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ZERO-DIMENSIONAL COMPACT METRIZABLE SPACES

AS ATTRACTORS OF GENERALIZED ITERATED

FUNCTION SYSTEMS

Filip Strobin —  Lukasz Maślanka

Abstract. R. Miculescu and A. Mihail in 2008 introduced the concept of

a generalized iterated function system (GIFS in short), a particular exten-

sion of the classical IFS. The idea is that, instead of families of selfmaps
of a metric space X, GIFSs consist of maps defined on a finite Cartesian

m-th power Xm with values in X (in such a case we say that a GIFS is

of order m). It turned out that a great part of the classical Hutchinson
theory has natural counterpart in this GIFSs’ framework. On the other

hand, there are known only few examples of fractal sets which are gener-

ated by GIFSs, but which are not IFSs’ attractors. In the paper we study
0-dimensional compact metrizable spaces from the perspective of GIFSs’

theory. Such investigations for classical IFSs have been undertaken in the

last several years, for example by T. Banakh, E. D’Aniello, M. Nowak,
T.H. Steele and F. Strobin.

We prove that each such space X is homeomorphic to the attractor of some

GIFS on the real line. Moreover, we prove that X can be embedded into
the real line R as the attractor of some GIFS of order m and (in the same

time) a nonattractor of any GIFS of order m − 1, as well as it can be
embedded as a nonattractor of any GIFS. Then we show that a relatively
simple modifications of X deliver spaces whose each connected component
is “big” and which are GIFS’s attractors not homeomorphic with IFS’s

attractors. Finally, we use obtained results to show that a generic compact
subset of a Hilbert space is not the attractor of any Banach GIFS.
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1. Introduction

The classical Hutchinson theorem (proved by Hutchinson [17] and popular-

ized by Barnsley [5]) from early 80s’ states that if X is a complete metric space

and F is a finite family of Banach contractions (that is, selfmaps with the Lip-

schitz constants Lip(f) < 1), then there is a unique nonempty and compact

A ⊂ X such that

(1.1) A =
⋃
f∈F

f(A).

In this setting, a finite family F of continuous selfmaps of X is called an iterated

function system (IFS in short), and a nonempty and compact set AF satisfying

(1.1) is called an attractor or a fractal generated by F . It is well known that

the thesis of the Hutchinson theorem holds under weaker contractive assump-

tions on fumctions form F (like these due to Browder [7] or Matkowski [21], see

for example [16]), which, in case of compact space X, reduce to the Edelstein

contractivity (see [14]):

∀x, y ∈ X, x 6= y d(f(x), f(y)) < d(x, y).

We will call an IFS consisting of Banach contractions as a Banach IFS and

consisting of weaker types of contractive maps – as a weak IFS. Also, for a given

IFS F , we denote Lip(F) := max{Lip(f) : f ∈ F}.
By a topological IFS fractal or a topological fractal for short (see [18], [27];

in [18] it is called a topological self similar set) we will mean a compact Hausdorff

space X such that for some IFS F , X =
⋃
f∈F

f(X) and for every sequence

{fk}k∈N ⊂ F , the set ⋂
k∈N

f1 ◦ . . . ◦ fk(X)

(called sometimes a fibre), is singleton. As was proved in [2] and [25], X is

a topological IFS fractal if and only if X is homeomorphic to the attractor

of some weak IFS (in particular, it is metrizable). Finally, let us note that

topological IFS fractals are attractors of so-called topologically contracting IFSs,

studied in mentioned papers.

In the last years, there has been an effort to detect those sets (especially,

subsets of Euclidean spaces) and topological spaces which are IFSs’ fractals or

topological fractals. In particular, in [28] Magdalena Nowak proved the following

theorem (see Section 3.1 for the definition of the scattered height).

Theorem 1.1 ([28, Theorem 2, Corollary 1]). Let X be a countable compact

metrizable space.

(1) The following conditions are equivalent:

(a) X is topological fractal;
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(b) X can be embedded into the real line as the attractor of a Banach

IFS;

(c) the scattered height of X is successor ordinal.

(2) If X is infinite, then it can be embedded into the real line as a nonat-

tractor of any weak IFS.

Recently, Banakh, Nowak and Strobin in [4] (see also [3] for a bit weaker

result) proved that, additionally:

Theorem 1.2. Each uncountable 0-dimensional compact metrizable space

can be embedded into the real line as the attractor of a Banach IFS that consists

of two maps.

A bit earlier, D’Aniello and Steele [10] proved an analogous result, but the

IFSs they constructed consist of more than two maps.

An interesting generalization of the Hutchinson theory of fractals was intro-

duced by Miculescu and Mihail in 2008 – instead of selfmaps of a metric space,

they considered mappings defined on a finite Cartesian power of a given space

with values in that space.

Let m ∈ N and (X, d) be a metric space. If not stated otherwise, on the

Cartesian m-th power Xm we will consider the maximum metric dm, i.e.

dm((x1, . . . , xm), (y1, . . . , ym)) := max{d(x1, y1), . . . , d(xm, ym)}.

We say that a map f : Xm → X is a generalized Banach contraction if the

Lipschitz constant Lip(f) < 1, that is, there exists α < 1 such that for any

x, y ∈ Xm,

d(f(x), f(y)) ≤ α · dm(x, y).

Miculescu and Mihail in [23] and [26] proved that if X is complete, m ∈ N and

F is a finite family of generalized Banach contractions f : Xm → X, then there

is a unique nonempty and compact A ⊂ X such that

(1.2) A =
⋃
f∈F

f(A× . . .×A).

In this setting, a family F of continuous maps f : Xm → X is called a generalized

iterated function system of order m (GIFS in short), and a unique nonempty and

compact set AF satisfying (1.2) is called the attractor or the fractal generated

by F .

After the papers of Miculescu and Mihail, other aspects of the theory of

GIFSs and their fractals were considered, especially by them, Secelean and

Strobin, see for example papers [23], [24], [29]–[32] and references therein. In

particular, it was proved that GIFSs consisting of weaker contractive type map-

pings also generates a unique fractal sets (see [31]; also cf. [23]). Again, for
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compact X, these conditions reduce to the following:

∀x, y ∈ Xm, x 6= y d(f(x), f(y)) < dm(x, y).

If a GIFS consists of generalized Banach contractions, then we call it a Banach

GIFS, and if it consists of weaker type of generalized contractions – we call it

a weak GIFS. Similarly, for a GIFS F , we set Lip(F) := max{Lip(f) : f ∈ F}.
One of the problems considering GIFSs is the following:

Is the class of GIFSs’ attractors essentially wider than the class of IFSs’

attractors?

and, related to it,

Which sets/spaces are attractors of some GIFS?

Several interesting examples were given. In [24] it was observed that the Hilbert

cube I :=
∞∏
k=1

[0, 1/2k] is generated by a Banach GIFS F = {f, g} of order 2

defined by

f((xk), (yk)) :=

(
1

2
x1,

1

2
y1,

1

2
y2,

1

2
y3, . . .

)
and

g((xk), (yk)) :=

(
1

2
x1 +

1

2
,

1

2
y1,

1

2
y2,

1

2
y3, . . .

)
.

On the other hand, it cannot be generated by any Banach IFS, as it has infinite

dimension. However, to our best knowledge, it is not known whether I is the

attractor of a weak IFS or a topological fractal.

In [30], for each m ≥ 2, there is constructed a Cantor subset C(m) of the

plane, which is generated by some Banach GIFS on the plane of order m, but

is not generated by any weak GIFS of order m − 1. Also, there is constructed

a Cantor set C which is not the attractor of any weak GIFS. On the other hand,

each such C(m) and C are homeomorphic to the Cantor ternary set, hence they

are homeomorphic to the attractor of a Banach IFS (in particular, they are

topological fractals).

The aim of this paper is to study 0-dimensional compact metrizable spaces

from the perspective of GIFSs’ theory. It is organized as follows.

In the first part of the next section we show some simple, but useful observa-

tions concerning GIFSs and we also prove that certain quotients of topological

fractals are also topological fractals.

In Section 3 we construct a wide class of metric spaces, (Λ, b)-spaces, which

will be key in the proofs of main results. Also, we prove some basic properties

of these spaces.

In Section 4 we prove that each compact 0-dimensional metrizable space X

can be embedded into the real line as the attractor of a Banach GIFS of order 2.
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In particular, if X is countable and its scattered height is limit ordinal, then we

obtain the attractor of a Banach GIFS which is not a topological fractal.

In the main result of Section 5 we prove that for any m ≥ 2, each infinite

compact metrizable 0-dimensional space X can be embedded into the real line as

the attractor of a Banach GIFS of order m and a nonattractor of any weak GIFS

of order m− 1, and also X can be embedded into the real line as a nonattractor

of any weak GIFS. This extends both mentioned results from [30] and part (2)

of Theorem 1.1.

In Section 6 we show that, replacing points in certain countable compact

spaces by appropriately “big” sets, we obtain next examples of Banach GIFSs’

fractals which are not topological fractals.

Finally, in Section 7 we use earlier machinery to prove that a generic compact

subset of a Hilbert space is not the attractor of any Banach GIFS.

2. Basic definitions, observations and auxiliary constructions

2.1. Remarks on IFSs and GIFSs. Here we make some simple observa-

tions which we will use later. The first one is obvious and we skip the proof.

Lemma 2.1. Let X be a metric space, m1, . . . ,mn ∈ N and for i = 1, . . . , n,

fi : X
mi → X be a generalized Banach contraction. Take m ≥ max{m1, . . . ,mn}

and for each i = 1, . . . , n, define f̃i : X
m → X by

f̃i(x1, . . . , xm) := fi(x1, . . . , xmi),

and set F̃ := {f̃1, . . . , f̃n}. Then:

(a) F̃ is a Banach GIFS of order m and Lip(F̃)=max{Lip(f1), . . . ,Lip(fn)}.
(b) If A ⊂ X is nonempty and compact, and A =

n⋃
i=1

fi(A
mi), then A is the

attractor of F̃ .

The second lemma shows that in a certain cases, we can extend maps from

a given GIFS to some wider space.

Lemma 2.2. Assume that H is a Hilbert space, X ⊂ H is nonempty and

compact, and F is a Banach GIFS on X of order m with Lip(F) < 1/
√
m so

that X is its attractor. Then, for every f ∈ F , there is its extension f̃ : Hm → H

such that F̃ := {f̃ : f ∈ F} is a Banach GIFS with Lip(F) ≤
√
mLip(F) < 1,

whose attractor is X.

Proof. Take f ∈ F , and denote by ρm the `2 metric on Hm, that is,

ρm((x1, . . . , xm), (y1, . . . , ym)) :=
√
d(x1, y1)2 + . . .+ d(xm, ym)2. Clearly,

(2.1) dm ≤ ρm ≤
√
mdm

Hence Lipρm(f) ≤ Lip(f), and since (Hm, ρm) is a Hilbert space (more precisely,

the metric ρm is generated by appropriate norm), using the Kirszbraun–Valentine
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theorem (see [6, Theorem 1.12]), we can extend the map f to the map f̃ : Hm →
H so that Lipρm(f̃) = Lipρm(f) ≤ Lip(f). Then, again by (2.1), Lip(f̃) ≤
√
mLip(f). Hence the GIFS F̃ := {f̃ : f ∈ F} satisfies Lip(F̃) ≤

√
mLip(F).

The second part of the thesis is obvious. �

Remark 2.3. Let us remark that similar result holds for `∞ space. If K ⊂
`∞, then any map f : Km → `∞ with Lip(f) < ∞ can be extended to a map

f̃ : (`∞)m → `∞ with Lip(f̃) = Lip(f) (see [6, Lemma 1.1 (ii)]).

The next lemma shows that if two GIFS’s fractals are appropriately sepa-

rated, then their union is also a GIFS fractal.

Lemma 2.4. Assume that X is a compact metric space of the form X =

X1 ∪ . . . ∪Xn, such that

(a) X1, . . . , Xn are attractors of some Banach GIFSs of order m, F1, . . . ,Fn,

respectively ;

(b) there are projections πi : X → Xi, i = 1, . . . , n, such that max{Lip(πi) ·
Lip(Fi) : i = 1, . . . , n} < 1.

Then X is the attractor of some Banach GIFS H of order m with Lip(H) ≤
max{Lip(πi) ·Lip(Fi) : i = 1, . . . , n}, and which consists of certain extensions of

maps from F1 ∪ . . . ∪ Fn.

Proof. Take f ∈ Fi, and consider the map f̃ : Xm → X by f̃(x1, . . . , xm) :=

f(πi(x1), . . . , πi(xm)). Then, obviously, f̃ is an extension of f and Lip(f̃) ≤
Lip(πi) · Lip(f). Then it is enough to take H = {f̃ : f ∈ F1 ∪ . . . ∪ Fn}.

Remark 2.5. Observe that condition (b) holds if

(c) λ :=
max{diam(Xi) : i = 1, . . . , n}

min{dist(Xi, Xj) : i, j = 1, . . . , n, i 6= j}
<

1

max{Lip(Fi) : i = 1, . . . , n}
.

Indeed, let the projection maps πi be given by

πi(x) :=

x if x ∈ Xi,

x̃ otherwise,

where x̃ is an initially chosen point of Xi. Then, for x ∈ Xi and y ∈ Xj , where

i 6= j, we have

d(πi(x), πi(y)) ≤ diam(Xi) ≤ λ dist(Xi, Xj) ≤ λd(x, y),

so Lip(πi) ≤ max{1, λ} < 1/max{Lip(Fi) : i = 1, . . . , n} and (b) is satisfied.

The following lemma is an extension of [28, Lemma 1].

Lemma 2.6. Assume that n ∈ N and a metric space X is of the form X =

X0 ∪ . . . ∪Xn, where:
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(a) each Xi is isometric copy of X0;

(b) dist(Xi, Xj) ≥ diam(X0) for distinct i, j.

If X is the attractor of a weak GIFS of order m, then X0 is the attractor of

a weak GIFS of order m.

Proof. For i = 0, . . . , n, let ti : X0 → Xi be an isometry. Suppose that

F is a GIFS of order m such that X =
⋃
f∈F

f(Xm). For every f ∈ F and

i = (i1, . . . , im) ∈ {0, . . . , n}m, let Hf,i : X
m
0 → X0 be defined by

Hf,i(x1, . . . , xm) =

f(ti1(x1), . . . , tim(xm)) if f(ti1(x1), . . . , tim(xm)) ∈ X0,

z0 if f(ti1(x1), . . . , tim(xm)) /∈ X0,

where z0 is an initially chosen point of X0. Clearly,⋃
f∈F, i∈{0,...,n}m

Hf,i(X
m
0 ) = X0.

We will show that each Lip(Hf,i) ≤ Lip(f). Take x = (x1, . . . , xm), y =

(y1, . . . , ym) ∈ Xm
0 such that Hf,i(x) 6= Hf,i(y).

If f(ti1(x1), . . . , tim(xm)), f(ti1(y1), . . . , tim(ym)) belong to distinct Xi, Xj ,

then by assumption (b), we have

d(Hf,i(x),Hf,i(y)) ≤ diam(X0) ≤ dist(Xi, Xj)

≤ d
(
f(ti1(x1), . . . , tim(xm)), f(ti1(y1), . . . , tim(ym))

)
< dm

(
(ti1(x1), . . . , tim(xm)), (ti1(y1), . . . , tim(ym))

)
= dm(x, y).

If f(ti1(x1), . . . , tim(xm)), f(ti1(y1), . . . , tim(ym)) ∈ X0 then

d(Hf,i(x), Hf,i(y)) = d
(
f(ti1(x1), . . . , tim(xm)), f(ti1(y1), . . . , tim(ym))

)
< dm

(
(ti1(x1), . . . , tim(xm)), (ti1(y1), . . . , tim(ym))

)
= dm(x, y).

In remaining cases we proceed in a trivial way. �

2.2. Quotients of topological fractals. We first show that if X is a topo-

logical fractal, then also its certain quotient space is a topological fractal (in fact,

this result was proved during preparations of the paper [2], but it was not pub-

lished; let us also note that similar ideas appears in a recent paper of D’Aniello

and Steele [12]). Let X be a topological space and R be an equivalence relation

on X. By [x] we denote the equivalence class containing x, by X/R, the set of

all equivalence classes, and by π : X → X/R, the map π(x) := [x]. If τ is the

topology on X, then the quotient topology on X/R is defined by

τR := {V ⊂ X/R : π−1(V ) ∈ τ} =

{
V ⊂ X/R :

⋃
V ∈ τ

}
that is, τR is the richest topology so that π is continuous.
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If x ∈ X, then by [x]c let us denote the connected component containing x,

that is, the union of all connected subsets of X which contains x. It is well known

(again, see [15]) that two different connected components are disjoint, hence the

relation Rc defined by xRcy if and only if x, y belong to the same connected

component, is equivalence relation. Moreover, each connected component is

connected and closed.

Theorem 2.7. If X is the topological fractal for an IFS F , then X/Rc is

the topological fractal for the IFS F̃ = {f̃ : f ∈ F}, where for each f ∈ F and

x ∈ X, f̃([x]c) := [f(x)]c.

Proof. As the image of connected set via a continuous function must be

connected, and connected components are connected, the map f̃ : X/Rc → X/Rc
defined in thesis is well defined. We will show that it is continuous. Let V be open

in X/Rc. Then π−1(f̃−1(U)) = f−1(π−1(U)) is open as f and π are continuous.

Hence f̃−1(U) is open in X/Rc and f̃ is continuous. Now observe that

(2.2)
⋃
f̃∈F̃

f̃(X/Rc) = X/Rc.

Take [y]c ∈ X/Rc. Then, for some x ∈ X and f ∈ F , f(x) = y, so f̃([x]c) =

[f(x)]c = [y]c. We get (2.2).

Finally, take any sequence (f̃n) ⊂ F̃ . We will show that
⋂
n∈N

f̃1◦. . .◦f̃n(X/Rc)

is singleton. Let [x]c be any element of this intersection. Then, for every n ∈ N,

there exists xn ∈ X such that

[x]c = f̃1 ◦ . . . ◦ f̃n([xn]c) = f̃1 ◦ . . . ◦ f̃n−1([fn(xn)]c) = . . . = [f1 ◦ . . . ◦ fn(xn)]c.

In particular, f1◦. . .◦fn(xn) ∈ [x]c. In particular, f1◦. . .◦fn(xn) ∈ f1◦. . .◦fn(X).

Now, for n ∈ N, let yn := f1 ◦ . . . ◦ fn(xn). Since X is topological fractal,

it is compact metrizable and by the first observation, (yn) has a convergent

subsequence whose limit y ∈ [x]c (as [x]c is closed). But by the second one, this

limit must belong to
⋂
n∈N

f1 ◦ . . . ◦ fn(X). Hence if [x′]c is different from [x]c and

contained in
⋂
n∈N

f̃1 ◦ . . . ◦ f̃n(X/Rc), we would also find y′ ∈ [x′]c contained in⋂
n∈N

f1 ◦ . . . ◦ fn(X). As y 6= y′, this would be a contradiction. Finally, X/Rc is

compact and Hausdorff, see for example [20, Chapter V, §46.Va]. �

3. (Λ, b)-spaces

If ξ = (ξ1, . . . , ξk), then we define the length of ξ by |ξ| := k, if ξ =

(ξ1, ξ2, . . .), then we set |ξ| := ω, and also we put |∅| := 0. If i ≤ |ξ|, then

we set [ξ]i := (ξ1, . . . , ξi) (and also [ξ]0 := ∅). If ξ, η are sequences, then we

write ξ � η, if [η]k = ξ for some k ≤ |η|. Finally, if ξ, η are sequences such that

|ξ| < ω, then by ξ̂η we denote the concatenation of ξ and η.
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If A is a set and k ∈ N∪{0}, then by Aω, A<ω and Ak we denote the families

of all countable infinite, finite and of the length k sequences of elements of A,

respectively.

Let N := N ∪ {ω} = {ω, 1, 2, . . .}. We say that a nonempty set Λ ⊂ N<ω is

a tree, if for every ξ ∈ Λ and k ≤ |ξ|, also [ξ]k ∈ Λ. If Λ is a tree, then the

boundary of Λ is defined by

Λ̃ :=
{
ξ ∈ Λ : ξ̂k /∈ Λ for all k ∈ N

}
∪
{
ξ ∈ Nω : [ξ]k ∈ Λ for all k ∈ N

}
.

Observe that Λ̃ can be identified with a family of all maximal �-linearly ordered

subsets of Λ. Moreover, Λ̃∩Λ consists of all finite sequences from Λ̃, and Λ̃ \Λ,

of all infinite sequences from Λ̃.

We say that a tree Λ is proper, if

(p1) for every ξ ∈ Λ which ends with ω, it holds ξ ∈ Λ̃;

(p2) for every ξ ∈ Λ \ Λ̃ and k ∈ N, ξ̂k ∈ Λ.

By Λmax we will mean the maximal proper tree, that is, the tree which consists

of the empty sequence and all sequences η = (η1, . . . , ηk) so that ηi ∈ N for

i = 1, . . . , k − 1. In this case, the boundary Λ̃max consists of all finite sequences

which ends with ω and all infinite sequences of elements of N.

We say that a sequence b = (bi)0≤i≤ω of positive reals is good, if bω = 0 and

(3.1) Mb := sup

{
bk
bk−1

: k ∈ N
}
<

1

25
.

It is easy to see that in this case

(3.2) λb := 25Mb < 1

and, for every k ∈ N,

(3.3) bk ≤
1

20
λb(bk−1 − 2bk − bk+1).

The above conditions looks artificial but, as we will see, they will be needed at

some places later (even more technical assumptions will be made in Section 5).

On the other hand, restricting to good sequences will not decrease the generality

of our constructions.

Finally, for every i ∈ N∪ {0}, define bi := (bi, bi+1, . . .). Clearly, bi is a good

sequence, Mbi ≤Mb and λbi ≤ λb.
For a sequence η ∈ N≤ω, we set l(η) by (we assume n+ ω = ω)

(3.4) l(η) :=


η1 + . . .+ ηk if η = (η1, . . . , ηk),

ω if η ∈ Nω
,

0 if η = ∅.

Now, relying on the above notations, we will define a certain class of metric

spaces. All our next consideration will base on it.
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Definition 3.1. Let Λ be a proper tree and b be a good sequence. A compact

metric space X will be called a (Λ, b)-space, if X is of the form

X =
⋃

η∈Λ∪Λ̃

Xη, where X∅ = X

and, for every η ∈ Λ̃,

(i) Xη is nonempty, compact and contained in Xξ for every ξ � η;

for every η ∈ Λ \ Λ̃,

(ii) Xη =
⋃
k∈N

Xη̂k;

(iii) dist
(
Xη̂k, ⋃

k<j≤ω
Xη̂j) ≥ bl(η)+k−1 − 2bl(η)+k − bl(η)+k+1 for every k ∈

N;

(iv) diam
( ⋃
k≤j<ω

Xη̂j) ≤ bl(η)+k−1;

(v) there is xη̂ω ∈ Xη̂ω such that, for every k ∈ N, xη̂ω ∈ ⋃
k≤j<ω

Xη̂j .
If X is a (Λ, b)-space such that, for every η ∈ Λ̃,

(s) Xη is singleton,

then we call X a (Λ, b, s)-space. In such case, if η ∈ Λ̃ then the unique element of

Xη we denote by xη (clearly, there is no collision with (e)). If X is a (Λ, b)-space

such that for some compact metric space Z and every η, ξ ∈ Λ ∩ Λ̃,

(Z) Xη is a similarity copy (that is, an image under similitude, i.e. isometry

with a scale) of Z such that

(Z1) if η does not end with ω, then diam(Xη) = bl(η) + bl(η)+1;

(Z2) if η ends with ω, then diam(Xη) = bl(η̃)+1, where η̃ is such that

η = η̃̂ω;

(Z3) if η and ξ end with ω, then there is a similitude h : Xη → Xξ such

that h(xη) = xξ,

then we call X a (Λ, b, Z)-space.

Observe that conditions (i) and (iv) imply that Xη is singleton for η ∈ Λ̃\Λ.

If X is a (Λ, b)-space, η ∈ Λ \ Λ̃ and k ∈ N, then we also set

X̃η̂k :=
⋃

k≤j≤ω

Xη̂j .
Observe that, if η ∈ Λ \ Λ̃, then Xη = X̃η̂1.

We first list basic properties of (Λ, b)-spaces (by d we will denote the metric

on a metric space X):

Lemma 3.2. Let X be a (Λ, b)-space.

(a) For every η ∈ Λ which does not end with ω, Xη and X̃η are compact and

open.
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(b) If η ∈ Λ \ Λ̃ and x ∈ Xη̂ω, y ∈ Xη \Xη̂ω, then d(y, xη̂ω) ≤ 2d(x, y)

and d(x, xη̂ω) ≤ 3d(x, y).

If X is a (Λ, b, s)-space which is not singleton, then

(c) the family

{Xη : η ∈ Λ, η does not end with ω} ∪ {X̃η : η ∈ Λ, η does not end with ω}

is a basis of X consisting of clopen sets;

(d) if η ∈ Λ, then Λ1[η] := {β : η̂β ∈ Λ} is proper tree and Xη is

(Λ1[η], bl(η), s)-space;

(e) if η ∈ Λ and k ∈ N are such that η̂k ∈ Λ, then

Λ2[η̂k] := {îβ : i ∈ N, η̂(i+ k − 1)̂β ∈ Λ} ∪ {∅, ω}

is proper tree, and X̃η̂k is (Λ2[η̂k], bl(η̂k)−1, s)-space;

(f) if Y is a (Λ, b′, s)-space for a good sequence b′, then X and Y are home-

omorphic.

Proof. We first prove (a). Let ξ ∈ Λ does not end with ω. Xξ and X̃ξ are

open as, by (ii), (iii) and (3.3),

dist(Xξ, X \Xξ) ≥ bl(ξ)−1 − 2bl(ξ) − bl(ξ)+1 > 0,

dist(X̃ξ, X \ X̃ξ) ≥ bl(ξ)−2 − 2bl(ξ)−1 − bl(ξ) > 0.

Now we show that they are compact. We first prove that Xξ is compact. Suppose

ξ /∈ Λ̃, choose a sequence (xn) ⊂ Xξ and consider the following cases: Case 1.

Infinitely many elements xn belong to Xξ̂η for some η with ξ̂η ∈ Λ̃. Then (xn)

has convergent subsequence by (i).

Case 2. Some subsequence of (xn) converges to some element of Xξ̂η, where

η ends with ω. Then we are done.

Case 3. The previous cases do not hold. Step by step, we will define a se-

quence η = (η1, η2, . . .) such that ξ̂η ∈ Λ̃ and for every k, infinitely many

elements xn belong to Xξ̂[η]k . This will allow to choose a subsequence (xnk)

such that xnk ∈ Xξ̂[η]k for k ∈ N. By (iv) and a fact that ∅ 6= Xξ̂η ⊂ Xξ̂[η]k

for every k ∈ N, this will mean that (xnk) is convergent to the unique element

of Xξ̂η ⊂ Xξ.

Now we show how to choose η. By our assumptions (iv) and (v), there

is k ∈ N such that infinitely many elements xn belong to
⋃
j≤k1

Xξ̂j . Hence

we can find η1 ∈ {1, . . . , k1} such that infinitely many elements of xn belong

to Xξ̂η1 . Similarly, there is k2 ∈ N so that infinitely many elements of xn
belong to

⋃
j≤k2

Xξ̂η1̂j , and hence we find η2 ∈ {1, . . . , k2} so that infinitely

many elements xn belong to Xξ̂η1̂η2 . We can continue this procedure as we

assume that Cases 1 and 2 do not hold.
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We proved that Xξ is compact. Now let ξ̃ be such that ξ = ξ̃̂k for some

k ∈ N. Then X̃ξ = Xξ̃ \
⋃
i<k

Xξ̂i and, by what we already proved, X̃ξ is compact.

Now we prove (b). Assume that x ∈ Xη̂ω and y ∈ Xη̂k for some k ∈ N.

By conditions (iii)–(v) and (3.3), we have

d(xη̂ω, y) ≤ diam

( ⋃
k≤j<ω

Xη̂j
)

= diam

( ⋃
k≤j<ω

Xη̂j
)
≤ bl(η)+k−1

and

d(x, y) ≥ dist

(
Xη̂k, ⋃

k<j≤ω

Xη̂j
)
≥ bl(η)+k−1 − 2bl(η)+k − bl(η)+k+1

≥ bl(η)+k−1 −
5

2
bl(η)+k ≥ bl(η)+k−1

(
1− 5

2
Mb

)
≥ 1

2
bl(η)+k−1 ≥

1

2
d(xη̂ω, y).

Hence we get the first inequality. To see the second, use the first one:

d(x, xη̂ω) ≤ d(x, y) + d(y, xη̂ω) ≤ 3d(x, y).

Point (c) follows from (a), (ii) and facts that diam(Xη) ≤ bl(η) and diam(X̃l(η)) ≤
bl(η)−1 (which are implied by (iii) and (iv)).

To see (d), it is routine to check that Λ1[η] is proper and the family X ′β :=

Xη̂β , β ∈ Λ1[η], satisfies the required conditions.

Similarly, to get (e), it is easy to see that Λ2[η̂k] is proper and that the

family X ′′îβ := Xη̂(i+k−1)̂β , îβ ∈ Λ2[η̂k], satisfies the required conditions

(in fact, (d) follows from (e) by our earlier observation).

To see (f), note that the map X 3 xη → yη ∈ Y is homeomorphism, which

can be easily proved using (c). �

Now we show that the above definition is non void, and we can embed (Λ, b)

spaces into R or other Hilbert spaces. We should start with defining appropriate

“skeleton” on the real line.

Let b be a good sequence. We say that a family I = {Iξ : ξ ∈ Λmax} of closed

intervals is a b-family, if for every η ∈ Λmax which does not end with ω,

(I1) diam(Iη) = bl(η) + bl(η)+1;

(I2) for every k ∈ N,

(I2a) if k ∈ N, then max Iη̂k = min Iη + bl(η)+1 + bl(η)+k−1;

(I2b) if k = ω, then min Iη̂ω = min Iη, and max Iη̂ω = min Iη + bl(η)+1.

Observe that Iη̂k ⊂ Iη, max Iη = max Iη̂1 for η which does not end with ω, and

dist(Iη̂k, Iη̂(k+1)) = bl(η)−1 − 2bl(η) − bl(η)+1. Additionally, for every infinite

η ∈ Λ̃max, set Iη :=
⋂
k∈N

I[η]k (clearly, it is a singleton).

Remark 3.3. It is worth to observe that we can look on the family {Iη : η ∈
Λmax, η does not end with ω} as on standard ternary Cantor scheme on R (with
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the length of each interval of the k-th step equal to bk), but for our purposes we

enumerate these intervals in a different way.

Theorem 3.4. Assume that Λ is a proper tree and b is a good sequence.

(a) There exists X ⊂ R which is a (Λ, b, s)-space.

(b) If Z is a nonempty, non singleton, compact subset of a normed space H,

then there exists X ⊂ H which is a (Λ, b, Z)-space.

(c) If Z is a nonempty compact metric space which is not a singleton, then

there exists a metric space X which is a (Λ, b, Z)-space.

Proof. We first prove (a). Take a b-family I and η ∈ Λ̃. If η ends with

ω then set xη := max Iη, otherwise let xη be any element of Iη. Then it is easy

to see that X := {xη : η ∈ Λ̃} is a (Λ, b, s)-space (for the family Xη := {xξ :

ξ ∈ Λ̃, η � ξ}, η ∈ Λ).

Now we prove (b). We first state the following claim:

Claim. For any distinct points x, y of a normed space H and any distinct

points x′, y′ ∈ R(x − y) := {t(x − y) : t ∈ R} there exists a bijective similitude

h : H → H such that h(x) = x′ and h(y) = y′.

The similitude h can be defined by

h(z) := x′ +
||y′ − x′||
||y − x||

(z − x) or h(z) := x′ − ||y
′ − x′||
||y − x||

(z − x),

depending on the mutual relationship between x′ and y′.

Since Z is compact, there are x0, y0 ∈ Z such that ||x0 − y0|| = diam(Z).

Now choose any line l ⊂ H, and identify l with the real line R, and find any

b-family I on l. By the Claim, for every η ∈ Λ ∩ Λ̃, we can find a similitude

hη : H → H such that hη(x0) = min Iη and hη(y0) = max Iη. Set Xη := hη(Z).

Moreover, if η ∈ Λ̃ \ Λ, then let Xη := Iη =
⋂
k∈N

I[η]k (clearly, Xη is singleton).

For every η ∈ Λ, let Xη :=
⋃

ξ∈Λ̃, η�ξ
Xξ, and finally set X := X∅ =

⋃
η∈Λ̃

Xη. We

will prove that X is a (Λ, b, Z)-space.

Clearly, the condition (Z) is satisfied (as diam(h(Z)) = ||h(x0) − h(y0)|| for

every considered similitude and, if η ends with ω, then xη is the image of y0

via h). Condition (a) follows from the fact that Z is nonempty and compact,

and (b) directly from definition.

Now we show that, for every η ∈ Λ ∪ Λ̃,

(3.5) min Iη,max Iη ∈ Xη and diam(Xη) = diam(Iη).

If η ∈ Λ̃, then (3.5) clearly holds. Hence assume η ∈ Λ \ Λ̃. By definition,

min Iη = min Iη̂ω ∈ Xη̂ω ⊂ Xη. Now if η̂(1, 1, 1, . . .) ∈ Λ̃, then max Iη ∈
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k∈N

Iη̂[(1,1,...)]k = Xη̂(1,1,...) ⊂ Xη, and if for some k ∈ N, η̂[(1, 1, . . .)]k ∈ Λ̃,

then max Iη = max Iη̂[(1,1,...)]k ∈ Xη̂[(1,1,...)]k ⊂ Xη.

Now choose any x, y ∈ Xη and let ξ, ξ′ ∈ Λ̃ be such that η � ξ, η � ξ′,

x ∈ Xξ and y ∈ Xξ′ . If ξ = ξ′, then ||x − y|| ≤ diam(Iξ) ≤ diam(Iη). Hence

assume ξ 6= ξ′ and, without loss of generality, that ξk > ξ′k for some k > |η|.
Then

||x− y|| ≤ ||x−max Iξ||+ ||max Iξ −min Iξ′ ||+ ||min Iξ′ − y||

≤ ||min Iξ −max Iξ||+ ||max Iξ −min Iξ′ ||+ ||min Iξ′ −max Iξ′ ||

= ||min Iξ −max Iξ′ || ≤ diam(Iη).

This ends the proof of (3.5).

Now we prove (iii), (iv) and (v). We will use (3.5) and definition of a b-family.

Take any η ∈ Λ \ Λ̃ and k < j ≤ ω. Then for every x ∈ Xη̂k and y ∈ Xη̂j , we

have by (3.5),

||max Iη̂k −min Iη̂k||+ ||min Iη̂k −max Iη̂j ||+ ||max Iη̂j −min Iη̂j ||
= ||max Iη̂k −min Iη̂j || ≤ ||max Iη̂k − x||+ ||x− y||+ ||y −min Iη̂j ||
≤ ||max Iη̂k −min Iη̂k||+ ||x− y||+ ||max Iη̂j −min Iη̂j ||

so

||x− y|| ≥ ||min Iη̂k −max Iη̂j || ≥ bl(η)+k−1 − 2bl(η)+k − bl(η)+k+1.

We proved (iii).

Now assume additionally j <∞. Then

||x− y|| ≤ ||x−min Iη̂k||+ ||min Iη̂k −max Iη̂j ||+ ||max Iη̂j − y||
≤ ||max Iη̂k −min Iη̂k||

+ ||min Iη̂k −max Iη̂j ||+ ||max Iη̂j −min Iη̂j ||
≤ diam

( ⋃
k≤i<ω

Iη̂i
)
≤ bl(η)+k−1

and we proved (iv).

Finally, (3.5) implies that xη̂ω = max Iη̂ω ∈ ⋃
k≤i<ω

Xη̂j , hence (v) also

holds. This ends the proof of (b).

We just sketch the proof of (c). The idea is similar as in point (b). We choose

a b-family I and try to replace Iη by appropriate copy of Z, for η ∈ Λ̃.

For every η ∈ Λ̃∩Λ, let Xη be a similarity copy of Z according to (Z1), (Z2)

and let dη be initial metric on Xη. If η ∈ Λ̃ ends with ω, then let xη ∈ Xη be

the image, via the similitude, of initially chosen point y0 ∈ Z such that for some

x ∈ Z, ρ(x, y0) = diam(Z). Thanks to it, the condition (Z3) will be satisfied. If
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η ∈ Λ̃ is infinite, then let Xη be singleton. Moreover, for every η ∈ Λ \ Λ̃, let Xη

be defined like before in the proof of (b), and finally set X := X∅. Now we will

define appropriate metric d on X.

For every ξ ∈ Λ, let

zξ :=

midpoint of Iξ if ξ does not end with ω,

max Iξ if ξ ends with ω.

If η ∈ Λ̃ ∩ Λ, then let the metric d coincide with dη on Xη. Now let x, y ∈ X
be distinct and assume that they do not belong to the same Xη for η ∈ Λ̃.

Without loss of generality, there exist η ∈ Λ \ Λ̃ and k < j ≤ ω, such that

x ∈ Xη̂k, y ∈ Xη̂j . If j 6= ω, then define

d(x, y) := |zη̂k − zη̂j |,
and if j = ω, then define

d(x, y) := d(y, xη̂ω) + |zη̂ω − zη̂k|.
It is routine to check that d is indeed a metric and that (X, d) is a (Λ, b, Z)-

space. �

We will also need to deal with certain subsets of (Λ, b, s)-spaces, hence we

introduce the following notation: given a (Λ, b, s)-space X and its compact subset

M ⊂ X, we set ΛM := {η ∈ Λ : Xη ∩M 6= ∅}. We skip the proof of the following

observation:

Observation 3.5. In the above frame:

(a) ΛM is a tree (but need not be proper);

(b) Λ̃M = {η ∈ Λ̃ : xη ∈M};
(c) M = {xη : η ∈ Λ̃M};
(d) If N 6= M and N is also compact, then ΛN 6= ΛM .

We end this section with two general lemmas, which will be keys in later

constructions of appropriate GIFSs.

Lemma 3.6. Assume that X is a (Λ, b)-space, ∅ 6= Z ⊂ X and for every

2 ≤ k < ω, there exists a map hk : Z → X so that for every 2 ≤ k < j < ω,

(a) Lip(hk) ≤ λb/4;

(b) for all x ∈ Z, d(hk(x), hj(x)) ≤ 2bk−1.

Let hω(x) := lim
k→∞

hk(x), x ∈ X, and for k ∈ N, let Zk := Z ∩Xk. Then the map

F : Z × Z → X defined by (we set ω + 1 = ω)

F (x, y) := hk+1(x), if y ∈ Zk, k ∈ N,
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satisfies the following

Lip(F ) ≤ 1

2
λb and F (Z × Z) =

⋃
{hk(Z) : k ∈ N, k ≥ 2, Zk−1 6= ∅}.

Proof. Since X is compact and (hk(x))k∈N is Cauchy, the map hω is well

defined. By definition, we have

F (Z × Z) = F

(
Z ×

⋃
k∈N, Zk 6=∅

Zk

)
=
⋃
{hk(Z) : k ∈ N, k ≥ 2, Zk−1 6= ∅}.

We will show that Lip(F ) ≤ λb/2. Take distinct (x, y), (x′, y′) ∈ Z × Z so that

F (x, y) 6= F (x′, y′) and consider cases.

Case 1. For some k ∈ N, it holds y, y′ ∈ Zk. Then

d(F (x, y), F (x′, y′)) = d(hk+1(x), hk+1(x′))

≤ Lip(hk+1)d(x, x′) ≤ 1

4
λbdm((x, y), (x′, y′)).

Case 2. For some k < j ≤ ω, it holds y ∈ Zk and y′ ∈ Zj . Then by Case 1,

(iii) and (3.3),

d(F (x, y), F (x′, y′)) ≤ d(F (x, y), F (x, y′)) + d(F (x, y′), F (x′, y′))

≤ d(hk+1(x), hj+1(x)) +
1

4
λbd(x, x′) ≤ 2bk +

1

4
λbd(x, x′)

≤ 1

4
λb(bk−1 − 2bk − bk+1) +

1

4
λbd(x, x′)

(∗)
≤ 1

4
λbd(y, y′) +

1

4
λbd(x, x′) ≤ 1

2
λbdm((x, y), (x′, y′)),

where (∗) follows from

d(y, y′) ≥ dist(Zk, Zj) ≥ dist(Xk, Xj) ≥ bk−1 − 2bk − bk+1. �

Remark 3.7. Observe that assumption (b) of the above Lemma is satisfied if

hk : Z → Xk for all 2 ≤ k < ω. Indeed, in this case we have by Definition 3.1 (iv),

d(hk(x), hj(x)) ≤ diam

( ⋃
k≤i<ω

Xi

)
≤ bk−1.

Then also hω(Z) = {xω}.

Lemma 3.8. Assume that X,Y are (Λ, b, s) and (Λ′, b′, s)-spaces such that

λ := sup{b′k/bk : k ∈ N∪{0}} <∞, and let M , M ′ be their compact subsets such

that Λ′M ′ ⊂ ΛM . Then there exists surjective map h : M →M ′ with Lip(h) ≤ 2λ.

Moreover, if X = Y (and Λ = Λ′ and b = b′) and M ′ ⊂ M , then additionally

h(x) = x for x ∈M ′.
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Proof. At first, fix a map T : Λ′M ′ ∪ Λ̃′M ′ → Λ̃′M ′ such that η � T (η) and if

η /∈ Λ̃′M ′ , then the value T (η)|η|+1 is biggest possible.

Now, for every η ∈ Λ̃M , let j := sup{k : [η]k ∈ Λ′M ′}, and define R(η) :=

T ([η]j), where we assume [η]ω = η. By assumptions and a fact that T (η) = η

for η ∈ Λ̃′M ′ , it is easy to see that:

(a) R(η) = η for η ∈ Λ̃′M ′ ∩ Λ̃M ;

(b) R(Λ̃M ) = Λ̃′M ′ .

Finally, set h : M → M ′ by h(xη) := yR(η), η ∈ Λ̃M . By Observation 3.5, h is

well defined, by (b), h(M) = M ′, and by (a), if X = Y and M ′ ⊂ M , we have

that h(x) = x for x ∈M ′. It remains to prove that Lip(h) ≤ 2λ.

Choose any η, η′ ∈ Λ̃M so that R(η) 6= R(η′). We can assume that there

exist a sequence ξ and k < k′ ≤ ω such that ξ̂k � η and ξ̂k′ � η′. Observe

that ξ̂k or ξ̂k′ belongs to Λ′M ′ . Indeed, otherwise

j := max{i : [η]i ∈ Λ′M ′} = max{i : [η′]i ∈ Λ′M ′} ≤ |ξ|

and then R(η) = T ([η]j) = T ([η′]j) = R(η′), which contradicts our assumption.

Assume first that ξ̂k ∈ Λ′M ′ . Then R(η) = T ([η]j) � [η]j � ξ̂k. Now, if

ξ̂k′ ∈ Λ′M ′ , then also R(η′) � ξ̂k′.
If ξ̂k /∈ Λ′M ′ , then by definition of the map T and a fact that ξ̂k ∈ Λ′M ′ ,

there is k ≤ l ≤ ω such that R(η′) = T (ξ) � ξ̂l. In both cases, we have

h(xη), h(xη′) ∈
⋃

k≤j≤ω
Yξ̂j and hence

d(h(xη), h(xη′)) ≤ diam

( ⋃
k≤j≤ω

Yξ̂j
)
≤ b′(ξ)+k−1.

On the other hand,

d(xη, xη′) ≥ dist(Xξ̂k, Xξ̂k′) ≥ bl(ξ)+k−1 − 2bl(ξ)+k − bl(ξ)+k+1 ≥
1

2
bl(ξ)+k−1.

Hence

d(h(xη), h(xη′) ≤ 2
1

2
bl(ξ)+k−1

b′l(ξ)+k−1

bl(ξ)+k−1
≤ 2λd(xη, xη′).

In the case when ξ̂k′ ∈ Λ′M ′ , we proceed in similar way. �

3.1. Scattered spaces as (Λ, b, s)-spaces. A topological space X is called

scattered if every its nonempty subspace Y has an isolated point in Y . It is

well known that a compact metrizable space is scattered iff it is countable (it

follows from the Cantor-Bendixson theorem and a fact that perfect sets are

uncountable).

For a scattered space X, define

X ′ := {x ∈ X : x is an accumulation point of X}.
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Then X ′ is called the Cantor–Bendixson derivative of X. For each ordinal α, we

can define the Cantor–Bendixson α-th derivativeX(α), according to the inductive

procedure:

• X(α+1) := (X(α))′;

• X(α) :=
⋂
β<α

X(β) for a limit ordinal α.

(the definition is correct, as sets X(α) are empty from some level). Then we can

define the scattered height of a scattered space X, by

ht(X) := min
{
α : X(α) is discrete

}
.

The classical Mazurkiewicz–Sierpiński theorem (see [22]), states that every count-

able compact scattered space X is homeomorphic to the space ωβ ·n+1 with the

order topology, where β = ht(X) and n = cardX(β). In particular each count-

able compact scattered spaces with the same height and the same cardinality of

elements with the “highest rank” are homeomorphic. We call a scattered space

unital, if X(ht(X)) is a singleton.

Now we show that each compact metrizable scattered space is homeomorphic

to certain (Λ, b, s)-space.

Let δ0 be a countable limit ordinal, and {cδ0n (β) : n ∈ N, β ≤ δ0, β is limit}
be a monotone ladder system in δ0, that is, a family of ordinals that satisfies

1. for each limit ordinal β ≤ δ0, the sequence {cδ0n (β)}n∈N is strictly in-

creasing and converges to β;

2. for every limit β, γ ≤ δ0, if β ≤ γ then cδ0n (β) ≤ cδ0n (γ) for every n ∈ N.

(the proof of its existance is given in [28]).

Now, for every ordinal α ≤ δ0, define the sequence (αn) such that:

• if α is a limit ordinal, then αn := cδ0n (α);

• if α is a successor ordinal and α = α′+1, then αn := min{cδ0n (α+ω), α′}.
Clearly,

(A) for every α ≤ δ0, (αn + 1) is nondecreasing and converges to α;

(B) for every α ≤ β ≤ δ0 and every n ∈ N, αn ≤ βn < β.

Now we will define a family Λα, α ≤ δ0, of proper trees. Definition will be

recursive. At first, let Λ0 := {∅}. Assume that for some α ≤ δ0, all sets Λβ ,

β < α, are defined. Then define

Λα := {∅, ω} ∪
⋃
k∈N

k̂Λαk =
⋃
k∈N
{k̂ η : η ∈ Λαk} ∪ {∅, ω},

where k̂A := {k̂a : a ∈ A}.
The following proposition lists basic properties of sets Λα. It can be easily

proved by induction and with a help of (A) and (B).

Proposition 3.9. If α ≤ β ≤ δ0, then
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(a) Λ̃β = {ω} ∪
⋃
k∈N

k̂Λ̃βk ;

(b) Λ̃β consists of finite sequences, that is, Λ̃β ⊂ Λβ ;

(c) Λβ is proper;

(d) Λα ⊂ Λβ.

Finally, set Λα,1 := Λα and for n ≥ 2, define Λα,n by

Λα,n :=

( ⋃
1≤i≤n−1

îΛα
)
∪
( ⋃
i≥n

îΛαi−n+1

)
∪ {∅, ω}.

Clearly, Λα,n is proper tree. As δ0 was taken as arbitrary countable ordinal,

the following result shows that all compact scattered spaces are certain (Λ, b, s)-

spaces.

Proposition 3.10. If b is a good sequence and α ≤ δ0, then (Λα,n, b, s)-space

is homeomorphic to ωα · n+ 1.

Proof. We first assume n = 1. Then the thesis holds by a simple inductive

argument and the fact that if X is a (Λα, b, s)-space, then for every k ∈ N, Xk is

a (Λαk , bk, s)-space (see Lemma 3.2 (d)). Hence take (Λα,n, b, s)-space X. Then,

from the definition, it can be easily seen (see again Lemma 3.2 (d)) that for i =

1, . . . , n−1, the space Xi is a (Λα, bi, s)-space and that the space X̃n :=
⋃

n≤i≤ω
Xi

is a (Λα, bn−1, s)-space. Since X1, . . . , Xn−1, X̃n are pairwise disjoint and open,

the result follows. �

Remark 3.11. Nowak in [28] considered a particular case of (Λα, b, s)-spaces.

Namely, take r > 3 and for each n ∈ N, define the affine homeomorphism sn by

sn(x) :=
x

rn
+

1

rn
.

Finally, construct the scattered compact sets Lα ⊂ [0, 1], α ≤ δ0, in the following

recursive way:

(3.6) L0 := {0}, Lα := L0 ∪
∞⋃
n=1

sn(Lαn).

Notice that Lα is a (Λα, b, s)-space for a sequence b = (2/rk+1)k∈N∪{0} with suffi-

ciently large r. From the perspective of countable compact spaces and Section 4,

Nowak’s construction would be sufficient. However, in next sections we will need

our, more flexible, setting.

3.2. Compact 0-dimensional uncountable spaces as (Λ, b, s)-spaces.

In this section we show that each compact metrizable uncountable 0-dimensional

space is homeomorphic to a certain subset of a (Λmax, b, s)-space. Note that
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if Y is uncountable, compact, metrizable and 0-dimensional, by the Cantor–

Bendixson theorem, there exists a maximal perfect subset Y (∞) (called a perfect

kernel) which is a Cantor space.

Define two subtrees of Λmax

(3.7)
Λs := {η ∈ Λmax : η does not contain 1},

Λr := {η ∈ Λmax : η contains at most one 1}.

Observe that

(3.8)
Λ̃s :=

{
η ∈ Λ̃max : η does not contain 1

}
,

Λ̃r :=
{
η ∈ Λ̃max : η contains at most one 1

}
.

Proposition 3.12. Let b be a good sequence, Y be an uncountable 0-dimen-

sional compact metrizable space and y0 ∈ Y (∞). Then, for every (Λmax, b, s)-

space X, there is a compact set M ⊂ X such that

(3.9) Λs ⊂ ΛM ⊂ Λr

and a homeomorphism h : Y →M such that h(y0) = xω.

Before we give the proof, let us observe that (3.9) implies

(3.10) Λ̃s ⊂ Λ̃M ⊂ Λ̃r.

Proof. Let X be a (Λmax, b, s)-space and define

Cs :=
{
xη : η ∈ Λ̃s

}
and Cr :=

{
xη : η ∈ Λ̃r

}
.

Clearly, ΛCs = Λs and ΛCr = Λr. Also, Cs, Cr are closed in X, as

Cs = X \
⋃
{Xη : η ∈ Λmax, η ends with 1},

Cr = X \
⋃
{Xη : η ∈ Λmax, η ends with 1 and contains two 1’s},

and the sets which we remove are open. Moreover, it is easy to see that Cs, Cr
are also perfect, hence they are Cantor spaces. Finally, Cs ⊂ Cr and Cs has

empty interior with respect to Cr. Indeed, take x = xη ∈ Cs. If η = η̃̂ω, then

for every k ≥ 2, xk := xη̃̂k̂1̂(2,2,...) ∈ Cr \ Cs and xk → x, and if η is infinite,

then for every k ∈ N, xk := x[η]k̂1̂(2,2,...) ∈ Cr \ Cs and xk → x. Hence the

result follows from the following Claim (whose version we also prove in [4]; we

give a proof for the sake of completeness):

Claim. Assume that C1, C2 are Cantor spaces such that C1 ⊂ C2 and

Int(C1) = ∅. Then there exists a homeomorphic embedding h : Y → C2 such

that h(Y (∞)) = C1 and h(y0) = x0, where y0 ∈ Y (∞) and x0 ∈ C1 are initially

chosen.
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Since Y (∞) and C1 are Cantor spaces, there is a homeomorphism h : Y (∞) →
C1 such that h(y0) = x0. Consider a family

D := {f : Y → C2 : f is continuous andf|Y (∞) = h}

and consider it as a metric space with the supremum metric. Let us note that

D is nonempty as the set Y (∞) is a retract of zero dimensional space Y (see

[19, Theorem 7.3]), so there exists a continuous retraction r : Y → Y (∞), and

h ◦ r ∈ D. Now let z1, z2, . . . be all elements of (clearly countable) set Y \ Y (∞)

(in the case when Y \Y (∞) is finite, we can proceed in similar, but simpler way),

and for every n,m ∈ N, let

Un := {f ∈ D : f(zn) /∈ C1}, Un,m := {f ∈ D : f(zn) 6= f(zm)}.

Observe that any map f ∈
⋂

n,m∈N
(Un ∩ Un,m) satisfies the thesis of the Claim.

Hence, in view of completeness of D, it is enough to prove that all Un and Un,m
are open and dense. Openness of these sets is obvious. We will show that Un is

dense. Take f ∈ D and ε > 0, and choose y0 ∈ C2 \ C1 so that d(f(zn), y0) < ε

(where d is an original metric on C2). Then take a clopen set V ⊂ Y \Y (∞) such

that zn ∈ V and f(V ) ⊂ B(f(zn), ε/2), and define

f̃(x) :=

f(x) if x /∈ V,
y0 if x ∈ V.

As V is clopen and V ∩Y (∞) = ∅, f̃ is continuous and therefore f̃ ∈ D. Moreover,

for every x ∈ Y ,

• if x /∈ V , then d(f(x), f̃(x)) = 0;

• if x ∈ V , then

d(f(x), f̃(x)) = d(f(x), y0) ≤ d(f(x), f(zn)) + d(f(zn), y0) < ε.

Hence the supremum metric ds(f, f̃) ≤ ε and Un is dense. Similarly we prove

the density of Un,m. Claim is proved. �

4. 0-dimensional compact metrizable spaces

as attractors of Banach GIFSs of order 2

The main result of this section is the following:

Theorem 4.1. Let X be a compact metrizable 0-dimensional space and λ ∈
(0, 1). Then X is homeomorphic to the attractor of a GIFS F of order 2 on the

real line with Lip(F) ≤ λ. Moreover, if X is scattered, then F can consist of

two maps.

The aforementioned theorem will follow automatically from Theorem 4.3,

which give more “qualitative” result.
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Remark 4.2. (a) As was mentioned in Theorem 1.1, Nowak in [28] showed

that any compact scattered metrizable space of limit scattered height is not

a topological fractal. Hence Theorem 4.1 shows that scattered spaces of limit

scattered height distinguish the classes of GIFSs’ fractals and IFSs’ fractals.

(b) As was mentioned in Theorems 1.1 and 1.2, 0-dimensional compact

metrizable spaces which are uncountable or scattered with successor height, are

homeomorphic to attractors of IFSs on the real line consisting Banach contrac-

tions. In the constructions presented there, the number of required mappings in

case of uncountable or unital case is two (but in a nonunital case it seems that we

need at least three maps — see [4]). Hence our result, in the case of uncountable

spaces, says nothing new. However, later we will need some particular proper-

ties that are guaranteed by our construction, so the proof of Theorem 4.1 for an

uncountable case can be considered as a step in the proof of results presented in

the next section.

(c) In [13], Strobin and his coauthors studied a topological version of a GIFS,

and Theorem 4.1 shows that all compact scattered spaces are attractors of such

kind of GIFSs.

The promised qualitative version of Theorem 4.1 is the following (then Theo-

rem 4.1 follows from it and Propositions 3.10, 3.12, Lemma 2.2 and Theorem 3.4).

Theorem 4.3.

(a) Let α ≤ δ0, n ∈ N and b be a good sequence. Then each (Λα,n, b, s)-space

is the attractor of a Banach GIFS F of order 2 which consists of two

maps and such that Lip(F) ≤ λb.
(b) Let X be a (Λmax, b, s)-space and M ⊂ X be compact set which satisfies

(3.9). Then M is the attractor of a Banach GIFS F of order 2 which

consists of four maps and such that Lip(F) ≤ λb.

In the remaining part of this section we prove Theorem 4.3.

Proof. Assume now that X is a (Λα, b, s)-space and choose k ∈ N. By

Proposition 3.9 we see that Λαk ⊂ Λα and, as was already observed, the space

Xk is (Λαk , bk, s)-space. Moreover,

λ := sup

{
bkn
bn

: n ∈ N
}

= sup

{
bn+k

bn
: n ∈ N

}
≤Mb ≤

1

8
λb.

Hence, by Lemma 3.8, there exists a surjective map hk : X → Xk with Lip(hk) ≤
λb/4. Then, by Lemma 3.6 and Remark 3.7, there exists a map F : X ×X → X

such that Lip(F ) ≤ λb/2 and F (X ×X) = X \X1. Moreover, define G : X → X

by G(x) := h1(x). Then G(X) = X1 and Lip(G) ≤ λb/4. Hence, by Lemma 2.1,

the proof of Theorem 4.3 (a) in the case when n = 1 is finished.
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Now letX be a (Λα,n, b, s)-space, where n>1. As was observed, X1, . . . , Xn−1

are (Λα, bi, s)-spaces, for i = 1, . . . , n − 1, respectively, and X̃n :=
⋃

n≤k≤ω
Xk is

a (Λα, bn−1, s)-space. By what we already proved, there is a surjection F1 : X1×
X1 → X1 \X(1,1) with Lip(F1) ≤ λb1/2 ≤ λb/2. Now (see Lemma 3.2 (d)) since

X \X1 is a (Λα,n−1, b1, s)-space, X(1,1) is (Λα1 , b2, s)-space and Λα1 ⊂ Λα,n−1,

by Lemma 3.8 there exists a surjection h : X \X1 → X(1,1) with Lip(h) ≤ 2Mb

≤ λb. Hence, by simple calculations (involving (3.3)) we can show that the map

P : X ×X → X1 defined by

P (x, y) :=


F1(x, y) if (x, y) ∈ X1 ×X1,

h(x) if x /∈ X1,

z if x ∈ X1, y /∈ X1,

where z is an arbitrary point of X1, is surjective and Lip(P ) ≤ λb.
Now, if n = 2, then exactly the same reasoning, shows that there exists

a surjection Q : X × X → X̃2 = X \ X1 with Lip(Q) ≤ λb, and we are done.

Hence let n ≥ 3.

By Lemma 3.8, proceeding similarly as earlier, we can see that for i =

1, . . . , n − 2, there exists a surjective map hi : Xi → Xi+1 with Lip(hi) ≤ 2Mb

≤ λb. Moreover, for the same reason, there exists a surjection hn−1 : X1 → X̃n

with Lip(hn−1) ≤ 2Mb ≤ λb. Then the map Q : X ×X → X \X1 defined by

Q(x, y) :=


hi(x) if x ∈ Xi, i = 1, . . . , n− 2, y ∈ X1,

hn−1(x) if x ∈ X1, y /∈ X1,

z otherwise,

where z is an arbitrary element of Xn−1, is surjective and Lip(Q) ≤ λb. All in

all, the proof of Theorem 4.3 (a) is finished.

Now we switch to the case when M is a compact subset of a (Λmax, b, s)-space

X which satisfies (3.9).

Let Z := {xη : η ∈ Λ̃s}. By (3.10) and Observation 3.5, Z ⊂ M . We will

define four maps: Gi : Z × Z →M , i = 2, 3, 4 and F : Z →M , such that

Lip(Gi),Lip(F ) ≤ λb/2 and

4⋃
i=2

Gi(Z × Z) ∪ F (Z) = M.

This will end the proof. Indeed, then we can define G̃i : M × M → M and

F̃ : M →M by G̃i(x, y) = Gi(r(x), r(y)) and F̃ (x) = F (r(x)), where r : X → Z

is a projective map with r(x) = x for x ∈ Z and Lip(r) ≤ 2 (existence of r is

guaranteed by Lemma 3.8). Then we obtain GIFS F with Lip(F) ≤ λb whose

attractor is M .
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Define M1, . . . ,M4 in the following way:

M4 := M \ (X1 ∪X2 ∪X3) and Mi := M ∩Xi, i = 1, 2, 3.

Clearly, M =
4⋃
i=1

Mi. We first define the map G4. If η ∈ Λ̃s, then by η′ we will

mean the sequence so that η = η1̂η′. Moreover, if 2 ≤ k < ω and |η| ≥ k, then

by η1, η2 we will mean sequences so that η = η1̂η1̂ηk̂η2 (if k = 2 and |η| = 2,

then η1 = η2 = ∅). Let sk : Z → X be the map defined by (we assume ω+ 2 = ω

and ω − 1 = ω and equate xη ∈ Z with η ∈ Λ̃s):

sk(xη) :=

x(η1+2)̂η′ if |η| < k,

x(η1+2)̂η1̂(ηk−1)̂η2 if η = η1̂η1̂ηk̂η2.

Observe that sk is well defined as X is (Λmax, b, s)-space and η does not contain 1.

Moreover, Lip(sk) ≤ λb/8. Indeed, take distinct x = xη, y = yξ ∈ Z, and let j

be such that [η]j = [ξ]j and x ∈ X[η]ĵp and y ∈ X[ξ]ĵq for some p < q ≤ ω. We

consider two cases:

Case 1. j > k − 1. Then, setting β := [η]j and β̃ — its modification due to

definition of sk (that is, β̃ = (η1 + 2)̂[η]1ĵ(ηk − 1)̂[η]2j ) — we have by (3.3)

d(x, y) ≥ dist (Xβ̂p, Xβ̂q) ≥ bl(β)+p−1 − 2bl(β)+p − bl(β)+p+1

and

d(sk(x), sk(y)) ≤ diam

( ⋃
p≤i≤ω

Xβ̃̂i
)
≤ bl(β̃)+p−1 = bl(β)+2−1+p−1

= bl(β)+p ≤
1

8
λb(bl(β)+p−1 − 2bl(β)+p − bl(β)+p+1) ≤ 1

8
λbd(x, y).

Case 2. j = k−1. Then, letting β̃ be appropriate modification of β, we have

that

d(sk(x), sk(y)) ≤ diam

( ⋃
p−1≤i≤ω

Xβ̃̂i
)
≤ bl(β̃)+p−2 = bl(β)+2+p−2

= bl(β)+p ≤
1

8
λb(bl(β)+p−1 − 2bl(β)+p − bl(β)+p+1) ≤ 1

8
λbd(x, y).

Case 3. j < k − 1. Then we obtain the desired inequality in a similar way.

Finally, we show that for k < j < ω and every x ∈ Z, d(sk(x), sj(x)) ≤ bk+1.

Let x = xη. If |η| < k, then also |η| < j, and sk(x) = sj(x). Hence assume that

|η| ≥ k. Then sk(x) ∈ X(η1+2,η2,...,ηk−1) and sj(x) ∈ X(η1+2,η2,...,ηk−1), so

d(sk(x), sj(x)) ≤ diam
(
X(η1+2,η2,...,ηk−1)

)
≤ bη1+2+η2+...+ηk−1

≤ bk−1+2 = bk+1.

Finally, let r′ : X → M be the projective map with r′(x) = x for x ∈ M and

Lip(r′) ≤ 2, and set s′k := r′ ◦ sk. Then Lip(s′k) ≤ λb/4 and d(s′k(x), s′j(x)) ≤
2bk+1 ≤ bk. Hence the assumptions of Lemma 3.6 are satisfied for hk := s′k−1,
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k ≥ 3 and h2 — any constant map with value in M4. Hence there is a map

G4 : Z × Z → X such that Lip(G4) ≤ λb/2, and (since Z ∩Xi 6= ∅ for i ≥ 2)

M ⊃ G4(Z × Z) =
⋃
{hk(Z) : k ∈ N, k ≥ 3} ⊃

⋃
{s′k(Z) : k ≥ 2} ⊃M4.

To see the last inclusion, take any xη ∈M4. If |η| ≥ 2, then we can choose k ≥ 2

so that ηk = min{ηi : i ≥ 2} and we put ξ := (η1 − 2)̂η1̂(ηk + 1)̂η2 and then

s′k(xξ) = sk(xξ) = xη (since η can have just one 1, we have that xξ ∈ Z). If

|η| = 1, then η = ω and s′2(xω) = xω.

Now for i = 2, 3 and every k ≥ 2, define sik : Z → X by

sik(xη) :=

xîη if |η| < k − 1,

xîη1̂(ηk−1−1)̂η2 if η = η1̂ηk−1̂η2.

Similarly as before we can show that Lip(sik) ≤ λb/2 and d(sik(x), sij(x)) ≤ bk,

and proceeding in an analogous way, we can define maps Gi : Z × Z → X with

Lip(Gi) ≤ λb/2 and such that for i = 2, 3, Mi ⊂ Gi(Z × Z) ⊂M .

Finally, define F : Z → M by F (xη) := r′(x1̂η). Then it is easy to see that

Lip(F ) ≤ λb/2 and F (Z) ⊃M1. The result follows. �

Remark 4.4. By Lemma 2.4 we can see that appropriately separated union

of n many (Λα, b, s)-sets is the attractor of some Banach GIFS. However, pre-

sented construction shows that it is enough to take just two functions.

Remark 4.5. It is worth underlining that GIFSs give much more possibilities

than IFSs. Considering Cartesian power in the domain provides indispensable

space when considering compact scattered spaces with countable limit height.

Moreover, observe that the definition of function G (in the proof for (Λα, b, s)-

spaces) does not make use of whole Cartesian power (it can be perceived as

a selfmap).

5. 0-dimensional compact spaces as attractors of GIFSs of order m

and nonattractors of GIFSs of order m− 1

In this section we prove the following theorem:

Theorem 5.1. Let X be an infinite compact 0-dimensional metrizable space.

(a) For every λ ∈ (0, 1) and m ≥ 2, there exists Z ⊂ R which is homeomor-

phic to X and such that :

(a1) Z is the attractor of some GIFS F on the real line of order m with

Lip(F) ≤ λ;

(a2) Z is not the attractor of any weak GIFS of order m− 1.

(b) There exists Z ⊂ R which is homeomorphic to X and which is not the

attractor of any weak GIFS.
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Almost whole Theorem 5.1 will follow from more “qualitative” Theorem 5.7

and Lemma 2.2 (or [6, Lemma 1.1 (ii)]). However, the case when X \ X(∞) is

finite (where X(∞) is the perfect kernel) need to be dealt separately. At first

recall that in [30], for every λ ∈ (0, 1) and every m ≥ 2, we constructed a Cantor

subset of the plane which is the attractor of some Banach GIFS of order m which

is not the attractor of any weak GIFS of order m − 1, and also we constructed

a Cantor set which is not the attractor of any weak GIFS. As can be seen, the

construction proved there can be modified so that we get appropriate Cantor

subsets of the real line (in fact, in the first draft of that paper, exactly such sets

were constructed, as they were inspired by the construction from [8]). Hence,

Theorem 5.1 (a) for X with X \X(∞) finite, follows from Lemma 2.4, Remark 2.5

and the following:

Lemma 5.2. Assume that m ∈ N, ∅ 6= C ⊂ R, ∅ 6= P ⊂ R is finite and

dist(C,P ) ≥ diam(C). If C∪P is the attractor of a weak GIFS of order m, then

C is the attractor of a weak GIFS of order m.

Proof. By our assumptions, we can define the projection π : C∪P → C with

Lip(π) = 1. Let F = {f1, . . . , fn} be a weak GIFS of orderm such that C∪P is its

attractor. Now, for every 1 ≤ k < m, 1 ≤ i1 < . . . < ik ≤ m, (zi1 , . . . , zik) ∈ P k

and j = 1, . . . , n, we define f
(i1,...,ik),(zi1 ,...,zik )

j : Cm−k → C in the following

way: if (x1, . . . , xm−k) ∈ Cm−k, then let f
(i1,...,ik),(zi1 ,...,zik )

j (x1, . . . , xm−k) be

equal to the value π(fj(y1, . . . , ym)), where yi1 = zi1 , . . . , yik = zik and remain-

ing coordinates of (y1, . . . , yn) equals x1, . . . , xm−k, consecutively. Define also

f0
j : Cm → C as f0

j := π ◦ fj . As fj are generalized weak contractions, so are f0
j

and f
(i1,...,ik),(zi1 ,...,zik )

j . Finally, observe that

C \
⋃

j=1,...,n

fj(P
m)

⊂
⋃

j=1,...,n

(
f0
j

(
Cm
)
∪
⋃

1≤k<m

⋃
i1<...<ik

⋃
(zi1 ,...,zik )

f
(i1,...,ik),(zi1 ,...,zik )

j

(
Cm−k

))
⊂C.

Since
⋃

j=1,...,n

fj(P
m) is finite, we can define finitely many constant maps g1, . . . , gl:

Cm → C so that these mappings, together with maps f0
j and obvious extensions

(like in Lemma 2.1) of all maps f
(i1,...,ik),(zi1 ,...,zik )

j , will form a weak GIFS of

order m whose attractor is C, and this would be a contradiction. �

To prove Theorem 5.1 in the remaining case when X \X(∞) is infinite, we

have to extend a bit the notion of (Λ, b, s)-space by adding finite set to each

segment Xk. We say that a pair of sequences (b, p) is a good pair, if b is good
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and p is a sequence of natural numbers such that pk ≥ 2 for k ∈ N and

(5.1) sup

{
8(1 + 4pk)

bk
bk−1

: k ∈ N
}
< 1, sup

{
bk
bk−1

pk : k ∈ N, k ≥ 2

}
≤ λb.

Definition 5.3. Let (b, p) be a good pair and Λ be a proper tree. We say

that a metric space Z is a (Λ, (b, p), s)-space, if Z = X ∪ Y , where

(a) X is a (Λ, b, s)-space;

(b) Y =
⋃

1≤k≤ω
Yk, where Yω = Xω, and for every k ∈ N,

(b1) Yk = {ak1 , . . . , akpk} for some ak1 , . . . , a
k
pk

with d(aki , a
k
j ) = 2(j − i)bk

for i ≤ j;
(b2) dist(Xk, Yk) = 2bkpk.

Remark 5.4. It is easy to see that for every sequence p = (pk) of natural

numbers with pk ≥ 2 for k ∈ N, and λ > 0, there exists a good sequence b such

that the pair (b, p) is good and λb < λ (the important fact is that in the “middle

condition” in (5.1) we consider only k ≥ 2). It is also clear that for every good

pair (b, p) and a proper tree Λ, there exists a set X ⊂ R which is a (Λ, (p, b), s)-

space.

Later, when writing a (Λ, (b, p), s)-space as X ∪ Y , we will automatically

assume that X, Y have meaning as in the above definition. We start with

making basic observations of the structure of (Λ, (b, p), s)-spaces. If Z = X ∪ Y
is a (Λ, (b, p), s)-space, then for any k ∈ N, we put Zk := Xk ∪ Yk.

Observation 5.5. Let Z = X ∪ Y be a (Λ, (b, p), s)-space with pn ≥ 2.

Then, for every 1 ≤ k < ω,

(a) diam(Zk) ≤ bk−1/8;

(b) dist
(
Zk,

⋃
k<j≤ω

Zj

)
≥ 2bk−1/3;

(c) diam
( ⋃
k≤j≤ω

Zj

)
≤ 5bk−1/4;

(d) diam(Xk) ≤ diam(Yk) ≤ dist(Xk, Yk).

Proof. The properties follow from (5.1), Definition 3.1 and the fact that

b is good. (a) follows from the fact that, for any x, y ∈ Zk,

d(x, y) ≤ diam(Xk) + dist(Xk, Yk) + diam(Yk)

≤ bk + 2bkpk + 2bk(pk − 1) ≤ bk(4pk + 1) ≤ 1

8
bk−1.

To see (b), note that for every k < j ≤ ω,

dist(Zk, Zj) ≥ dist(Xj , Xk)− diam(Zj)− diam(Zk)

≥ bk−1 − 2bk − bk+1 −
1

8
bj−1 −

1

8
bk−1 ≥

7

8
bk−1 − 3bk ≥

2

3
bk−1.
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To see (c), we calculate as follows:

diam

( ⋃
k≤j≤ω

Zk

)
≤ bk−1 + 2 sup{4bjpj : j ≥ k} ≤ 5

4
bk−1.

Point (d) follows from definition. �

Proposition 5.6. Let (b, p) be a good pair, and K be a compact, metrizable,

0-dimensional space such that K \K(∞) is infinite. There exists a proper tree Λ

such that for every (Λ, (b, p), s)-space Z = X ∪Y , there exists a set M ⊂ X such

that

(a) M is the attractor of some Banach GIFS F of order 2 with Lip(F) ≤ λb;
(b) M ∪ Y is homeomorphic to K;

(c) M ∩Xk 6= ∅ for 2 ≤ k ≤ ω.

Proof. We will consider three cases:

Case 1. K(∞) = ∅. This means that Z is countable and infinite. Then it is

scattered so by the Mazurkiewicz–Sierpiński theorem and Proposition 3.10, there

is a proper tree Λ := Λα,n such that K is homeomorphic to any (Λ, b, s)-space.

Hence let X ∪ Y be a (Λ, (b, p), s)-space. By Theorem 4.3 (a), X is the attractor

of some Banach GIFS F of order 2 with Lip(F) ≤ λb. By Observation 5.5 (b),

each Yk is open, so we see that the first derivative (X ∪ Y )′ = X ′. Using the

Mazurkiewicz–Sierpiński theorem, we see that X ∪ Y is homeomorphic with K.

Case 2. K(∞) is nonempty and not open in K. Then there is a sequence

(xn) ⊂ K of isolated points which converges to some y0 ∈ K(∞). Indeed, by

our assumption, there is a sequence (x′n) ⊂ K \K(∞) and y0 ∈ K(∞) such that

x′n → y0. However, for any k ∈ N, there is a clopen set V 3 x′k which is disjoint

with K(∞) and has diameter ≤ 1/k. In particular, V is countable compact

metrizable space, hence scattered, and it must have an isolated point xk, which

is also isolated in K. Then xk → y0. Now let X ∪ Y be a (Λmax, (b, p), s)-

space. Since K ′ := K \ {xk : k ∈ N} is compact, uncountable 0-dimensional and

metrizable, by Proposition 3.12, we can find M ⊂ X so that (3.9) is satisfied

and a homeomorphism h : K ′ → M so that h(y0) = xω. Enumerate elements of⋃
k∈N

Yk by {yk : k ∈ N}, and extend h by adjusting h(xk) := yk for k ∈ N. It is

easy to see that h : K → M ∪ Y is homeomorphism. Also, by Theorem 4.3 (b),

M is the attractor of some Banach GIFS of order 2 with Lip(F) ≤ λb.

Case 3. K(∞) is nonempty and open in K. Then K ′ := K\K(∞) is countable

compact space, hence scattered, and we can find a proper tree Λ′ as in Case 1.

Now let

Λ := {1̂η : η ∈ Λmax} ∪ {îη : 2 ≤ i ≤ ω, (i− 1)̂η ∈ Λ′}.
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Clearly, Λ is a proper tree and (according to the notation from Lemma 3.2),

Λ1[1] = Λmax and Λ2[2] = Λ′. Now let X ∪ Y be a (Λ, (b, p), s)-space. Then

by Lemma 3.2, X1 is (Λmax, b
1, s)-space and X̃1 is (Λ′, b1, s)-space. In the same

way as in Case 1, we can show that X̃1 ∪Y is homeomorphic to X̃1 (and to K ′).

Also, as K(∞) is a Cantor space, it is homeomorphic to a subset N ⊂ X1 which

satisfies (3.9) (see Proposition 3.12), and then K = K ′ ∪K(∞) is homeomorphic

to (X̃1 ∪ Y ) ∪N (as the underlying sets are clopen). Finally, as X̃1 and N are

attractors of some GIFSs F1,F2 of order 2 with Lip(Fi) ≤ λb (by Theorem 4.3),

M := X̃1 ∪N is the attractor of a Banach GIFS F of order 2 with Lip(F) ≤ λ

(see Lemma 2.4). �

Theorem 5.7. Let Z = X ∪ Y be a (Λ, (b, p), s)-space and M ⊂ X be the

attractor of some Banach GIFS F of order 2 with Lip(F) ≤ λb and such that

Xk ∩M 6= ∅ for 2 ≤ k ≤ ω.

(a) If m ≥ 2, p1 ≥ 2, pn+1 = pmn for n ∈ N and b is such that λb < 1/2,

then

(a1) M ∪ Y is the attractor of some Banach GIFS G of order m with

Lip(G) ≤ 2λb,

(a2) M ∪ Y is not the attractor of any weak GIFS of order m− 1.

(b) If p1 ≥ 2 and pn+1 := pnn for n ∈ N, then M ∪ Y is not the attractor of

any weak GIFS.

Theorem 5.7 will follow from the next lemma:

Lemma 5.8. Let Z = X ∪ Y be a (Λ, (b, p), s)-space, M ⊂ X be such that

M ∩Xk 6= ∅ for 2 ≤ k ≤ ω and m ∈ N.

(a) If lim
n→∞

pmn /pn+1 = 0, then M ∪Y is not the attractor of any weak GIFS

of order m.

(b) If M is the attractor of some Banach GIFS F of order m with Lip(F) <

1/2 and for any n ∈ N, pn+1 ≤ pmn , and b is such that λb < 1/2, then

M ∪ Y is the attractor of some Banach GIFS G of order m such that

Lip(G) ≤ 2 max{Lip(F), λb}.

We show that Theorem 5.7(1) follows from the above lemma. Observe that

if p1 ≥ 2 and pn+1 = pmn , then

lim
n→∞

pm−1
n

pn+1
= lim
n→∞

1

pn
= 0.

Hence (b1) follows from Lemma 5.8 (a). Clearly, (a1) follows from Lemma 5.8 (b).

Finally, if p1 ≥ 2 and pn+1 = pnn, then for any m ∈ N, we have

lim
n→∞

pmn
pnn

= lim
n→∞

1

pn−mn
= 0,

so (b) follows from Lemma 5.8 (a).



392 F. Strobin —  L. Maślanka

In the remaining part of this section we prove Lemma 5.8. For every k ∈ N,

define Mk = Xk ∩M . If M1 = ∅, then define π1 : M ∪ Y →M by

π1(x) =

x if x ∈M,

zmax{k,2} if x ∈ Yk, k ∈ N,

where zk is a fixed element of Mk. We will show that Lip(π1) ≤ 2. Take

x, y ∈M ∪ Y and consider (most important) cases:

Case 1. x ∈ Mk and y ∈ Yk for some k ∈ N, k ≥ 2. Then, by Observa-

tion 5.5 (d),

d(π1(x), π1(x)) ≤ diam(Xk) ≤ dist(Xk, Yk) ≤ dist(Mk, Yk) ≤ d(x, y).

Case 2. x ∈ Zk and y ∈ Zj for k < j ≤ ω. By Observation 5.5 (b), (c), we

have

d(π1(y), π1(x)) ≤ diam

( ⋃
k≤j≤ω

Zj

)
≤ 5

4
bk−1 ≤ 2 · 2

3
bk−1 ≤ 2 dist(Zk, Zj) ≤ 2d(x, y).

Case 3. Cases 1 and 2 do not hold. Then d(π1(x), π1(y)) ≤ d(x, y) clearly

holds.

Similarly we can define a projective map π2 : M ∪ Y → Y with Lip(π2) ≤ 2.

If M1 6= ∅ we can also define appropriate projections π1, π2.

In view of Lemmas 2.1 and 2.4, to complete the proof of (b), it suffices to

show that Y is the attractor of some GIFS G of order m with Lip(G) ≤ λb. For

every k ∈ N, let

Gk :=
⋃{

Yi1 × . . .× Yim : max{i1, . . . , im} = k
}
.

Then Y m =
⋃
k∈N

Gk and for k ∈ N, the cardinality |Gk| ≥ pmk . Hence by our

assumptions, for every 2 ≤ k ≤ ω, there exists a surjection hk : Gk−1 → Yk (we

set Gω−1 := Gω). Finally, if x ∈ Y m, then we set

F (x) := hk(x) if x ∈ Gk.

Clearly, F : Y m → (Y \ Y1) is surjection. Now we show that

(5.2) Lip(F ) ≤ λb.

Take distinct x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Y m and consider cases:
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Case 1. For some 2 ≤ k < ω it holds x, y ∈ Gk−1. Then by Observa-

tion 5.5 (b),

dm(x, y) ≥ min
{

min{dist(Yi, Yj) : i < j ≤ k − 1},min{2bj : j ≤ k − 1}
}

≥ min

{
2

3
bk−2, 2bk−1

}
= 2bk−1

and, by (5.1),

d(F (x), F (y)) ≤ 2bk ≤ λbpk2bk−1 ≤ λbdm(x, y).

Case 2. For some 2 ≤ k < j ≤ ω, it holds x ∈ Gk−1 and y ∈ Gj−1. Then

there exists i ∈ {1, . . . ,m} such that yi ∈ Yj−1. Then xi ∈ Yn for some n ≤ k−1,

hence by (3.2), (5.1) and Observation 5.5 (b), (c),

d(F (x), F (y)) ≤ diam(Yk ∪ Yj) ≤
5

4
bk−1 ≤

5

4
bn ≤ λb

2

3
bn−1

≤ λb dist(Yn, Yj−1) ≤ λbd(xi, yi) ≤ λbdm(x, y).

Hence the proof of (5.2) is finished.

Finally, let G1, . . . , Gp1 : Y → Y1 be constant maps so that
p1⋃
i=1

Gi(Y ) = Y1.

Then Lip(Gi) = 0 ≤ λb and, in view of Lemma 2.1, Y is the attractor of a GIFS

of order m with Lip(G) ≤ λb. The proof of Lemma 5.8 (b) is finished.

Now we prove Lemma 5.8 (a). It is enough to prove that for every generalized

weak contraction F : (M ∪ Y )m → Z,

(5.3) lim
n→∞

|F ((M ∪ Y )m) ∩ Yn|
pn

= 0.

We start with the additional “structural” observation concerning (Λ, b, s)-spaces.

Observation 5.9. Let X be a (Λ, b, s)-space. For every k ∈ N and i ∈

N∪{0}, there existX1
k,i, . . . , X

2i

k,i such thatXk =
2i⋃
j=1

Xj
k,i and diam(Xj

k,i) ≤ bk+i.

Proof. By Lemma 3.2(d) we see that Xk is a (Λ′, bk, s)-space of diameter

≤ bk, which can be divided into (Λ′1[(k, 1)], bk+1, s)-space and (Λ′2[(k, 2)], bk+1, s)-

space of diameters ≤ bk+1. If both of these sets are not singletons, then we can

divide each of them into next two, each of diameter ≤ bk+2. Proceeding in this

way, for each i we can divide Xk into 2i spaces, each of the diameter ≤ bk+i

(however, some of these sets can be empty, as during the procedure we can have

singletons at some stages). �

Fix n ∈ N. We will estimate |F ((M ∪ Y )m) ∩ Yn|. Let A1, . . . , Am be sets

so that every Al is of one of the following forms (see Observation 5.9 for the

notation in the second option):

(a) Al is a singleton;



394 F. Strobin —  L. Maślanka

(b) Al = Xj
k,n−k ∩M for some 1 ≤ k ≤ n and 1 ≤ j ≤ 2n−k;

(c) Al =
⋃

n+1≤j≤ω
((Xj ∩M) ∪ Yj);

(d) Al = Yn.

We will observe that

(5.4) |F (A1 × . . .×Am) ∩ Yn| ≤ 1.

Indeed, suppose that it is not true. Then we can find x, y ∈ A1 × . . .×Am such

that d(F (x), F (y)) ≥ 2bn. Now consider two cases:

Case 1. All A1, . . . , Am are of the form (a), (b) or (c). Since F is a weak

contraction and by earlier calculations (see Observation 5.5 (vii?)) we get a con-

tradiction since:

2bn ≤ d(F (x), F (y)) < dm(x, y) ≤ diam(A1 × . . .×Am)

= max{diam(Al) : l = 1, . . . ,m} ≤ max{bn, 2bn} = 2bn.

Case 2. Ai1 = . . . = Aik = Yn for some i1, . . . , ik. Assume, without loss

of generality, that i1 = 1, . . . , ik = k. Then, setting x = (x1, . . . , xm), y =

(y1, . . . , ym), we can assume that

max{d(xi, yi) : i = 1, . . . , k} = j2bn, for some 2 ≤ j ≤ pn − 1.

Supposing otherwise we would obtain a contradiction with contractivity of F

similarly as in Case 1.

Moreover, we assume that x, y are chosen so that j is minimal in this sense,

i.e. there are no x′, y′ ∈ A1 × . . . × Am with F (x′), F (y′) ∈ Yn, F (x′) 6= F (y′)

and max{d(x′i, y
′
i) : i = 1, . . . , k} < j2bn. Now let i = 1, . . . , k. If d(xi, yi) ≤ 2bn,

then set zi := xi, and if d(xi, yi) > 2bn, then let zi be an element of Yn so that

d(xi, zi) < d(xi, yi) and d(zi, yi) < d(xi, yi) (the existence of zi is guaranteed by

Definition 5.3 (a2)). For i = k + 1, . . . ,m set zi := xi. Then z := (z1, . . . , zm) ∈
A1 × . . . × Am, max{d(xi, zi) : i = 1, . . . , k} < j2bn and max{d(yi, zi) : i =

1, . . . , k} < j2bn. The following conditions can hold: Case 2a. F (z) ∈ Yn. Then

by the minimality of j, F (z) = F (x) and F (z) = F (y) — it is a contradiction

with F (x) 6= F (y).

Case 2b. F (z) ∈ Zi for some i 6= n, then by Observation 5.5 (b) and (5.1),

we arrive to a contradiction:

d(F (z), F (x)) ≥ dist(Zn, Zi) ≥
1

2
min{b0, . . . , bn−1}

=
1

2
bn−1 ≥ 2pnbn ≥ 2jbn > dm(z, x).

Case 2c. F (z) ∈ Xn, then we get a contradiction since

d(F (z), F (x)) ≥ dist(Xn, Yn) = 2pnbn > dm(z, x).
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All in all, we proved (5.4).

Notice that (see Observation 5.9)

M ∪ Y =

( ⋃
1≤i≤n−1

Yi

)
∪ Yn

∪
( ⋃

1≤k≤n

⋃
1≤j≤2n−k

(Xj
k,n−k ∩M)

)
∪
( ⋃
n+1≤j≤ω

(Xj ∩M) ∪ Yj
)
.

Hence, for n ∈ N,

|F ((M ∪ Y )m) ∩ Yn| ≤ ((p1 + . . .+ pn−1) + 1 + (1 + 2 + . . .+ 2n−1) + 1)m

≤ (1 + p1 + . . .+ pn−1 + n2n)m.

In order to prove (5.3), in view of the assumption lim
n→∞

pmn /pn+1 = 0, it is enough

to show that for some M > 0 and all n ∈ N,

(5.5)
1 + p1 + . . .+ pn + (n+ 1)2n+1

pn
< M.

By our assumptions, there exists n0 such that, for n ≥ n0,

pn
pn+1

≤ pmn
pn+1

≤ 1

4
.

Observe that

(5.6)
pn0+1 + . . .+ pn0+k

pn0+k
≤ 2.

Indeed, for k = 1 it clearly holds, and if it holds for k ≥ 1, then

pn0+1 + . . .+ pn0+k+1

pn0+k+1
=
pn0+1 + . . .+ pn0+k

pn0+k
· pn0+k

pn0+k+1
+ 1 ≤ 2

1

2
+ 1 ≤ 2.

Similarly we can show that for some N and every n ∈ N, (n+ 1)2n+1/pn ≤ N

(we can take N = 8/p1). Hence, for every k ∈ N,

1 + p1 + . . .+ pn0+k + (n0 + k + 1)2n0+k+1

pn0+k
≤ 1 + p1 + . . .+ pn0

pn0

+ 2 +N.

We proved (5.5), and proof of Lemma 5.8 (a) is finished.

6. (Λω, b, Z)-spaces as attractors of GIFSs

The main result of this section is the following:

Theorem 6.1. Let λ ∈ (0, 1) and Z be a compact, connected metric space

which is the attractor of some Banach GIFS F of order 2 with Lip(F) ≤ λ/3.

Then there exists a compact metric space X such that:

(a) each connected component of X is a similarity copy of Z,

(b) X is the attractor of some Banach GIFS F of order 2 with Lip(F) ≤ λ,

(c) X is not a topological fractal.
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Additionally, if Z is a subset of a normed space H, then X can be taken so that

(d) X ⊂ H.

Theorem 6.1 will follow from its qualitative version Theorem 6.2 together

with Theorem 3.4

Recall that in Subsection 3.1, for each countable limit ordinal δ0 and α ≤ δ0,

we defined a certain sequence (αn). Consider the case δ0 = ω. Then we can

assume that sequences (αn) are of the following forms:

• if α = k ∈ N, then (αn) = (0, 1, . . . , k − 1, k − 1, k − 1, . . .) i.e. kn =

min{n− 1, k − 1};
• if α = ω, then (ω) := (αn) = (0, 1, . . .), i.e. ωn = n− 1.

It is easy to see that (A) and (B) from Section 3.1 are satisfied.

Observe that if X is a (Λω, b, Z) space and Z is connected, then each con-

nected component of X is a similarity copy of Z. Hence Theorem 6.1 follows

from the following:

Theorem 6.2. In the above framework, let X be a (Λω, b, Z)-space, where Z

is connected.

(a) If Z is the attractor of a Banach GIFS F of order 2, then X is the at-

tractor of a Banach GIFS G of order 2 with Lip(G) ≤ max{3 Lip(F), λb}.
(b) X is not a topological fractal.

In the remaining part of this section we prove Theorem 6.2. Directly by

definition of families Λα for α ≤ ω and the above assumption, we can see that

for every k ≥ 2 (recall Proposition 3.9),

(6.1) Λ̃k−1 = {ω} ∪
( ⋃
i≤k−1

îΛ̃i−1

)
∪
( ⋃
ω>i≥k

îΛ̃k−2

)
;

(6.2) Λ̃ω = {ω} ∪
( ⋃
i≤k−1

îΛ̃i−1

)
∪
( ⋃
ω>i≥k

î(k − 1)̂Λ̃k−2

)

∪
( ⋃
ω>i≥k

( ⋃
j 6=k−1

îĵΛ̃(i−1)j ∪ {(i, ω)}
))

.

Now define Rk : Λ̃ω → k̂Λ̃k−1 by

Rk(ξ) :=


k̂îη if ξ = îη, i ≤ k − 1,

k̂îη if ξ = î(k − 1)̂η, k ≤ i < ω,

k̂îω if ξ = îη, k ≤ i < ω, η1 6= k − 1,

k̂ω if ξ = ω.

By (6.1) and (6.2) we see that the map Rk is well defined and Rk(Λ̃ω) = k̂Λ̃k−1.

Now define the map gk : X → Xk in the following way: if ξ ∈ Λ̃ω is of the form
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ξ = îη for i ≤ k − 1 or ξ = î(k − 1)̂η for ω > i ≥ k or ξ = ω, then let gk|Xξ
be a similarity transformation of Xξ onto XRk(ξ) so that, if ξ ends with ω, then

gk(xξ) = xRk(ξ) (condition (Z3) guarantees that we can choose such similitude).

If ξ ∈ Λ̃ω is of the form ξ = îη for i ≥ k and η1 6= k − 1, then let gk|Xξ be

a constant map from Xξ to XRk(ξ) such that gk(Xξ) = {xR(ξ)}.
Clearly, gk(X) = Xk. We will show that Lip(gk) ≤ λb/4. If ξ ∈ Λ̃ω is of the

form ξ = îη for i ≤ k − 1 or ξ = î(k − 1)̂η for i ≥ k or ξ = ω, then

• if ξ does not end with ω, then

diam(Xξ) = bl(ξ) + bl(ξ)+1 and diam(gk(Xξ))

= bl(Rk(ξ)) + bl(Rk(ξ))+1 ≤ bl(ξ)+1 + bl(ξ)+2.

• if ξ ends with ω, then letting ξ be such that ξ = ξ̃̂ω, we get

diam(Xξ) = bl(ξ̃)+1, and diam(gk(Xξ)) = b
l(R̃k(ξ))+1

≤ bl(ξ̃)+2.

If ξ ∈ Λ̃ω is of different form than those above, then diam(gk(Xξ)) = 0. Hence

Lip(gk|Xξ) ≤Mb ≤ λb/4 for all ξ ∈ Λ̃ω.

Now let x, y ∈ X be such that for some β ∈ Λω and 1 ≤ p < q ≤ ω,

x ∈ Xβ̂p and y ∈ Xβ̂q, but if q = ω, then we assume y = xβ̂ω, and such that

gk(x) 6= gk(y). Then, by (3.3),

1

20
λbd(x, y) ≥ 1

20
λb dist(Xβ̂p, Xβ̂q)

≥ 1

20
λb(bl(β)+p−1 − 2bl(β)+p − bl(β)+p+1) ≥ bl(β)+p.

Now consider cases: Case 1. β = îη for i ≤ k − 1. Then

d(gk(x), gk(y)) ≤ diam

( ⋃
p≤j<ω

Xk̂îη̂j
)

≤ bk+l(β)+p−1 ≤ bl(β)+p ≤
1

20
λbd(x, y).

Case 2. β = î(k − 1)̂η for some k ≤ i < ω. Then

d(gk(x), gk(y)) ≤ diam

( ⋃
p≤j<ω

Xk̂îη̂j
)

≤ bk+i+l(η)+p−1 = bl(β)+p ≤
1

20
λbd(x, y).

Case 3. β = i for k ≤ i < ω and p = k − 1 or q = k − 1. Then

d(gk(x), gk(y)) ≤ diam

( ⋃
1≤j<ω

X(k,i,j)

)
≤ bk+i ≤ bl(β)+p ≤

1

20
λbd(x, y).
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Case 4. β = ∅. Then

d(gk(x), gk(y)) ≤ diam

( ⋃
p≤j<ω

X(k,j)

)
≤ bk+p−1 ≤ bl(β)+p ≤

1

20
λbd(x, y).

Finally, assume that y ∈ Xβ̂ω. By Definition 3.1 (v), Lemma 3.2 (b) and what

we already proved, we have

d(gk(x), gk(y)) ≤ d(gk(x), gk(xβ̂ω)) + d(gk(xβ̂ω), gk(y))

≤ 1

20
λbd(x, xβ̂ω) +

1

20
λbd(xβ̂ω, y)

≤ 2

20
λbd(x, y) +

3

20
λbd(x, y) =

1

4
λbd(x, y).

Now, by Lemma 3.6 and Remark 3.7, there is a map F : X ×X → X such that

Lip(F ) ≤ λb/2 and

F (X ×X) = {xω} ∪
⋃

1≤k<ω

gk(X) = {xω} ∪
⋃

2≤k<ω

Xk.

Since Z is the attractor of a Banach GIFS F of order 2 and X1 and Xω are

similarity copy of Z, there are GIFSs F1 = {f1, . . . , fn} and Fω = {g1, . . . , gn}
onX1 andXω, respectively, of order 2, with Lip(F1),Lip(Fω) = Lip(F). Observe

that the maps π1 : X → X1 and πω : X → Xω given by

π1(x) :=

x if x ∈ X1,

x(1,ω) if x /∈ X1,
πω(x) :=

x if x ∈ Xω,

xω if x /∈ Xω.

It is routine to check that Lip(π1),Lip(πω) ≤ 3 (we use Lemma 3.2 (b)). Finally,

define

f ′k(x, y) := fk(π1(x), π1(y)) and g′k(x, y) := gk(πω(x), πω(y))

and observe thatH = {f ′1, . . . , f ′k, g′1, . . . , g′k, F} is a Banach GIFS with Lip(H) ≤
max{3 Lip(F), λb/2} and X is its attractor. This ends the proof of (a).

Now we prove (b). It is easy to see that X/Rc is a scattered space with

the height ω. By the result of Nowak and Theorem 2.7, X is not a topological

fractal. �

Example 6.3. Theorem 6.1 gives us a way of constructing many mutually

nonhomeomorphic GIFSs fractals which are not topological fractals. Indeed, if

Z1, Z2 are not homeomorphic, then spaces which have all components homeo-

morphic with Z1 and Z2, respectively, are not homeomorphic.

For example, for Z we can take any cube In = [0, 1]n. Thanks to Lemma 2.2,

we obtain in this way fractals of GIFSs defined on the whole Euclidean spaces Rn.
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A slight modification of the Hilbert cube leads to an example in `∞ space.

Indeed, let

Z := [0, 1]×
[
0,

1

4

]
×
[
0,

1

42

]
× . . .

Then it is easy to see that Z is the attractor of the GIFS F = {fi : i = 0, 1, 2, 3},
where

fi((xk), (yk)) :=

(
1

4
x1 +

i

4
,

1

4
y1,

1

4
y2, . . .

)
,

and Lip(F) = 1/4. Hence by Theorem 6.1 and Remark 2.3, there is X ⊂ `∞
whose all connected components are similarity copy of Z, which is not a topolog-

ical fractal and which is the attractor of some GIFS G on `∞ with Lip(G) ≤ 3/4.

Similarly, starting with

Z := [0, 1]×
[
0,

1

8

]
×
[
0,

1

82

]
× . . .

and using Theorem 6.1 and Lemma 2.2, we obtain appropriate example in the

Hilbert space `2.

D’Aniello in [9] showed that for any n ∈ N and 0 < s ≤ n, there is a set

A ⊂ Rn whose Hausdorff dimension dimH(A) = s and which is not the fractal

generated by any weak IFS on Rn. However, the sets she constructed were certain

Cantor sets, hence topological fractals. Theorem 6.2 implies the following:

Corollary 6.4. If 1 ≤ s ≤ n, then there is a set A ⊂ Rn such that

dimH(A) = s and which is not a topological fractal but is the attractor of some

Banach GIFS on Rn of order 2.

Proof. It is enough to take as Z a connected IFS fractal of Hausdorff

dimension equal to s. �

Remark 6.5. It is easy to see that justification of Theorem 6.2 (b) is more

general — if X is a (Λ, b, Z)-space and Z is connected, then the quotient space

X/Rc is homeomorphic with (Λ, b, s)-space. Hence, for any connected space Z

and any countable α with limit height, the space (Λ, b, Z)-space is not a topo-

logical fractal.

In a mentioned paper [12], the authors independently obtained similar con-

clusion (only for subsets of the real line).

7. Topological properties of class of GIFSs’ attractors

It is well known (see for example [1] and [11]) that (in reasonable metric

spaces X) the class of attractors of weak IFSs is meager in K(X). In this section

we extend this result in some sense — we show that the class of all attractors of

Banach GIFSs on a Hilbert space H is meager.
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Given a Hilbert space H and m ∈ N, let

Am(H) := {K ∈ K(H) : K is the attractor of a Banach GIFS of order m},

Amw (H) := {K ∈ K(H) : K is the attractor of a weak GIFS of order m},

where K(H) is the family of all nonempty and compact subsets of H. We consider

it as a metric space with the Hausdorff metric h.

Finally, define

A(H) :=
⋃
m∈N
Am(H).

That is, Am(H) and Amw (H) are classes of all attractors of Banach and weak

GIFSs of order m, respectively, and A(H) is the class of all attractors of Banach

GIFSs .

Theorem 7.1. In the above frame:

(a) The set A(H) is meager Fσ in K(H) and, in particular, typical compact

subset of H is not the attrator of any Banach GIFS.

(b) For every m ∈ N, the set Am+1(H) \ Amw (H) is dense in K(H).

Proof. We first prove (b). LetK ∈ K(H) and fix ε > 0. Then choose a finite

set K ′ = {x1, . . . , xk} so that h(K,K ′) < ε/2, where h is the Hausdorff metric

on K(X). Identifying a fixed line in H with R, by Theorem 5.1, we can find a set

Y ∈ Am+1(H) \ Amw (H). Then we replace each point xi in K ′ by appropriately

small copy Yi of Y so that diam(Yi) < ε/2 and dist(Yi, Yj) ≥ diam(Yl) for i 6= j

and l. Then, denoting by K ′′ :=
k⋃
i=1

Yi, we have

h(K,K ′′) ≤ h(K,K ′) + h(K ′,K ′′) < ε,

and by Lemmas 2.4, 2.6 and Remark 2.5, K ′′ ∈ Am+1(H) \ Amw (H).

Now we prove (a). For every n,m ∈ N and α < 1, denote by Amn,α(H) the

family of all attractors of Banach GIFSs F of order m consisting of ≤ n maps

and such that Lip(F) ≤ α. Clearly,

A(H) =
⋃

n,m,i∈N
Amn,(i−1)/i(H).

By (b), sets Amn,α(H) have empty interior. Thus it is enough to prove that each

Amn,α(X) is closed. We will mimic the proof of [11, Proposition 3.6]. Choose a

sequence (Kk) ⊂ Amn,α(X) which converges to some compact set K. Calculating,

if needed, the same functions more than once, we may assume that for every

k ∈ N, there are maps fk1 , . . . , f
k
n : (Kk)m → Kk so that

Lip(fki ) ≤ α and Kk =

n⋃
i=1

fni ((Kk)m).
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Now let C be the closed convex hull of the compact set K ∪
⋃
k∈N

Kk. Then

C is compact and convex subset of a Hilbert space, so there exists a retraction

r : X → C with Lip(r) = 1 (r(x) can be the nearest point to x in C). Using

the Kirszbraun–Valentine theorem, extend each fki to a map fki : Hm → H,

with the condition Lip(fki ) ≤
√
m (see the proof of Lemma 2.2). Finally, set

f̃ki :=
(
r ◦ fki

)∣∣
Cm

. In particular, f̃ki : Cm → C. Now since C is compact

and Lip
(
f̃ki
)
≤
√
m, for every i = 1, . . . , n, the sequence

(
f̃ki
)
k∈N satisfies the

assumptions of the Arzelá–Ascoli theorem. Hence there is a subsequence (kj)

(which can be appropriate for all i) and a map fi : C
m → H such that

(
f̃
kj
i

)
converges uniformly to fi. For simplicity of notation, we assume that kj = j.

To end the proof, it is enough to show that Lip(fi|K) ≤ α and K =
n⋃
i=1

fi(K
m). To see the first assertion, take x, y ∈ Km. As (Kj)

m → Km,

we can find sequences (xj), (yj) such that xj , yj ∈ (Kj)
m, xj → x and yj → y.

As f ji (xj) = f̃ ji (xj)→ fi(x) and f ji (yj)→ fi(y), we have

d(fi(x), fi(y)) = lim
j→∞

d
(
f ji (xj), f

j
i (yj)

)
≤ lim
j→∞

αdm(xj , yj) = αdm(x, y).

Hence Lip(fi) ≤ α. In a similar way we can show that f ji ((Kj)
m)→ fi(K

m), so

Kj =

n⋃
i=1

f ji ((Kj)
m)→

n⋃
i=1

fi(K
m).

On the other hand, Kj → K, and hence
n⋃
i=1

fi(K
m) = K. �

In view of mentioned results from [1] and [11], it is natural to ask is the set of

all attractors of weak GIFSs is meager in K(X). We leave it as an open problem:

Problem 7.2. Let Aw(X) be the family of all sets K ∈ K(X) which are

attractors of some (possibly weak) GIFSs. Is Aw(X) meager in K(X)?
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