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MULTIPLICITY RESULTS

FOR FRACTIONAL p-LAPLACIAN PROBLEMS

WITH HARDY TERM

AND HARDY–SOBOLEV CRITICAL EXPONENT IN RN

Hadi Mirzaee

Abstract. This paper is devoted to the study of a class of singular frac-

tional p-Laplacian problems of the form

(−∆)spu− µ
|u|p−2u

|x|ps
= α

|u|p∗s(b)−2u

|x|b
+ βf(x)|u|q−2u in RN

where 0 < s < 1, 0 ≤ b < ps < N , 1 < q < p∗s(b), α, β > 0, µ ∈ R, and f(x)
is a given function which satisfies some appropriate condition. By using

variational methods, we prove the existence of infinitely many solutions

under different conditions.

1. Introduction and statement of main result

In this article, we consider the following fractional p-Laplacian equations

with Hardy term and Hardy–Sobobev critical exponent:

(1.1) (−∆)spu− µ
|u|p−2u

|x|ps
= α
|u|p∗s(b)−2u

|x|b
+ βf(x)|u|q−2u in RN

where 0 < s < 1, 0 ≤ b < ps < N , 1 < q < p∗s(b) = p(N − b)/(N − ps), α, β > 0

and µ ∈ R. The operator (−∆)sp is the fractional p-Laplacian, which up to
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normalization factors, may be defined, for x ∈ RN , by

(−∆)spϕ(x) := 2 lim
ε→0

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|N+ps
dy, x ∈ RN ,

along any function ϕ ∈ C∞0 (RN ), where Bε(x) := {y ∈ RN : |x − y| < ε}. The

fractional p-Laplacian (−∆)sp reduces to the fractional Laplacian (−∆)s if p = 2.

For more details on the fractional p-Laplacian, we refer to [7].

In recent years, much attention is given to the study of the nonlocal elliptic

problems involving singular nonlinearity (e.g. [9], [2], [3], [16], [8], [15]). Frac-

tional p-Laplacian problems involving Hardy term and critical exponent have

been also investigated (e.g. [10], [12], [19], [5]). However, as far as we know,

there is no work about multiplicity results for fractional p-Laplacian problems

with Hardy term and Hardy–Sobolev critical exponent in unbounded domains.

In the present paper, we investigate multiplicity results of solutions for some frac-

tional p-Laplacian problems involving Hardy term and Hardy–Sobolev exponent

in RN . Since we deal with a singular problem in the unbounded domain RN ,

the lack of compactness of the Sobolev embedding presents an appropriate vari-

ational technique which make the problem more attractive. For this purpose

we first need to verify a new version of the Rellich–Kondrachov compactness

theorem which has a crucial role in verifying our results. Using variational tech-

niques and the theory of genus we obtain infinitely many solutions under different

conditions.

In order to state main results of this paper, we introduce some Sobolev

and weighted function spaces. Let Lq(RN ;w) be the weighted Lebesgue space

endowed with the norm

‖u‖qq,w =

∫
RN

w(x)|u(x)|q dx.

Then it follows from Proposition A.6 of [1] that the Banach space Lq(RN ;w) =

(Lq(RN ;w); ‖u‖q,w) is uniformly convex. Let 0 < s < 1 < p < ∞ be real num-

bers. The Gagliardo seminorm is defined for all measurable function u : RN → R
by

(1.2) [u]s,p =

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

.

The fractional Sobolev space is defined as

W s,p(RN ) =

{
u ∈ Lp(RN ) :

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy <∞

}
,

equipped with the norm

(1.3) ‖u‖W s,p(RN ) =
(
‖u‖pp + [u]ps,p

)1/p
where ‖ · ‖p denotes the usual Lp norm.
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The fractional Sobolev space Ds,p(RN ) := X is defined as the closure of

C∞0 (RN ) with respect to the norm

‖u‖X = ‖u‖Ds,p(RN ) =

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

.

From Theorems 1 and 2 of [14] we have

‖u‖pp∗s ≤ CN,p
s(1− s)

(N − ps)p−1
[u]ps,p,

∫
RN

|u(x)|p

|x|ps
dx ≤ CN,p

s(1− s)
(N − ps)p−1

[u]ps,p

for all u ∈ Ds,p(RN ), where CN,p is a positive constant depending only on N

and p. As in [5] we introduce the best fractional critical Sobolev and Hardy

constant S = S(N, p, s) and µ = µ(N, p, s) given by

(1.4) S = inf
u∈Ds,p(RN )\{0}

[u]ps,p
‖u‖pp∗s

, µ = inf
u∈Ds,p(RN )\{0}

[u]ps,p∫
RN |u(x)|p/|x|ps dx

.

We conclude from (1.4) that if µ < 0, then the fractional Sobolev space Ds,p(RN )

has the equivalent norm ‖u‖µ, where

‖u‖pµ =

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy − µ

∫
RN

|u(x)|p

|x|ps
dx, µ ∈ (−∞, 0).

We now establish the following fractional Hardy–Sobolev inequality due to Pucci

et al. [10]:

(1.5) Hb

(∫
RN

up
∗
s(b)

|x|b
dx

)
≤
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)p∗s(b)/p

where 0 < b < ps and Hb is the best constant in the fractional Hardy–Sobolev

inequality. Hence, we can define the following best Sobolev constant:

Sµ = inf
u∈Ds,p(RN )\{0}

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy − µ

∫
RN

|u(x)|p

|x|ps
dx(∫

RN

|u|p∗s(b)

|x|b
dx

)p/p∗s(b)
,

for µ ∈ (−∞, 0). Throughout this paper, we make the following assumptions on

the function f : RN → R:

(f1) f(x) > 0 and f(x)|x|sq ∈ L%1(RN )∩L∞loc(RN ) where %1 = p/(p− q) and

1 < q < p;

(f2) f(x) > 0 and f(x)|x|bq/p∗s(b) ∈ L%2(RN ) ∩ L∞loc(RN ) where %2 = p∗s(b)/

(p∗s(b)− q) and p < q < p∗s(b).

Now, we state main results of this paper

Theorem 1.1. Suppose µ ≤ 0, 1 < q < p < p∗s(b), and (f1) hold. Then
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(a) for each β > 0 there exists α0 > 0 such that if 0 < α < α0, then (1.1)

has a sequence of solutions {un} with I(un) < 0, and I(un) → 0 as

n → ∞, where I : X → R is the energy functional associated with (1.1)

and defined in the Section 2,

(b) for all α > 0 there exists β0 > 0 such that if 0 < β < β0, then (1.1) has

a sequence of solutions {un} with I(un) < 0, and I(un)→ 0 as n→∞.

Theorem 1.2. Suppose α = 0, 0 < µ < µ, 1 < p < q < p∗s(b), and (f2)

hold. Then, for each β > 0, (1.1) has a sequence of solutions {un}, such that

I(un) → +∞ as n → ∞, where I : X → R is the energy functional associated

with this problem and defined in Section 5.

The rest of this paper is organized as follows. Some compactness results and

preliminaries are given in Section 2. In Section 3, we investigate the behaviour of

Palais–Smale sequence which can be used in the proof of Theorem 1.1. The proof

of Theorem 1.1 is given in Section 4. Finally, in Section 5, we prove Theorem 1.2.

2. Preliminaries

In deriving the following Theorem we have been inspired by [21]. In par-

ticular, Theorem 2.1 implies the compact imbedding from the spcae Ds,p(Ω)

into some weighted Lebesgue spaces, and gives us a new version of the Rellich–

Kondrachov compactness theorem:

Theorem 2.1. Assume that 0 < b < ps, and that Ω ⊂ RN is an open

bounded domain with smooth boundary and 0 ∈ Ω. The embedding Ds,p(Ω) ↪→
Lr(Ω, |x|−α) is compact if

1 ≤ r < p(N − b)
N − ps

, α < sr +N

(
1− r

p

)
.

Proof. Claim A. There are constants c∗, cϑ > 0 such that for each u ∈
Ds,p(Ω) we have:

(2.1)

∫
Ω

|x|−α|u|r dx ≤ c∗
(∫

Ω

|x|−b|u|p
∗
s(b) dx

)r/p∗s(b)

≤ c∗cϑ
(
[u]s,p

)r
.

Hence, it suffices to prove the compactness part of the theorem. Let {um} be

a bounded sequence in Ds,p(Ω). For any η > 0, let Bη(0) ⊂ Ω be a closed ball

centered at the origin with radius η. In view of claim (A), {um} ⊂ Lp(Ω\Bη(0))

is bounded. One can easily see that {um} ⊂W s,p(Ω \Bη(0)). Since

1 < r <
p(N − b)
N − ps

<
pN

N − ps
,

the Rellich–Kondrachov compactness theorem (see [7]) implies the existence of

a convergent subsequence of {um} in Lr(Ω \ Bη(0)). By taking a diagonal
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sequence one may assume, without loss of generality, that {um} converges in

Lr(Ω \Bη(0)) for any η > 0. Since

r < q = p∗s(b) =
p(N − b)
N − ps

,

From the Hölder inequality and the fractional Hardy–Sobolev inequality (1.5),

for any η > 0 we have∫
|x|<η

|x|−α|um − uj |r dx(2.2)

≤
(∫
|x|<η
|x|−(α−br/q)(q/(q−r)) dx

)(q−r)/q(∫
|x|<η
|x|−b|um − uj |q dx

)r/q
≤ C

(∫ η

0

tN−1−(α−br/q)(q/(q−r)) dt

)(q−r)/q

= Cη[N−(α−br/q)(q/(q−r))](q−r)/q,

for some constant C independent ofm and j. The assumption α < sr+N(1−r/p)
implies that:

N −
(
α− br

q

)
q

q − r
> N −

((
sr +N

(
1− r

p

))
− br

q

)
q

q − r
(2.3)

=N −
((

sr +N

(
1− r

p

))
− b+

(
b− br

q

))
q

q − r

=N −
((

sr +N

(
1− r

p

))
− b
)

q

q − r
− b

=N −
((

sr +N

(
1− r

p

))
− b
)

p(N − b)
p(N − b)− rN + rps

− b = 0.

Thus, for a given ε > 0, we can choose η > 0 such that∫
|x|<η

|x|−α|um − uj |r dx ≤ ε for all m, j ∈ N.

Now, let N ∈ N be such that, for all m, j ≥ N,∫
Ω\Bη(0)

|x|−α|um − uj |r dx ≤ Cα
∫

Ω\Bη(0)

|um − uj |r dx ≤ ε,

where Cα = η−α for α ≥ 0 and Cα = (diam(Ω))−α for α < 0. Thus∫
Ω

|x|−α|um − uj |r dx ≤ 2ε for all m, j ≥ N.

Therefore, {um} is a Cauchy sequence in Lr(Ω, |x|−α). Now, by considering the

proof of compactness part of the theorem, one can easily verify Claim A. Hence,

the proof of Claim A is omitted. �

Next we prove the following lemma:
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Lemma 2.2.

(a) Assume that 1 < q < p < p∗s(b) and that (f1) hold. Then the functional

F(u) :=

∫
RN

f |u|q dx

from X to R is well defined and weakly continuous.

(b) Assume that p < q < p∗s(b) and that (f2) hold. Then the functional

F(u) :=

∫
RN

f |u|q dx

from X to R is well defined and weakly continuous.

Proof. (a) It follows from Hölder inequality and (f1) that∫
RN

f |u|q dx ≤
(∫

RN
|x|−ps|u|p dx

)q/p
‖f |x|qs‖L%1 (RN )(2.4)

≤µ−q/p‖u‖qX‖f |x|
sq‖L%1 (RN ).

For any u ∈ X. Hence, in view of (f1), the functional F(u) is well defined on X.

Note that f |x|sq ∈ L%1(RN ). Thus for any ε > 0, there exists R0 > 0, such that

(2.5)

∫
RN\BR0

(f |x|sq)%1 dx < ε

where Br = {x ∈ RN : |x| ≤ r} for any r > 0. Now, assume un ⇀ u weakly

in X. Hence, {un} is bounded in X. From (2.4) and (2.5) we deduce there exists

C3 > 0, such that

(2.6)

∫
RN\BR0

f |un|q dx < C3ε,

∫
RN\BR0

f |u|q dx < C3ε

for all n ∈ N. Note that f |x|sq ∈ L∞loc(RN ). On the other hand, we take r = q,

α = sq in Theorem 2.1 to obtain that there exists N0 ∈ N, such that

(2.7)

∫
RN∩BR0

f
(
|un|q − |u|q

)
dx

≤ ‖f |x|sq‖L∞(RN∩BR0
)

(∫
(RN∩BR0

)

|x|−sq
(
|un|q − |u|q

)
dx

)
≤ ε

for all n > N0. Therefore by (2.6) and (2.7),

lim
n→∞

∫
RN

f |un|q dx =

∫
RN

f |u|q dx.

This completes the proof of (a).

(b) For any u ∈ X, by Hölder inequality and (f2), we have that∫
RN

f |u|q dx ≤
(∫

RN
|x|−b|u|p

∗
s(b) dx

)q/p∗s(b)∥∥f |x|bq/p∗s(b)
∥∥
L%2 (RN )

(2.8)

≤ Cq/p1 ‖u‖qX
∥∥f |x|bq/p∗s(b)

∥∥
L%2 (RN )

.
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Thus, by (f2), F(u) is well defined on X.

Since f |x|bq/p∗s(b) ∈ L%2(RN ), for any ε > 0, there exists R1 > 0 such that

(2.9)

∫
RN\BR1

(
f |x|bq/p

∗
s(b)
)%2

dx < ε.

Now, assume un ⇀ u weakly in X, then {un} is bounded in X. Thus, (2.8) and

(2.9) yield that there exists C4 > 0, such that

(2.10)

∫
RN\BR1

f |un|qdx < C4ε,

∫
RN\BR1

f |u|qdx < C4ε

for all n ∈ N. On the other hand, we set α = bq/p∗s(b). Then, since p < q < p∗s(b),

there is 0 < t < 1 such that q = tp+ (1− t)p∗s(b). Thus we have

sq +N

(
1− q

p

)
= s(tp+ (1− t)p∗s(b)) +N

(
1− (tp+ (1− t)p∗s(b))

p

)
(2.11)

= t

(
sp+N

(
1− p

p

))
+ (1− t)(sp∗s(b) +N

(
1− p∗s(b)

p

))
= tsp+ (1− t)b > b >

bq

p∗s(b)
= α.

Hence, we can use Theorem 2.1. Therefore, by Theorem 2.1 and (f2), we deduce

that there exists N1 ∈ N, such that

(2.12)

∫
RN∩BR1

f
(
|un|q − |u|q

)
dx

≤ ‖f |x|bq/p
∗
s(b)‖L∞(RN∩BR1

)

(∫
(RN∩BR1

)

|x|−bq/p
∗
s(b)
(
|un|q − |u|q

))
≤ ε

for all n > N1. It follows from (2.10) and (2.12) that

lim
n→∞

∫
RN

f |un|q dx =

∫
RN

f |u|q dx.

This completes the proof of (b). �

The energy functional associated with (1.1) is defined on X = Ds,p(RN ) by

(2.13) I(u) =
1

p
‖u‖pX −

µ

p

∫
RN

|u(x)|p

|x|ps
dx

− α

p∗s(b)

∫
RN

|u(x)|p∗s(b)

|x|b
dx− β

q

∫
RN

f(x)|u(x)|q dx

Obviously, the functional I is well defined and of class C1(Ds,p(RN )).

We say that u ∈ Ds,p(RN ) is a weak solution of (1.1) if I ′(u) = 0, that is,

(2.14) 0 = 〈I ′(u), ϕ〉 = 〈u, ϕ〉s,p − µ
∫
RN

|u(x)|p−2u(x)ϕ(x)

|x|ps
dx

− α
∫
RN

|u(x)|p∗s(b)−2u(x)ϕ(x)

|x|b
dx− β

∫
RN

f(x)|u(x)|q−2u(x)ϕ(x) dx
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for all ϕ ∈ Ds,p(RN ), where

〈u, ϕ〉s,p :=

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy.

Given E a real Banach space and I ∈ C1(E,R), we recall that I satisfies the

Palais–Smale condition on the level c ∈ R denoted by (PS)c, if every sequence

{un} ⊂ E such that I(un)→ c and I ′(un)→ 0 as n→∞ possesses a convergent

subsequence.

3. Behavior of (PS) sequences

In this section, we study the behavior of the Palais–Smale sequence and prove

some compactness results which will be used in the next section.

Lemma 3.1. Assume that 1 < q < p < p∗s(b), µ ≤ 0 and that (f1) holds.

Then :

(a) for each α > 0 there exists β∗ > 0 such that if 0 < β < β∗ and {un} ⊂
X is a (PS)c-sequence for I with c < 0, then {un} has a convergent

subsequence in X;

(b) for each β > 0 there exists α∗ > 0 such that if 0 < α < α∗, and {un} ⊂
X is a (PS)c-sequence for I with c < 0, then {un} has a convergent

subsequence in X.

Proof. Let {un} be a sequence in Ds,p(RN ) such that I(un) → c and

I ′(un) → 0. Following the idea used in [18] and [5], we prove (a) and (b). We

first prove that {un}n is bounded in Ds,p(RN ). We have

(3.1) I(un) =
1

p
‖un‖pX −

µ

p

∫
RN

|un(x)|p

|x|ps
dx− α

p∗s(b)

∫
RN

|un(x)|p∗s(b)

|x|b
dx

− β

q

∫
RN

f(x)|un(x)|q dx = c+ on(1)

and

〈I ′(un),ϕ〉(3.2)

=

∫∫
R2N

|un(x)− un(y)|p−2(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy

− µ
∫
RN

|un(x)|p−2un(x)ϕ(x)

|x|ps
dx

− α
∫
RN

|un(x)|p∗s(b)−2un(x)ϕ(x)

|x|b
dx

− β
∫
RN

f(x)|un(x)|q−2un(x)ϕ(x) dx = on(1)

for any ϕ ∈ Ds,p(RN ).
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By (3.1) and (3.2), we obtain

(3.3) c+ on(1)(‖un‖X + 1) ≥ I(un)− 1

p∗s(b)
〈I ′(un), un〉

≥
(

1

p
− 1

p∗s(b)

)
‖un‖pµ − β

(
1

q
− 1

p∗s(b)

)
(µ)−q/p‖un‖qX ‖f |x|

sq‖L%1 (RN ).

Thus {un} is bounded in X. Hence, following an arguments similar to Lemma 2.1

of [5], we can assume, going if necessary to a subsequence,

(3.4)

un ⇀ u in X, ‖un‖X → η,

un ⇀ u in Lp
∗
s(b)(RN ; |x|−b), ‖un − u‖p∗s(b),|x|−b → ξ

un ⇀ u in Lp(RN ; |x|−ps), ‖un − u‖p,|x|−ps → τ,

un → u in Lq(RN , f) un(x)→ u(x) a.e. in RN .

Then, in view of the proof of Lemma 2.4 of [5], the sequence {Un}n, defined

in R2N \Diag R2N by

(x, y) 7→ Un(x, y) :=
|un(x)− un(y)|p−2(un(x)− un(y))

|x− y|(N+ps)/p′

is bounded in Lp
′
(R2N ) and Un → U almost everywhere in R2N , where

(x, y) 7→ U(x, y) :=
|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|(N+ps)/p′
.

Hence, going if necessary to a subsequence, we obtain Un ⇀ U in Lp
′
(R2N ), and

thus

(3.5) 〈un, ϕ〉s,p → 〈u, ϕ〉s,p as n→∞

for any ϕ ∈ X because |ϕ(x)− ϕ(y)| · |x− y|−(N+ps)/p ∈ Lp(R2N ). From, (3.4)

and Proposition A.8 of [1] we conclude that |un|q−2un ⇀ |u|q−2u in Lq
′
(RN , f),

and |un|p−2un ⇀ |u|p−2u in Lp
′
(RN , |x|−ps), and |un|p

∗
s(b)−2un ⇀ |u|p

∗
s(b)−2u in

the space Lp
∗
s(b)′(RN , |x|−b), consequently∫

RN

|un|p−2unϕ

|x|ps
dx→

∫
RN

|u(x)|p−2u(x)ϕ

|x|ps
dx,(3.6) ∫

RN

|un|p
∗
s(b)−2unϕ

|x|b
dx→

∫
RN

|u|p∗s(b)−2uϕ

|x|b
dx,(3.7) ∫

RN
f(x)|un|q−2unϕdx→

∫
RN

f(x)|u|q−2uϕdx, as n→∞,(3.8)
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for any ϕ ∈ X. Recall that {un}n satisfies the Palais–Smale condition. There-

fore, for any ϕ ∈ X, by (3.5), (3.6), (3.7) and (3.8) we obtain

(3.9) 〈u, ϕ〉s,p = µ

∫
RN

|u(x)|p−2u(x)ϕ(x)

|x|ps
dx+ α

∫
RN

|u(x)|p∗s(b)−2u(x)ϕ(x)

|x|b
dx

+ β

∫
RN

f(x)|u(x)|q−2u(x)ϕ(x) dx.

Thus, u is a critical point of the I. In view of (3.4) we deduce that

(3.10)

∫
RN

f(x)(|un|q−2un − |u|q−2u)(un − u) dx→ 0 as n→∞.

Now we apply the Brézis–Lieb lemma [4] to obtain that

(3.11)
‖un‖pX = ‖un − u‖pX + ‖u‖pX + on(1),

‖un‖pp,|x|−ps = ‖un − u‖pp,|x|−ps + ‖u‖pp,|x|−ps + on(1),

and

(3.12) ‖un‖
p∗s(b)

p∗s(b),|x|−b = ‖un − u‖
p∗s(b)

p∗s(b),|x|−b + ‖u‖p
∗
s(b)

p∗s(b),|x|−b + on(1).

Since {un}n satisfies the Palais–Smale condition, it follows from (3.4), (3.9),

(3.10) and (3.11)

on(1) = 〈I ′(un)− I ′(u), un − u〉(3.13)

= ‖un‖pX + ‖u‖pX − 〈un, u〉s,p − 〈u, un〉s,p

− µ
∫
RN

(|un|p−2un − |u|p−2u)(un − u)

|x|ps
dx

− α
∫
RN

(|un|p
∗
s(b)−2un − |u|p

∗
s(b)−2u)(un − u)

|x|b
dx

− β
∫
RN

f(x)
(
|un|q−2un − |u|q−2u

)
(un − u) dx

=
(
ηp − ‖u‖pX

)
− α‖un‖

p∗s(b)

p∗s(b),|x|−b + α‖u‖p
∗
s(b)

p∗s(b),|x|−b

− µ‖un‖pp,|x|−ps + µ‖u‖pp,|x|−ps + on(1)

= ‖un − u‖pX − α‖un − u‖
p∗s(b)

p∗s(b),|x|−b − µ‖un − u‖
p
p,|x|−ps + on(1).

Thus

(3.14) ‖un − u‖pX − µ‖un − u‖
p
p,|x|−ps = α‖un − u‖

p∗s(b)

p∗s(b),|x|−b + on(1).

From (3.14) we obtain

(3.15) ξp
∗
s(b) ≥ α−1Sµξ

p.

When ξ = 0, because α > 0, it follows from (3.14) that ‖un − u‖µ → 0 and, in

view of the fact that µ ≤ 0, we deduce ‖un−u‖X → 0. Therefore, let us assume
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by contradiction that ξ > 0. Thus

(3.16) ξ ≥ (α−1Sµ)1/(p∗s(b)−p).

We claim that (3.16) cannot occur if α and β are chosen properly. Otherwise,

by Lemma 2.2, we have

0 > c = lim
n→∞

(
I(un)− 1

p∗s(b)
〈I ′(un), un〉

)
(3.17)

= lim
n→∞

((
1

p
− 1

p∗s(b)

)
‖un‖pµ − β

(
1

q
− 1

p∗s(b)

)∫
RN

f(x)|un|q dx
)

≥
(

1

p
− 1

p∗s(b)

)
‖u‖pµ − β

(
1

q
− 1

p∗s(b)

)
(µ)−q/p‖u‖qX‖f |x|

sq‖L%1 (RN ).

Therefore there exists C2 > 0, independent of the choice of the (PS)c sequence

{un}, such that ‖u‖qX ≤ C2β
q/(p−q). Thus by considering equation (3.12), we

may have

0 >c = lim
n→∞

(
I(un)− 1

p∗s(b)
〈I ′(un), un〉

)
≥ lim

n→∞

(
1

p
− 1

p∗s(b)

)(∫
RN

∫
RN

|un(x)− un(y)|p

|x− y|N+ps
dy dx− µ

∫
RN

|un(x)|p

|x|ps
dx

)
− β

(
1

q
− 1

p∗s(b)

)
(µ)−q/p‖u‖qX‖f |x|

sq‖L%1 (RN )

≥Sµ lim
n→∞

(
1

p
− 1

p∗s(b)

)(∫
RN

|un(x)|p∗s(b)

|x|b
dx

)p/p∗s(b)

− C3β
p/(p−q)

≥
(

1

p
− 1

p∗s(b)

)
Sµ
(
α−1Sµ

)p/(p∗s(b)−p) − C3β
p/(p−q),

where

C3 = C2

(
1

q
− 1

p∗s(b)

)
(µ)−q/p‖f |x|sq‖L%1 (RN ).

Therefore

0 >

(
1

p
− 1

p∗s(b)

)
Sµ
(
α−1Sµ

)p/(p∗s(b)−p) − C3β
p/(p−q)

and C3 is independent of the choice of the (PS)c sequence {un}. Now, we can

choose β∗ so small that if 0 < β < β∗, then the term on the right hand side

above is greater than zero, which is a contradiction. Similarly, we can choose

α∗ so small that if 0 < α < α∗, then the term on the right hand side above is

greater than zero. Hence, we have shown that ξ = 0, which is a contradiction,

and thus ‖un − u‖X → 0. �
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4. Proof of Theorem 1.1

In this section, we will use minimax procedure to prove the existence of

infinitely many solutions of problem 1.1. Let E be a Banach space, we denote

Σ = {A ⊂ E \ {0} :

A is closed in E and symmetric with respect to the origin}

For A ∈ Σ, we define γ(A) as

γ(A) = inf{m ∈ N : ∃ϕ ∈ C(A,Rm \ {0}), ϕ(−x) = −ϕ(x)}.

If there is no mapping as above for any m ∈ N, then γ(A) = ∞. We list the

following main properties of the genus (cf. [13]).

Proposition 4.1. Let A,B ∈ Σ. Then:

(a) If there exists an odd map g ∈ C(A,B) then γ(A) ≤ γ(B);

(b) If A ⊂ B, then γ(A) ≤ γ(B);

(c) γ(A ∪B) ≤ γ(A) + γ(B);

(d) If γ(B) <∞, then γ(A \B) ≥ γ(A)− γ(B);

(e) n-dimensional sphere Sn has a genus of n+ 1 by the Borsuk–Ulam The-

orem;

(f) If A is compact, then γ(A) < +∞ and there exists δ > 0 such that

Nδ(A) ⊂ Σ and γ(Nδ(A)) = γ(A),

here Nδ(A) = {x ∈ E : dist(x,A) ≤ δ}.

Let I(u) be the functional defined as before. Assume 0 < q < p < p∗s(b),

α, β > 0, µ ≤ 0. Then we have

(4.1) I(u) =
1

p
‖u‖pµ −

α

p∗s(b)

∫
RN

|u(x)|p∗s(b)

|x|b
dx− β

q

∫
RN

f(x)|u(x)|q dx

≥ 1

p
‖u‖pµ − αC3‖u‖

p∗s(b)
µ − βC4‖u‖qµ

for some positive constants C3 and C4. Using the same idea as in [11], we define

Q(t) =
1

p
tp − αC3t

p∗s(b) − βC4t
q.

Then, we have I(u) ≥ Q(‖u‖µ). If q < p < p∗s(b), then we have lim
t→+∞

Q(t) =

−∞. Thus I is not bounded from below. It is easy to see that, given β > 0,

there exists α1 > 0 so small that for every 0 < α < α1, there exist 0 < t0 < t1
such that Q(t) < 0 for 0 < t < t0, Q(t) > 0 for t0 < t < t1 and Q(t) < 0 for

t > t1. Similarly, given α > 0, we can choose β1 > 0 with the property that t0,
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t1 as above exist for 0 < β < β1. Then, following the same idea as in [11], we

define the following auxiliary functional on X by

(4.2) Ĩ(u) =
1

p
‖u‖pµ −

α

p∗s(b)
ψ(u)

∫
RN

|u(x)|p∗s(b)

|x|b
dx− β

q

∫
RN

f(x)|u(x)|q dx,

where ψ(u) = τ(‖u‖µ) and τ : R+ → [0, 1] is a non-increasing C∞ function such

that τ(t) = 1 if t ≤ t0 and τ(t) = 0 if t ≥ t1. Obviously, Ĩ(u) is coercive on X and

even. Therefore, by considering Lemma 3.1, one can easily verify the following

propositions:

Proposition 4.2. Assume that α1 > 0 is as above. Then we have:

(a) If Ĩ(u) < 0, then ‖u‖µ < t0 and Ĩ(u) = I(u);

(b) for each β > 0 there exists 0 < α < α1 such that if 0 < α < α and c < 0,

then Ĩ satisfies (PS)c condition.

Proposition 4.3. Assume that β1 > 0 is as above. Then we have:

(a) If Ĩ(u) < 0, then ‖u‖µ < t0 and Ĩ(u) = I(u);

(b) for each α > 0 there exists 0 < β < β1 such that if 0 < β < β and c < 0,

then Ĩ satisfies (PS)c condition.

Now, we prove the following lemma:

Lemma 4.4. Denote Ĩc :=
{
u ∈ X : Ĩ(u) ≤ c

}
. Given m ∈ N, there exists

εm < 0, such that γ
(
Ĩεm

)
≥ m.

Proof. Let Xm be a m-dimensional subspace of X. For any u ∈ Xm \ {0},
write u = rmw with ‖w‖µ = 1 and rm = ‖u‖µ. Then, there exists dm > 0 such

that, for every w ∈ Xm with ‖w‖µ = 1, we have

(4.3)

∫
RN

f(x)|w|q dx ≥ dm > 0.

Thus, for 0 < rm < t0, we have

Ĩ(u) = I(u) =
1

p
‖u‖pµ −

α

p∗s(b)

∫
RN

|u(x)|p∗s(b)

|x|b
dx− β

q

∫
RN

f(x)|u(x)|q dx

≤ 1

p
rpm − β

dm
q
rqm := εm.

Hence, we can choose rm ∈ (0, t0) so small that Ĩ(u) ≤ εm < 0. Let

(4.4) Srm = {u ∈ X : ‖u‖µ = rm}.

Then Srm ∩Xm ⊂ Ĩεm . Thus, it follows from Proposition 4.1 that

γ
(
Ĩεm

)
≥ γ(Srm ∩Xm) = m. �
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Now, we denote

Kc =
{
u ∈ X : Ĩ ′(u) = 0, Ĩ(u) = c

}
,

Σm = {A ∈ Σ : γ(A) ≥ m} and cm = inf
A∈Σm

sup
u∈A

Ĩ(u).

Since Ĩεm ∈ Σm and Ĩ is bounded from below, we conclude that

(4.5) −∞ < cm ≤ εm < 0, m ∈ N.

Next we are going to prove the following lemma.

Lemma 4.5. Assume that α and β are as in Proposition 4.2. Then all cm
are critical values of Ĩ and cm → 0 as m→∞.

Proof. Since Σm+1 ⊂ Σm, we deduce that cm ≤ cm+1 and from (4.5)

it follows that cm < 0. Hence there is a c ≤ 0 such that cm → c ≤ 0, as

m→ +∞. Also, because (PS)c is satisfied, it follows from a standard argument

(see [17]) that all cm are critical values of Ĩ. We claim that c = 0. If c < 0,

then by proposition 4.2, Kc =
{
u ∈ X : Ĩ ′(u) = 0, Ĩ(u) = c

}
is compact and

Kc ∈ Σ. From Proposition 4.1 we obtain that, there exists δ > 0 such that

γ(Kc) = γ(Nδ(Kc)) = m0 < +∞. By the deformation lemma (see [20]), there

exist ε > 0 (c+ ε < 0) and an odd homeomorphism η : X → X such that

η
(
Ĩc+ε \Nδ(Kc)

)
⊂ Ĩ c−ε.

Because {cm} is increasing and converges to c, there exists m ∈ N such that

cm > c− ε and cm+m0 ≤ c. Choose A ∈ Σm+m0 such that supu∈A Ĩ(u) < c+ ε,

that is A ⊂ Ĩ c+ε. By the properties of γ, we have

γ
(
A \Nδ(Kc)

)
≥ γ(A)− γ(Nδ(Kc))) ≥ m, γ

(
η(A \Nδ(Kc))

)
≥ m.

Hence, we have η(A \Nδ(Kc)) ∈ Σm. Consequently,

sup
u∈η(A\Nδ(Kc))

Ĩ(u) ≥ cm > c− ε,

a contradiction, hence cm → 0, as m→ +∞. �

Proof of Theorem 1.1. Note that Ĩ(u) = I(u) if Ĩ(u) < 0. Thus, com-

bining Propositions 4.2, 4.3 and Lemmas 4.4, 4.5, we obtain the desired result.�

5. Hardy critical case

Consider the following equation

(5.1) (−∆)spu− µ
|u|p∗s(c)−2u

|x|c
= α
|u|p∗s(b)−2u

|x|b
+ βf(x)|u|q−2u in RN ,

where c, b ≤ ps and 0 < µ < µ. In this section, we study the Hardy critical case.

More precisely, we consider the case of c = ps in the above equation, and also we
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assume that α = 0. In the other words, we investigate existence and multiplicity

results of solutions for the following equation with Hardy term

(5.2) (−∆)spu− µ
|u|p−2u

|x|ps
= βf(x)|u|q−2u in RN ,

where 0 < µ < µ and p < q < p∗s(b). The energy functional associated with (5.2)

is defined by

(5.3) I(u) =
1

p
‖u‖pX −

µ

p

∫
RN

|u(x)|p

|x|ps
dx− β

q

∫
RN

f(x)|u(x)|q dx.

In the sequel, we will need the following lemma (see [17, Theorem 9.12]).

Lemma 5.1. Let I be an even C1-functional satisfying the (PS)-condition on

a Banach space X = Y ⊕Z with dim(Y ) <∞. Assume I(0) = 0, as well as the

following conditions:

(a) There are constants ρ, δ > 0 such that inf
Sρ(Z)

I ≥ δ;

(b) For any finite dimensional subspace Y ⊂ X, there is R = R(Y ) such

that I ≤ 0 on Y \BR(Y ).

Then I has an unbounded sequence of critical values.

As in previous sections, firstly we prove the following lemma

Lemma 5.2. Assume β > 0, 1 < p < q < p∗s(b), 0 < µ < µ and (f2) hold. Let

{un} ⊂ X be a (PS)c-sequence for I where c ∈ R. Then {un} has a convergent

subsequence in X.

Proof. Let {un} be a sequence in X such that I(un)→ c, I ′(un)→ 0. We

first prove that {un} is bounded in Ds,p(RN ). We have

(5.4) I(un) =
1

p
‖un‖pX−

µ

p

∫
RN

|un(x)|p

|x|ps
dx−β

q

∫
RN

f(x)|un(x)|q dx = c+on(1)

and

〈I ′(un), ϕ〉(5.5)

=

∫∫
R2N

|un(x)− un(y)|p−2(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy

− µ
∫
RN

|un(x)|p−2un(x)ϕ(x)

|x|ps
dx

− β
∫
RN

f(x)|un(x)|q−2un(x)ϕ(x) dx = on(1),

for any ϕ ∈ Ds,p(RN ). For n large enough, by (5.4) and (5.5), we obtain that

(5.6) |c|+on(1)(‖un‖X+1) ≥ I(un)− 1

q
〈I ′(un), un〉 ≥

(
1

p
− 1

q

)(
1−µ

µ

)
‖un‖pX .
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Thus {un} is bounded in X. Therefore we can assume, going if necessary to a

subsequence,

(5.7)

un ⇀ u in X, ‖un‖X → η,

un ⇀ u in Lp
(
RN ; |x|−ps

)
, ‖un − u‖p,|x|−ps → ς,

un → u in Lq
(
RN , f

)
, un(x)→ u(x) a.e. in RN .

Then, by an argument similar to the proof of Lemma 3.1, we deduce

(5.8) 〈un, ϕ〉s,p → 〈u, ϕ〉s,p as n→∞

and ∫
RN

|un|p−2unϕ

|x|ps
dx→

∫
RN

|u(x)|p−2u(x)ϕ

|x|ps
dx,(5.9) ∫

RN
f(x)|un|q−2unϕdx→

∫
RN

f(x)|u|q−2uϕdx as n→∞,(5.10)

for any ϕ ∈ X. Thus, by (5.8)–(5.10) we obtain

(5.11) 〈u, ϕ〉s,p = µ

∫
RN

|u(x)|p−2u(x)ϕ(x)

|x|ps
dx

+ β

∫
RN

f(x)|u(x)|q−2u(x)ϕ(x) dx

for any ϕ ∈ X. Thus u is a critical point of the I. From (5.7) we deduce that

(5.12)

∫
RN

f(x)
(
|un|q−2un − |u|q−2u

)
(un − u) dx→ 0 as n→∞.

Now we apply the Brézis–Lieb lemma [4] to obtain that

(5.13) ‖un‖pX = ‖un − u‖pX + ‖u‖pX + on(1),

and

(5.14) ‖un‖pp,|x|−ps = ‖un − u‖pp,|x|−ps + ‖u‖pp,|x|−ps + on(1).

Since {un}n satisfies the Palais–Smale condition, by (3.4), (3.9), (3.10), and

(3.11) we get

on(1) = 〈I ′(un)− I ′(u), un − u〉(5.15)

= ‖un‖pX + ‖u‖pX − 〈un, u〉s,p − 〈u, un〉s,p

− µ
∫
RN

(
|un|p−2un − |u|p−2u

)
(un − u)

|x|ps
dx

− β
∫
RN

f(x)
(
|un|q−2un − |u|q−2u

)
(un − u) dx

= (ηp − ‖u‖pX)− µ‖un‖pp,|x|−ps + µ‖u‖pp,|x|−ps + on(1)

=‖un − u‖pX − µ‖un − u‖
p
p,|x|−ps + on(1).
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Thus

(5.16) ‖un − u‖pX = µ‖un − u‖pp,|x|−ps + on(1).

From this we obtain

(5.17) ςp ≥ µ

µ
ςp.

It follows from µ > µ > 0 that ς = 0. Hence, from (5.16) we conclude that

‖un − u‖X → 0. �

Proof of Theorem 1.2. We apply Lemma 5.1 to obtain the desired result.

We prove that the functional I satisfies conditions (a) and (b) of Lemma 5.1.

Let V be a nontrivial finite dimensional subspace of X and Z be the com-

plemented subspace of V in X. For each u ∈ Z, u 6= 0, R > 0,

I(Ru) =
Rp

p

(
‖u‖pX − µ

∫
RN

|u(x)|p

|x|ps
dx

)
− β

q

∫
RN

f(x)|Ru|q dx(5.18)

≥ Rp

p

(
1− µ

µ

)
‖u‖pX −

β

q

∫
RN

f(x)|Ru|q dx

≥ Rp

p

(
1− µ

µ

)
‖u‖pX −

β

q
Rq‖f |x|bq/p

∗
s(b)‖L%2 (RN )‖u‖qX .

Thus, the functional I satisfies condition (a).

Now, let Xm be an arbitrary m-dimensional subspace of X. Then, similar to

the proof of Lemma 4.4, there exists d′m > 0 such that, for every w ∈ Xm with

‖w‖X = 1, we have

(5.19)

∫
RN

f(x)|w|qdx ≥ d′m > 0.

Now, suppose u ∈ Xm, ‖u‖X = 1 and R > 0. Thus we get

I(Ru) =
Rp

p

(
‖u‖pX − µ

∫
RN

|u(x)|p

|x|ps
dx

)
− β

q

∫
RN

f(x)|Ru|q dx(5.20)

≤ Rp

p
‖u‖pX −

β

q

∫
RN

f(x)|Ru|q dx ≤ Rp

p
− βd′m

q
Rq(5.21)

choosing R large enough, we conclude that functional I satisfies condition (b).

Hence, in view of Lemma 5.1, we have proved that (5.2) has a unbounded se-

quence of critical values. Hence (5.2) has a sequence of solutions {un}, such

that I(un) → ∞ as n → ∞. Now, we show more precisely that I(un) → +∞
as n → ∞. Let I(un) = cn for any n ∈ N. Any un is a critical point of the

functional I. Hence I ′(un)un = 0 for each n ∈ N. From this we conclude that

cn = I(un) =

(
1

p
− 1

q

)(
‖u‖pX − µ

∫
RN

|u(x)|p

|x|ps
dx

)
.

Since q > p, we deduce cn → +∞ as n→∞. �
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