
13 0. g 0.

p—2
€

—1
_ 2= / P2 (V3] da > 0.

~ 1 ~ i~ ~
/ V. - [P 012 V0 da + 7/ V.0 - [0]P2V, v dx
. € Jo.

In order to estimate the nonlinear term in (4.4), we use the conditions (2.1) and
(2.2) to obtain

Fe(ty,w)o = F(t 4", eg(y" )ynsr, whu — F(t 4", e9(y" ) yny1, w)he2(0,w)

< —anful’ + 1 (8) + (ozlul”™" + g2 (t)]) |hez(0rw)|
< _% [P + clhez(0,w) [P + |11 (B)] + (c2lulP™! + [1h2(8)]) |hez(0w)]
< o of? + (8] + Wa)he=(01)| + elhez(Bi)

where 1 (t) = ¥1(¢,y*, e9(y* )yn+1), and it is similar for ¥ (t). Hence,

— a1 —
/ng(t,y,U)v\vl” Ty < -0 / [0 ~% dy
o o

et [ (101 + [0a(t)hex(00)| + hez(O) o~ dy.

By the Young inequality ab?=2 < nb??=2 + C(n)a*, where u = 2 — 2/p such that
1 < p <2, we have

_ Q171 _
eyalpr (B)[[o]P~? < 2mlvl”" 2 el ()
Q171

< W|U|2p72 + c(Jvr ()] + [ ()]?).
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Similarly, by h € C%(Q x [0,72]) and so h € L™ ((9),

_ Q171 _
Y2 lhez(B,w) PlolP~2 < le\z” 2t e(|2(0w) P + |2(0:w)[*P)
Q171

< 9p+4

|02 + c2(0,w),

where Z(6;w) is given in (2.12). By the generalized Young inequality: abc <
na?P=2/P=2) 1 C(n)b? 4 C(n)c**~2, we have

_ (64 — ~
[0 2(eya oo (t) ) he2(Bi)| < Sl 1072 4 clun (D] + e2(6,w).

All above estimates imply that

(4.5) /gFE(uy,U)vlvl”_zdy
(@)

< — Sz 0133 + e(va (B)lloo + n DI + [¥2(8)]%) + cE(00).

where | - || denotes the norm in L™ (5) The second term on the right side
of (4.4) is controlled by

_ a1y _
@o) [ aGtalody < G [P tanee [ Gt ay
o @] @]

171
9p+4

2p—2
< lvli5p=5 + el GO

The final term of (4.4) is bounded by

(4.7) *(Ashszwtw),lvl”’zv)g:/ 92(6iw) Ache - [o[P~2v dy
(@]

a171
op+4

2p-2 | =~
vllzp=2 + Z(Oiw),

< 72/ 92(0,w) Ache - |v|P2v dy <
16)
where, by h € C%(Q x [0,72]), we have
kel = [ glAchlPdy= [ glAuhio) do
O OE
< / g|ALh(x)|? dr < +oo.
QX[O”Y?]
By (4.4)—(4.7), there are constants ¢y, c2 > 0 such that
d _ =~ ~
(4.8) Sl + Allvlip + crl[vll5p 75 < ea (W(t) + 2(6iw)).

where W(t) = [[1h1 (t)]loo + |91 ()12 + |2 (£) |2 +|G(#)[|% - For each s € [r—1,7],
we apply the Gronwall-type inequality (4.2) with 4 = s — (7 —2) > 1 and replace
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w by _,w in (4.8), the result is

llv(s, T — t,H_Tw,vo)Hg

S

g/ @Wﬁwwm—umwwwww+g/ A7) (2(0,,w) + ¥(0)) do
T—2 T—2

SeMl_T)/ e |[v(o, 7 —t,0_rw,vo) % da+c/ e)‘(“_s)(g(egfr)-l-‘/l\’(a)) do.

—t —o0
for all t > T > 2 with the same entry time 7" as given in Lemma 4.1. Note that
(o) < W(0)+ ||ltb1(0)||%. By (4.1) in Lemma 4.1, we obtain (4.3) as required.]

LEMMA 4.4. Let T :=T(D,7,w) > 1 be the entry time, given in Lemmas 4.1
and 4.3, for any (D, 7,w) € D Xx R x Q. Then

(4.9) lim  sup sup/ |v¥ (1,7 — t,0_rw,v0)|P dy = 0,
K—00 c¢(0,e0] t>T J O(Jve| > K)
uniformly in vo € D(1 —t,0_w), where O(|v°| > K) = Og U O_k with
Og =0%(s,7—t)={y € O :v°(s,7 — £, 0_rw,v9)(y) > K},
O_k={yeO:v°(s,7—t,0_rw,v0)(y) < —K}.

ProOF. We first show that

(4.10) lim sup  sup sup sup |O% (s, 7 —t,v)| =0,
K =00 5¢(r—1,7] e€(0,20] t>T vo€D(r—1,0 _1w)

where |Ok| denotes the Lebesgue measure. For this end, by Lemma 4.3, we
know that
05,7 vlK7 < |

|v° (s, 7 — t)|P dy < / v (s, 7 —1)|P dy < C < 400,
Ok o
hereafter, we denote by C' = C(7,w) and denote by ¢ a constant. Letting K —
+00 in the above inequality yields (4.10).
On the other hand, by the continuity of s — z(6sw), we have
sup 2(0s)[[[P]| Loe (@x[0,72)) = K1 < 00

se

By the condition (2.1), we can take Ko > 0 such that
(4.11) F(s,z,u) < —aquP 4+ ¢1(s,x)u_l, if u > Ks.

Now, let K be large enough such that K > K; + K5 + 1, and take the inner
product of (2.13) with g(v — K)2~" in L?(0), where w, := max{w,0}. The
result is

(@12) 20— K)ellp + Aoy o = KE), + (Ao (0= KR,

= (Fe(s,9,u), (0 = )57 1)y + (Ge(s,), (v — K)ET1),
— (Achez(0s—rw), (v — K){’;l)g.
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for all s € [t — 1,7]. It is easy to see that
@13) (Ao lo= KR, 200 3 [ oo K dy > (0= K
If v > K, then

u=0v+ he(y)z(0s—rw) > v — |he(y)2(0s—rw)| > v — K1 > Ks.
By (4.11),

F(s,z,u) < —oaquP™" 4 ¢y (s, 2)u™"
< S (s )+ elhez(Bamr) .

Therefore, we obtain the following estimates of the nonlinearity,

(4.14) /O GOF (5,5, g(y" Ymsr, u) (v — K21 dy

€
K

< _am /

+ c/ |hez(0s—rw) P~ (v — K)2 " dy
o

£
K

P (0 — K dy + 7 /O o (5)| (v — K)2 2 dy
K

Q171 —1 p—1
<G [ vt R

€
K

+c/ i (5)[2~2/P dy+c/ |hez(0s_rw)|?P~2 dy
03, 03

K

Q171 p—1 p—1
<_2p+1/o P v = K)E dy

+e(l91(8)llo + 191 (5)]12)|O%c| + Z(0s—rw)| O .

where ¥1(s) = ¥1(s,y*,e9(y*)yn+1) and || - || denotes the norm in L> ((5)
Similarly, we have

(Gels.) (0= KW, < 5 [ o o= K dy + el G OF |
By using A.h. € L*(Q), we have

(4.15)  — (Achez(fs—rw), (v — K)ﬂ_l)g = /(9 gAh 2 (05— w) (v — K)2 ' dy

£
K

171 — —1 ~
< TS /(95 VP (v — K dy + c2(0,—w)|O% .
K

By (4.12)—(4.15), we can obtain that

(416) Lyw—K), |2+ 02/ Lo — K2 dy
o5

< C3([[1(9)lloe + [01(8)I2 + G ()12 + Z(0s—rw)) O |-

2
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where Cy, C3 are positive and independent of K and . Note that

/s

then, (4.16) can be rewritten as follows:

P KWy = [ oo K dy 2 K0 KL,

£ £
K OK

d _
(@1 L= Klp+C [ o - K dy
ds Of(
< Cs([[1(8)lloe + [¥1() 1% + 1G(5)]1% + Z(B5—7w)) | O .
By the Gronwall-type inequality (4.2) in Lemma 4.2 with x4 = 1, we have

T

I(or) = K0+l < [ ORI ulo) — ) ds

T—1

+ C3]O%| /71(”1#1(5)”00 +va ()5 + IG5 + 2(0s—rw)) ds

g/ 2K 2= (y(s) — K) 4 |2 ds + Ca|O% |,
7—1

loc

of Z(0.w). Since [|(v — K)4 | < [|v]|b, it follows from Lemma 4.3 that

in the last step, we have used v1,G € L? (R, L (6)) and the continuity

sup sup sup (o5 (5,7 — 1,0_r0) — K)4 |18 < G,
s€[r—1,7]t>T €(0,e0]

Therefore, by (4.10), as K — oo,

(e (7 —t,0_rw,v9) — K) + C4]0%| — 0,

s
+||£§W

uniformly in € € (0,e0], t > T and vy € D(7 — t,0_;w). Note that v < 2(v — K)
if v > 2K. We have

[ 10 = 0w, w)lPdy < 2070 = KD >0,
O3k

as K — 400, uniformly in ¢ € (0,g9], ¢ > T and vy € D(r — t,0_;w). Similarly,
the above uniform convergence holds true on O_sk. O

We give the following concept of a bi-spatial random attractor, which is
slightly different from the concept given in [24] because we require that the
F-measurability of the attractor holds true in both initial and terminate spaces.

DEFINITION 4.5. A bi-parametric set A = {A(7,w)} is said to be a (X,Y)-
random attractor for a random cocycle ¢ if

(a) w— A(1,w) is F-measurable in X and in Y respectively;

(b) A€ ®, and A(7,w) is compact in X NY;

(c) Ais invariant, i.e. ¢(s,7,w)A(T,w) = A(T + s,05w) for s > 0;
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(d) A is pullback attracting in Y, i.e. for every D € D,
. ligl disty (¢(t, 7 — t,0_yw)D(T — ¢, 0_4w), A(T,w)) = 0.
—+00

THEOREM 4.6. For each ¢ € (0,&g], the cocycle ¢, generated by the problem
(2.13), has a unique D-pullback (X, Y )-random attractor A, = {A.(T,w) : 7 € R,
w € Q}, where X = L*(0) and Y = LP(0O).

Proor. By Lemma 4.1, a random absorbing set is given by
K(r,w) = {u € L*(O) : |ul]* < c1p1(r,w)}, for all T € R, w € Q.

It is obvious that K € @, and the absorption is uniform in € € (0,¢]. Next, we
need to show that ¢. is asymptotically compact in Y.

In fact, we prove the stronger eventual compactness in Y. Let (D, 7,w) €
D xR xQand e € (0,e0] be fixed, we define a decreasing family of sets by

(4.18) B.(T) := U Ge(t, 7 —t,0_w)D(T —t,0_w), foralT > 0.

t>T
Let Ty = To(D,7,w) be the entry time given in Lemmas 4.1 and 4.4. By
Lemma 4.4, for each n > 0, we can find a K = K(n) > 0 such that

(4.19) / [v(y)|P dy < nP, for all v € B.(Tp).
O(lv|2K)

On the other hand, by Lemmas 4.1, B.(Tp) is bounded in H!(O) and so in
HY(O) (by Lemma 2.5), which implies that B.(Tp) is pre-compact in L?(O).
Hence, B.(Tp) has a finite net in L?(0) with the same radius (K~P)/2pP/2 and
the finite centers vy € B:(T), k =1,...,m. That is, for any v € B.(Tp), we can
find a center vy such that

(4.20) v — v |* < K27 Py,

We will prove ||v—vg ||, < en, by dividing the domain into four parts: O = _L4J 0;,
where, =

01 =0(lv| 2 K)NO(Jvog| < K), Oz =O(Jv| < K)NO(|vg| = K),

O3 =0(Jv| 2 K)NO(Jog| = K), Oy =0(|v| < K) N O(Jvg| < K).

Note that |v] > K > |vg] on Oy, and |v| < K < |vg| on Os. By (4.19), we have

[o-uldy<z [ Qo vuyay <zt [ g <oy,
O, Oy O(|v|>2K)
/ |[v — v |Pdy < 2p+1/ o [P dy < 20T 1pP.

(@ O(lvk|>K)

By (4.19) again, we have

/ |U—vi|pdy§2p</ |v|pdy—|—/ |vk|pdy> < 2Ptipp,
O3 O(lv|2K) O(|vk|>K)
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On the other hand, by (4.20), we have

/ v — v P dy < (2K)P~ / v — vl dy < K)o — v]]* < 22,
Oy Oy

By the estimates mentioned above, [[v — vg|5 < 2P3pP, which implies that
B.(T)) has a finite 167-net in LP(O) with the same centers vy, k = 1,...,m.
Therefore, B.(Tp) is pre-compact in LP(Q) and so ¢. is eventually compact in
L?(O) as required.

By the abstract existence result of bi-spatial attractors given in [26] (see [24]
in the autonomous case), we know that ¢. has a (X,Y)-attractor A., except for
F-measurability in Y. By Lemma 3.5, the cocycle ¢. is F-measurable in Y. By
Lemma 4.3, ¢ has a ®-pullback absorbing set /C,, in L?(O) given by

Kp(r,w) = {u € LP(O) : [[ull) < cop2(T,w)}, forallT €R, we Q.

It is obvious that /C,, is a random set in LP(O) in view of the measurability of the
mapping w — pa(7,w). Then, it follows from [11, Theorem 19] that the attractor
A is F-measurable in LP(O). Therefore, A, is indeed a (X, Y)-random attractor
in the sense of Definition 4.5. O

In order to consider the limiting equation (1.3) on @, we define an opera-
tor Ag by
2 ou
D(Ag) =que H(Q): =— =00n 0Q ¢,
8u0
and, for u € D(Ap),

n

1
Agu= =3 (guy )y (Aot 0y = aofv) = / gVu- Vody".
i=1 Q

0

Let u° is a solution of problem (1.3). Then, v°(t,7,w,v?) = uo(t,7,w,ul) —

ho(y*)z(6:w) satisfies the following equation:
do®

(4.21) — + Agv? + 2 = fo(t,y*,uo) + Go(t,y*) — Aoho(y™)z(6w),

(1) =00, yr e, t>r,

and the solution determines a continuous random cocycle ¢o(t, 7, w, u2) on L?(Q).

THEOREM 4.7. Under the Assumption 2.4, the cocycle ¢y, generated by equa-
tion (4.21), has a unique Do-pullback (L*(Q), LP(Q)) random attractor Ay € Dy.

5. Upper semicontinuity of bi-spatial random attractors

For a function defined on O, we consider its average function with respect to
the n + 1-th variable, by using the average operator M: L?(0) — L?(Q),

(Mu)(y7) = / Wy gosr) dynsr.
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Conversely, for a function u defined on @, we regard that w is identical to the
function u(y*, yn+1) = w(y*), (¥*,ynt1) € O = Q x (0,1). The following result
can be found in [18]: If u € H*(O), then Mu € H*(Q) and

(5.1) [w — Mul| 20y < cellull g o)
We need some convergence assumptions for both source and force.
ASSUMPTION 5.1. There exist two functions p1 (), p2(-) € L2 .(R) such that

Il fe(t, -y 8) = fo(t, -, s)||lL20) < pa(t)e, forall t,s €R,
|G=(t, -) — Go(t, - )lz2(0) < pa(t)e, forallt € R.

Since h € C?(Q x [0,72], by the mean valued theorem, we have the same
convergence from h,. to hg as

sup |he(y) — ho(y")| < ce.
yeO

Then, under the Assumption 5.1, the following convergence of the cocycle ¢. can
be found in [20, Theorem 2.2]: Suppose [[v§| z1(0) is bounded with respect to
e € (0,&0], then

(5.2) lim | (£, 7, w)vG — dolt, T,OJ)M’USHLZ(O) =0,

foreacht > 0,7 € R and w € Q.
By using the above convergence, [20, Theorem 2.3] further proved the fol-
lowing convergence of the random attractor in L?(O):

(5.3) lim dist 12(0) (A< (7,w), Ao (7, w)) = 0.

Our main result in this section is to show that the convergence (5.3) holds
true in the stronger topology. This type of semi-continuity is different from the
semi-continuity come from the varying densities of noise (see [13], [37], [38]).

THEOREM 5.2. The random attractor A. is upper semi-continuous in LP(O)
at € =0, that is

(5.4) lir% distr(0)(Ae(T,w), Ao(T,w)) =0, forallT €R, we Q.
e—

PRrROOF. We split the proof into three parts.

Part 1. We show that any sequence z;, € A, (T,w) is pre-compact in LP(O),
where g, — 0. For this end, we assume without lose of generality that ;, € (0, 9]
for all k € N. By Lemma 4.1, each cocycle ¢., has a collective absorbing set
K € © defined by

(5.5) K(r,w) = {ue L*(O) : |u|® < cipr(r,w) }.
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Then, the invariance of A,, and the absorption of K implies that

U A (5,0) c K(5,@), forallseR, @eQ.

keEN
Let T be the same entry time given in Lemmas 4.1 and 4.4 when K is absorbed
by itself. By the invariance of A., and the above inclusion, we know that

2k € ¢, (T, 7 = T,0_rw)K(7 —T,0_rw), forall keN.

By Lemma 4.4, for each 6 > 0 there is a R = R(J) such that
(5.6) sup/ |z |P dy < 6P.
keNJO(zx|>R)

By Lemma 4.1, we know
sup ||¢e, (T, 7 — T, 0_7w)K(1T — T, H_Tw)H%pk(o) < e1p1(T,w),
k: €
which, together with the first inequality in Lemma 2.5, implies that

sup 410y < sp -kl (o) < cpo(r ).
k kT ck

Then, by the Sobolev compact embedding, the sequence {2} ; has a conver-

gent subsequence (not relabeled) in L?(O). In particular, {z}?2, is a Cauchy

sequence in L?(0). Then, there is a ko € N such that

(5.7) 2k = zml| 720y < R*7P67, for all k,m > ko.
By the similar method as given in the proof of Theorem 4.6, we split the domain
4
0= U Oj with
j=1

01 =0(z| 2 R)NO(lzm| < R), Oz = O(|z| < R) N O(|zm| = R),

O3 = O(|zk| > R) N O(|zm| > R), 04 =0(Jzx] < R)NO(|zm| < R).

By (5.6), we can calculate as follows:

/ |2k — z2m|Pdy < 2p+1/ |2 [P dy < 2P+16P,

Ox O(lzk|>R)

[la-mpag < [ ppay <o,
O3 O(lzm|=R)

/ |zp — 2P dy < 2”(/ |z [P dy —I—/ |2¢|P dy) < 2ptigp,
O3 O(lzx|ZR) O(lzm|2R)

By (5.7)
/ |2k — zm|P dy < (2R)p*2/ |z — Zm|2 dy < (2R)p*2R2*p77p < optlge,
O, o

Hence, ||z — 2|5 < 2PF36P and so ||z — 2|, < 46. Therefore, the subsequence
{zr}72, is a Cauchy sequence and thus convergent in L”(O) as required.
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Part 2. We construct an absorbing set B C H'(O) such that By = M(B) is
a closed tempered set in L?(Q) and so By € D is attracted by the attractor Ay
under the topology of L?(Q). For this end, we define two bi-parametric sets in
HY(0) and in L%(Q) respectively.

c
B(r,w) = {u € H (0) :u e K(r,w), Hu||%1(o) < 771;)1(7'7(,0)},

Bo(m,w) = {Mu :u € B(r,w)},
where the over-line denotes the closure in L?(Q) and K is the absorbing set given
by (5.5). Since B(7,w) C K(7,w), we have B € ©. By Lemmas 2.5 and 4.1, for
any € € (0,&0] and D € D,
[pe(t, 7 = t,0_1w)D(T — t,0_1w) || Fr1(0)
< 7]1_1 ||¢E(t’ T—t, e—tw)D(T -, o—tw)”?{g((ﬂ) < 01771_1P1 (va)7

provided t is large enough. Hence, B € © is still a ®-pullback absorbing set. On
the other hand, by (5.1) and by Lemma 2.5 again, we have, for all u € B(7,w),

2 2
lu = Mull720) < cg®[|ullf o) < ce? = lullfn o) < o pi(T,w),
Hence, for all u € B(r,w),
IMullZ2q) < 2([ullF20y + lv = MulF2(0)) < epr(r,w).

Since p1(7,w) is a tempered random variable, the above estimate yields By € Dg
(we can not prove Ky € g, where o = M(K) was used in [20], [21]).

Now, by Theorem 4.7, the bi-spatial attractor Ay attracts By € Dy under
the topology of LP(Q). More precisely, for each § > 0, there is a To = To(6) > 0
such that for all t > Ty,

(58) diStLp(Q) ((b() (t, T — t, Q,tw)Bo (T - t, H,tw), A()(T, w)) < 4.

Part 8. We argue the convergence of random attractors in LP(O) by contra-
diction. Suppose (5.4) is not true, then, there exist § >0, 7 € R, w € Q, g, — 0
and z, € A, (T,w) such that

distzr(0)(2x, Ao(T,w)) > 6, for all k € N.
By Part 1, there is a z € LP(O) such that, passing to a subsequence,
(5.9) klim llz — 2l|Lr(0y =0 and  distzr ) (2, Ao(T,w)) > 0.
— 00

By Part 2, B is an absorbing set, which, together with the invariance of A.,,
implies that

(5.10) J A, (5,@) € B(s,@), forall s €R, for all & € Q.
k
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By Part 2 again, B € © and so B can absorb itself. In this case, we let T' =
T(B) > 0, independent of ¢, be an entry time such that T > Ty, where Ty =
Ty(9) is the attraction time given in (5.8) when Ay attracts By.

Now, for each k& € N, by the invariance of A.,, there are zj, € A., (7 — T,
6_rw) such that

2z = ¢, (T, 7 = T,0_1w)Z.

By Lemma 4.1 and (5.10), there exists another entry time T= f(B, T=T,0_rw)
such that, for all ¢ > T and k € N,

(5.11) H/Z\kHHalk <N, (b7 =T —t,0_10_rw) A, (T — T — t, H_tG_Tw)HH;k
< ley (87 =T = 8,040 _qw)B(r =T —,0_10_7w)| 1z
<capi(t—=T,0_7w).

This means that ||Zj|| 2, is bounded in k, which together with (5.2) give

|pe), (T, 7 = T,0_7w)z), — ¢po(T, 7 = T,0_7w)MZ| 120y = 0, as k — oo.
that is
|z — ¢o(T, 7 — T,0_rw)MZ | 2(0) = 0, as k — oco.
By (5.9) and by the Holder inequality, we have
2~ 2320y < 1Oz — 2Wuqoy 0. a5k = oo,
Then, we have
(5.12) lz = ¢o(T, 7 = T,0 _7w)MZg| 20y — 0, as k — oc.

Once more, we consider the sequence 2z € A, (1 — T,0_rw). By (5.11),
||fz\k||H51k(@) is bounded in k, which together with (5.1) imply that

||:Z\k — ME]CHLZ(O) < CEkHEkHHElk(O) < Ceg, — 0.

By Part 1, {Z;} has a convergent subsequence (denoted by itself) in LP(O)
and thus in L?(0O). Then, the above convergence shows that the corresponding
subsequence { M2z} } is a Cauchy sequence in L?(Q) and thus in L?(Q). So, there
is a zp € L?(Q) such that

Mz, — 2o in L*(Q) as k — occ.
By the continuity of the operator ¢g: L?(Q) — L?(Q), we have
bo(T, 7 —T,0_1w)MZy, — ¢o(T,7 —T,0_7w)Zy in L*(Q),

and so in L?(0) by expending the domain. This together with (5.12) implies
that z = ¢o(T,7 — T,0_7w)Zy in L?(O). So, z = ¢o(T, 7 — T,0_7w)Zy almost
everywhere on O, which implies

z = ¢0(T7 T—T, Q,TW)EO n LP(O).
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(5.10), we know z, € A, (1 — T,0_7w) C B(r — T,0_rw). Then, by the

construction in Part 2, it follows that Mz, € Bo(r — T,0_pw) for all k € N.
Hence, the limit Zy € Bo(t — T, 0_rw) in view of the closedness of By. By (5.8)
in Part 2 and by T > T}, we have

diStLp(@) (Z, .Ao (T, w)) = diStLp(Q) (¢0(T, T — T, H_Tw)Eo, .AQ (7'7 CU)) < 4.

This gives a contradiction with (5.9). d
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