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OPTIMAL RETRACTION PROBLEM

FOR PROPER k-BALL-CONTRACTIVE MAPPINGS

IN C m[0, 1]

Diana Caponetti — Alessandro Trombetta — Giulio Trombetta

Abstract. In this paper for any ε > 0 we construct a new proper k-ball-

contractive retraction of the closed unit ball of the Banach space Cm[0, 1]

onto its boundary with k < 1+ε, so that the Wośko constant Wγ(Cm[0, 1])
is equal to 1.

1. Introduction and preliminaries

LetX be an infinite-dimensional Banach space with the closed unit ball B(X)

and the unit sphere S(X). After two works by Klee [22] and [23] it is known

that there exists a retraction R : B(X)→ S(X), i.e. R is a continuous mapping

such that Rx = x, for all x ∈ S(X). As concerns the metric properties of such

retractions Benyamini and Sternfeld ([5]), following Nowak ([24]), have obtained

the remarkable result that for every Banach space X there exists a retraction of

B(X) onto S(X) satisfying, for some constant L, the L-Lipschitz condition

‖Rx−Ry‖ ≤ L‖x− y‖ for all x, y ∈ B(X).

Clearly the same is not true for spaces of finite dimension due to the Brouwer’s

Non Retraction Theorem. The optimal retraction problem, considered for the

first time in [17], consists in the evaluation of the constant

k0(X) = inf{L : there is a L-Lipschitz retraction R : B(X)→ S(X)}.
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There is no space X for which the exact value of k0(X) is known, for a survey

on the subject we refer to [13], [18], [19] and bibliography therein. The uni-

versal known bound from below is k0(X) ≥ 3; for some spaces there are better

estimates, for example, k0(H) ≥ 4.58 for Hilbert space H (see [14]), k0(l1) ≥ 4

(see [6]). From the above it is known that the supremum is finite and an at-

tempt to give an estimate ends with k0(X) < 256 · 109, for any Banach space

X (see [1]). Moreover we recall k0(L1[0, 1]) ≤ 8 (see [20]), k0(l1) ≤ 8 (see [2]),

k0(l∞) ≤ 12 + 2
√

30 = 22.95 . . . (see [14]) and k0(X) ≤ 4(2 +
√

3) = 14.92 . . .

where X is one of the space: BC(R), C[0, 1], c0, c (see [26]). At present the

estimate k0(C0[0, 1]) ≤ 2(2 +
√

2) = 6.828 . . . is the minimum of upper bounds

over all Banach spaces for which the upper bound is known (see [25]).

Consideration of another metric property, namely the measures of noncom-

pactness of above retractions leads to some more results useful in applications

as, for instance, applications to theorems of the Birkhoff-Kellog type (see [8], [9],

[11], [16], [21]). Let us recall that the Hausdorff measure of noncompactness γ(A)

of a bounded subset A of X is the infimum of all ε > 0 such that A has a finite

ε-net in X. A mapping T : dom(T ) ⊂ X → X is said to be k-ball-contractive

with constant k ≥ 0 if it is continuous and verifies, for each bounded subset A

of dom(T ),

γ(TA) ≤ kγ(A).

In [28] Wośko has proved that in the space X = C[0, 1] of all real valued continu-

ous functions defined on [0, 1] endowed with the maximum norm it is possible to

construct for every ε > 0 a k-ball-contractive retraction of B(X) onto S(X) such

that k < 1 + ε. The optimal retraction problem for k-ball-contractive mappings

will now concern the evaluation of the so-called Wośko constant (see [4])

Wγ(X) = inf{k ≥ 1 : there is a k-ball-contractive retraction R : B(X)→S(X)}.

Obviously, the same problem can be posed by replacing γ with an equivalent

measure of noncompactness, for instance the Kuratowski or the lattice measure

of noncompactness. Observe that the situation differs from the Lipschitz case.

On one hand there are good estimates for Wγ(X) in many Banach spaces X,

which are useful for applications. Concerning general results in the setting of

Banach spaces, in [27] it was proved that Wγ(X) ≤ 6 for any Banach space X,

reaching the value 4 or 3 depending on the geometry of the space. Moreover,

it has been proved that Wγ(X) = 1 in some spaces of continuous functions

([7], [15]), in some classical Banach spaces of measurable functions ([12]) and

in Banach spaces whose norm is monotone with respect to some basis ([3]).

In [10] the problem of evaluating the Wośko constant has been considered in the

setting of F -normed spaces. We recall that the problem whether there is some

Banach space X in which a 1-ball-contractive retraction exists has been solved
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positively in [12], where it is shown that it is so in Orlicz and Lorentz spaces.

We observe that there is not a unified method to evaluate Wγ(X), most of the

evaluations have required individual constructions in each space X. On the other

hand we point out that in opposite to the limitation k0(X) ≥ 3 in any Banach

space X, there is no Banach space X for which it has been proved Wγ(X) > 1.

For a continuous mapping T : dom(T ) ⊂ X → X we also consider the follow-

ing quantitative characteristic (see, for example, [3], [11], [16]):

ω(T ) = sup{k ≥ 0 : γ(TA) ≥ kγ(A) for every bounded A ⊂ dom(T )},

called the lower Hausdorff measure of noncompactness of T . We observe that

this characteristic is related to properness of the mapping, since from ω(T ) > 0

it follows that T is a proper mapping, i.e. T−1K is compact for each compact

subset K of X. Let Cm[0, 1] be the Banach space of all real valued m-times

continuously differentiable functions defined on [0, 1] with the norm

‖f‖m = max{‖f (s)‖ : s = 0, . . . ,m},

where f (0) = f and ‖ · ‖ denotes the maximum norm. The aim of this paper is

to prove that Wγ(Cm[0, 1]) = 1. To this end we construct a 1-ball-contractive

mapping Qm from the closed unit ball B(Cm[0, 1]) into itself such that Qmf = f

for all f ∈ S(Cm[0, 1]). Then for each u > 0 we consider a compact perturbation

Qm+Pu,m of the mapping Qm, by normalizing such mapping we obtain a retrac-

tion Ru,m. The retractions Ru,m we construct satisfy ω(Ru,m) > 0. Moreover

given ε > 0 arbitrarily fixed we can find u > 0 such that the retraction Ru,m
is k-ball-contractive with k < 1 + ε, so that Wγ(Cm[0, 1]) = 1. For m = 0, we

recover the result Wγ(C[0, 1]) = 1 of Wośko ([28]).

2. The mapping Qm

Let Cm = Cm[0, 1]. We start by defining a mapping Qm from B(Cm) into

Cm by setting, for each f ∈ B(Cm),

(Qmf)(t) =



(
1 + ‖f‖m

2

)m
f

(
2

1 + ‖f‖m
t

)
if t ∈

[
0,

1 + ‖f‖m
2

]
,

m∑
i=0

1

i!

(
t− 1 + ‖f‖m

2

)i(
1 + ‖f‖m

2

)m−i
f (i)(1)

if t ∈
(

1 + ‖f‖m
2

, 1

]
.

In this section we prove that the mapping Qm maps B(Cm) into itself and that

it is a 1-ball-contractive mapping, moreover we obtain ω(Qm) ≥ 1/(2m(m+ 1)).
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For our convenience, given f ∈ Cm and a ∈ [1, 2], we introduce the function

fa : [0, 1]→ R defined by

fa(t) =


1

am
f(at) if t ∈

[
0,

1

a

]
,

m∑
i=0

1

i!

(
t− 1

a

)i
1

am−i
f (i)(1) if t ∈

(
1

a
, 1

]
.

We observe that, for f ∈ Cm, we have fa ∈ Cm and, for s = 0, . . . ,m,

f (s)a (t) =


1

am−s
f (s)(at) if t ∈

[
0,

1

a

]
,

m∑
i=s

1

(i− s)!

(
t− 1

a

)i−s
1

am−i
f (i)(1) if t ∈

(
1

a
, 1

]
.

Using the above notation, for f ∈ B(Cm), we may write Qmf = f2/(1+‖f‖m).

We begin with the following result.

Lemma 2.1. Let f ∈ Cm, then for any a ∈ [1, 2] we have

1

am
‖f‖m ≤ ‖fa‖m ≤ ‖f‖m.

Proof. Let f ∈ Cm. Since the result is obvious when a = 1, we assume

a ∈ (1, 2]. To obtain the right inequality we prove ‖f (s)a ‖ ≤ ‖f‖m for each

s ∈ {0, . . . ,m}. Indeed, we have

‖f (s)a ‖ = max

{
1

am−s
‖f (s)‖, max

t∈[1/a,1]

∣∣∣∣ m∑
i=s

1

(i− s)!

(
t− 1

a

)i−s
1

am−i
f (i)(1)

∣∣∣∣}

≤ max

{
1

am−s
‖f (s)‖,

m∑
i=s

1

(i− s)!

(
1− 1

a

)i−s
1

am−i
‖f (i)‖

}

=

m∑
i=s

1

(i− s)!

(
1− 1

a

)i−s
1

am−i
‖f (i)‖ ≤ ‖f‖m

m∑
i=s

(
1− 1

a

)i−s
1

am−i

≤ ‖f‖m
[

1

am−s
+

(
1− 1

a

) m∑
i=s+1

1

am−i

]
= ‖f‖m.

On the other hand, we obtain the left inequality by observing that

‖fa‖m = max
{
‖fa‖,

∥∥f (1)a

∥∥, . . . ,∥∥f (m)
a

∥∥}
≥ max

{
1

am
‖f‖, 1

am−1
∥∥f (1)∥∥, . . . ,∥∥f (m)

∥∥}
≥ 1

am
max

{
‖f‖,

∥∥f (1)∥∥, . . . ,∥∥f (m)
∥∥} =

1

am
‖f‖m. �

We note that by the definition of Qm we have Qmf = f for all f ∈ S(Cm),

and by Lemma 2.1 we have indeed that Qm maps B(Cm) into itself.

In the sequel we will require the following lemma.
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Lemma 2.2. Let f ∈ Cm and {an} a sequence in [1, 2] such that an → a.

Then ‖fan − fa‖m → 0.

Proof. Observe that for f = 0 the assertion is immediate. For f 6= 0 we

prove that
∥∥f (s)an −f

(s)
a

∥∥→ 0 for any s ∈ {0, . . . ,m}, and this will give the thesis.

Let ε > 0 be given. Since f (s), for any s ∈ {0, . . . ,m}, is uniformly continuous

on [0, 1], we find δ > 0 such that

(2.1)
∣∣f (s)(t1)− f (s)(t2)

∣∣ ≤ ε

3

for t1, t2 ∈ [0, 1] and |t1 − t2| ≤ δ. Moreover, if s ∈ {0, . . . ,m− 1}, we choose n

such that for all n ≥ n we have |an − a| ≤ δ and

(2.2)

∣∣∣∣ 1

am−in

− 1

am−i

∣∣∣∣ ≤ ε

3(m− s)‖f‖m
, for i = s, . . . ,m− 1.

Now, for any fixed s ∈ {0, . . . ,m}, we prove
∣∣f (s)an (t) − f (s)a (t)

∣∣ ≤ ε, for every

n ≥ n and for all t ∈ [0, 1]. To this end, suppose first t ∈ [0, 1/a] ∩ [0, 1/an].

Then we have

|f (s)an (t)− f (s)a (t)| =
∣∣∣∣ 1

am−sn
f (s)(ant)−

1

am−s
f (s)(at)

∣∣∣∣
≤
∣∣f (s)(ant)∣∣∣∣∣∣ 1

am−sn
− 1

am−s

∣∣∣∣+
1

am−s
∣∣f (s)(ant)− f (s)(at)∣∣

≤
∥∥f (s)∥∥∣∣∣∣ 1

am−sn
− 1

am−s

∣∣∣∣+
∣∣f (s)(ant)− f (s)(at)∣∣

≤ ‖f‖m
∣∣∣∣ 1

am−sn
− 1

am−s

∣∣∣∣+
∣∣f (s)(ant)− f (s)(at)∣∣

≤ ε

3(m− s)
+
ε

3
≤ ε.

Assume now a ≤ an and t ∈ [1/an, 1/a]. Then, since |1− at| ≤ |an − a| ≤ δ, by

(2.1) we get

(2.3)
∣∣f (s)(at)− f (s)(1)

∣∣ ≤ ε

3
.

Using (2.2) and (2.3) we obtain∣∣f (s)an (t) − f (s)a (t)
∣∣ =

∣∣∣∣ 1

am−s
f (s)(at)−

m∑
i=s

1

(i− s)!

(
t− 1

an

)i−s
1

am−in

f (i)(1)

∣∣∣∣
≤
∣∣∣∣ 1

am−s
f (s)(at)− 1

am−sn
f (s)(1)

∣∣∣∣+

m∑
i=s+1

∥∥f (i)∥∥∣∣∣∣1a − 1

an

∣∣∣∣i−s
≤
∣∣∣∣ 1

am−s
f (s)(at)− 1

am−sn
f (s)(at)

∣∣∣∣
+

∣∣∣∣ 1

am−sn
f (s)(at)− 1

am−sn
f (s)(1)

∣∣∣∣+ ‖f‖m
m∑

i=s+1

∣∣∣∣1a − 1

an

∣∣∣∣i−s
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≤‖f‖m
∣∣∣∣ 1

am−s
− 1

am−sn

∣∣∣∣+
∣∣f (s)(at)− f (s)(1)

∣∣+ ‖f‖m(m− s)
∣∣∣∣1a − 1

an

∣∣∣∣
≤ ε

3(m− s)
+
ε

3
+
ε

3
≤ ε.

If an ≤ a and t ∈ [1/a, 1/an], the assertion follows as in the previous case.

Finally, considering the case t ∈ [max{1/a, 1/an}, 1], we have

∣∣f (s)an (t)− f (s)a (t)
∣∣ =

∣∣∣∣ m∑
i=s

f (i)(1)

(i− s)!

[(
t− 1

an

)i−s
1

am−in

−
(
t− 1

a

)i−s
1

am−i

]∣∣∣∣
≤ ‖f‖m

m∑
i=s

1

(i− s)!

∣∣∣∣(t− 1

an

)i−s
1

am−in

−
(
t− 1

a

)i−s
1

am−i

∣∣∣∣
where, for i ∈ {s, . . . ,m},

1

(i− s)!

∣∣∣∣(t− 1

an

)i−s
1

am−in

−
(
t− 1

a

)i−s
1

am−i

∣∣∣∣
≤ 1

(i− s)!

∣∣∣∣(t− 1

an

)i−s
1

am−in

−
(
t− 1

a

)i−s
1

am−in

∣∣∣∣
+

1

(i− s)!

∣∣∣∣(t− 1

a

)i−s
1

am−in

−
(
t− 1

a

)i−s
1

am−i

∣∣∣∣
≤ 1

(i− s)!

∣∣∣∣(t− 1

an

)i−s
−
(
t− 1

a

)i−s∣∣∣∣+
1

(i− s)!

∣∣∣∣ 1

am−in

− 1

am−i

∣∣∣∣
≤ 1

(i− s)!

∣∣∣∣ 1

an
− 1

a

∣∣∣∣∣∣∣∣(t− 1

an

)i−s−1
+ . . .+

(
t− 1

a

)i−s−1∣∣∣∣+

∣∣∣∣ 1

am−in

− 1

am−i

∣∣∣∣
≤ i− s

(i− s)!

∣∣∣∣ 1

an
− 1

a

∣∣∣∣+

∣∣∣∣ 1

am−in

− 1

am−i

∣∣∣∣.
Consequently, using (2.2), we obtain

∣∣f (s)an (t) − f (s)a (t)
∣∣ ≤ ‖f‖m[ m∑

i=s+1

∣∣∣∣ 1

an
− 1

a

∣∣∣∣+

m−1∑
i=s

∣∣∣∣ 1

am−in

− 1

am−i

∣∣∣∣]

≤ ‖f‖m
[
(m− s)

∣∣∣∣ 1

an
− 1

a

∣∣∣∣+ (m− s)
∣∣∣∣ 1

am−in

− 1

am−i

∣∣∣∣] ≤ ε

3
+
ε

3
< ε. �

Proposition 2.3. The mapping Qm is 1-ball-contractive.

Proof. Let {fn} be a sequence in B(Cm) and f a function in B(Cm) such

that ‖fn − f‖m → 0. Set an = 2/(1 + ‖fn‖m) and a = 2/(1 + ‖f‖m), then

an ∈ [1, 2] for each n ∈ N, a ∈ [1, 2] and an → a. Moreover,

‖Qmfn −Qmf‖m =
∥∥(fn)2/(1+‖fn‖m) − f2/(1+‖f‖m)

∥∥
m

=
∥∥(fn)an − fa

∥∥
m
.
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Since, by the hypothesis and Lemma 2.2, we have

‖(fn)an − fa‖m ≤ ‖(fn)an − fan‖m + ‖fan − fa‖m
= ‖(fn − f)an‖m + ‖fan − fa‖m ≤ ‖fn − f‖m + ‖fan − fa‖m → 0,

we conclude that the mapping Qm is continuous.

Now, to complete the proof, we show that for M ⊆ B(Cm) we have

γ(QmM) ≤ γ(M).

First we observe that for f ∈ Cm the set Af = {fa : a ∈ [1, 2]} is compact.

Indeed, if {fan} is a sequence of elements in Af and {ank
} a subsequence of {an}

which is convergent, say to a, then by Lemma 2.2 we have ‖fank
− fa‖m → 0.

Now, let α > γ(M). Let {ϕ1, . . . , ϕl} an α-net for M in Cm. Then the set

A =
l⋃
i=1

Aϕi
is compact. Hence given δ > 0 we can choose a δ-net {ψ1, . . . , ψp}

for A in Cm.

For g ∈ QmM arbitrarily fixed, let f ∈M such that Qmf = g. Then choose

i ∈ {1, · · · , l} such that ‖f − ϕi‖m ≤ α and j ∈ {1, · · · , p} such that

‖(ϕi)2/(1+‖f‖m) − ψj‖m ≤ δ.

Then we obtain

‖g − ψj‖m = ‖Qmf − ψj‖m =
∥∥f2/(1+‖f‖m) − ψj

∥∥
m

≤
∥∥f2/(1+‖f‖m) − (ϕi)2/(1+‖f‖m)

∥∥+
∥∥(ϕi)2/(1+‖f‖m) − ψj

∥∥
m

≤ ‖f − ϕi‖m + δ ≤ α+ δ.

We have proved γ(QmM) ≤ α+ δ, by the arbitrariness of δ we have the desired

result γ(QmM) ≤ γ(M). �

Now, for f ∈ Cm and a ∈ [1, 2], we set(
f1/a)(t) = amf

(
1

a
t

)
, if t ∈ [0, 1].

We need the following two lemmas. The proof of the first one is similar to the

first case we have just considered in Lemma 2.2; hence it is omitted.

Lemma 2.4. Let f ∈ Cm and {an} a sequence in [1, 2] such that an → a.

Then
∥∥f1/an − f1/a∥∥

m
→ 0.

Lemma 2.5. Let f ∈ B(Cm), g ∈ Cm and a ∈ [1, 2]. Then∥∥fa − (g1/a)a∥∥m ≤ (m+ 1)‖fa − g‖m.

Proof. Let f ∈ B(Cm), g ∈ Cm and a ∈ [1, 2]. To prove the claim we will

show that, for s = 0, . . . ,m, we have∥∥∥f (s)a −
((
g1/a

)
a

)(s)∥∥∥ ≤ (m+ 1)‖fa − g‖m.
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Clearly g1/a ∈ Cm, where for each s = 0, . . . ,m we have(
g1/a

)(s)
(t) = am−sg(s)

(
1

a
t

)
for t ∈ [0, 1].

Hence we can consider
(
g1/a

)
a
, and then we have

(
g1/a

)
a
(t) =


g(t) if t ∈

[
0,

1

a

]
,

m∑
i=0

1

i!

(
t− 1

a

)i
g(i)
(

1

a

)
if t ∈

(
1

a
, 1

]
.

Thus ∥∥∥f (s)a −
((
g1/a

)
a

)(s)∥∥∥ = max

{
max

t∈[0,1/a]

∣∣f (s)a (t)− g(s)(t)
∣∣,

max
t∈[1/a,1]

∣∣∣∣ m∑
i=s

1

(i− s)!

(
t− 1

a

)i−s
1

am−i
f (i)(1)

−
m∑
i=s

1

(i− s)!

(
t− 1

a

)i−s
g(i)
(

1

a

)∣∣∣∣}
≤ max

{∥∥f (s)a − g(s)
∥∥,

max
t∈[1/a,1]

m∑
i=s

1

(i− s)!

(
t− 1

a

)i−s∣∣∣∣ 1

am−i
f (i)(1)− g(i)

(
1

a

)∣∣∣∣}

≤ max

{∥∥f (s)a − g(s)
∥∥, m∑

i=s

∣∣∣∣ 1

am−i
f (i)(1)− g(i)

(
1

a

)∣∣∣∣}

= max

{∥∥f (s)a − g(s)
∥∥, m∑

i=s

∣∣∣∣f (i)a (1

a

)
− g(i)

(
1

a

)∣∣∣∣}

≤ max

{∥∥f (s)a − g(s)
∥∥, m∑

i=s

∥∥f (i)a − g(i)∥∥}
=
∥∥f (s)a − g(s)

∥∥+ . . .+
∥∥f (m)
a − g(m)

∥∥
≤ (m− s+ 1)‖fa − g‖m ≤ (m+ 1)‖fa − g‖m,

which completes the proof. �

Proposition 2.6. For the mapping Qm the following estimate of its lower

Hausdorff measure of noncompactness holds:

ω(Qm) ≥ 1

2m(m+ 1)
.

Proof. It is enough to show that for M ⊆ B(Cm) we have

(2.4)
1

2m(m+ 1)
γ(M) ≤ γ(QmM).
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If f ∈ Cm, using Lemma 2.4, it follows that the set Af =
{
f1/a : a ∈ [1, 2]

}
is

compact. Now let η > γ(QmM). Fix an η-net {λ1, . . . , λq} for QmM in Cm.

Then the set K =
q⋃
i=1

Aλi is also compact in Cm.

Let δ > 0 be given, and choose a δ-net {ξ1, . . . , ξr} for K in Cm. Let f ∈M .

Fix i ∈ {1, . . . , q} such that ‖Qmf −λi‖m ≤ η. Since (λi)
(1+‖f‖m)/2 ∈ K we can

choose j ∈ {1, . . . , r} such that
∥∥(λi)

(1+‖f‖m)/2 − ξj
∥∥
m
≤ δ. Then

‖f − ξj‖m ≤
∥∥f − (λi)

(1+‖f‖m)/2‖m +
∥∥(λi)

(1+‖f‖m)/2 − ξj
∥∥
m

≤ 2m
∥∥f2/(1+‖f‖m) − ((λi)

(1+‖f‖m)/2)2/(1+‖f‖m)

∥∥
m

+ δ.

Now, by Lemma 2.5, we have∥∥f2/(1+‖f‖m) −
(
(λi)

(1+‖f‖m)/2)2/(1+‖f‖m)

∥∥
m
≤ (m+ 1)

∥∥f2/(1+‖f‖m) − λi
∥∥
m
,

hence we obtain

‖f − ξj‖m ≤ 2m(m+ 1)
∥∥f2/(1+‖f‖m) − λi

∥∥
m

+ δ

= 2m(m+ 1)‖Qmf − λi‖m + δ ≤ 2m(m+ 1)η + δ.

Therefore
1

2m(m+ 1)
γ(M) ≤ η +

δ

2m(m+ 1)
.

By the arbitrariness of δ we obtain (2.4), and the proof is completed. �

3. The mapping Pu,m

For u > 0, we define Pu,m : B(Cm)→ Cm by setting

(Pu,mf)(t) =


0 if t ∈

[
0,

1 + ‖f‖m
2

]
,

u

(m+ 1)!

(
t− 1 + ‖f‖m

2

)m+1

if t ∈
(

1+‖f‖m
2 , 1

]
.

We observe that if f and g ∈ B(Cm) and ‖f‖m = ‖g‖m we have Pu,mf = Pu,mg,

in particular Pu,mf coincides with the null function if ‖f‖m = 1.

Clearly Pu,mf ∈ Cm, and for s = 0, . . . ,m we have

(Pu,mf)(s)(t) =


0 if t ∈

[
0,

1 + ‖f‖m
2

]
,

u

(m+ 1− s)!

(
t− 1 + ‖f‖m

2

)m+1−s

if t ∈
(

1 + ‖f‖m
2

, 1

]
.

In particular, we have (Pu,mf)(m) = Pu,0f .

Lemma 3.1. Let u > 0. Let {fn} be a sequence in B(Cm) and f ∈ B(Cm)

such that ‖fn‖m → ‖f‖m, then ‖Pu,mfn − Pu,mf‖m → 0.
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Proof. We will show, that for each s = 0, . . . ,m we have

(3.1)
∥∥(Pu,mfn)(s) − (Pu,mf)(s)

∥∥→ 0.

To this end, fix s ∈ {0, . . . ,m} and ε > 0. Find n such that for all n ≥ n we

have
∣∣‖fn‖m − ‖f‖m∣∣ ≤ ε/u. We will prove that, for every n ≥ n,

(3.2)
∣∣(Pu,mfn)(s)(t)− (Pu,mf)(s)(t)

∣∣ ≤ ε, for all t ∈ [0, 1].

If t ∈ [0, (1 + ‖f‖m)/2] ∩ [0, (1 + ‖fn‖m)/2], then∣∣(Pu,mfn)(s)(t)− (Pu,mf)(s)(t)
∣∣ = 0.

Assume now ‖f‖m ≤ ‖fn‖m and t ∈ [(1 + ‖f‖m)/2, (1 + ‖fn‖m)/2], then

∣∣(Pu,mfn)(s)(t)− (Pu,mf)(s)(t)
∣∣ =

u

(m+ 1− s)!

(
t− 1 + ‖f‖m

2

)m+1−s

≤ u

(m+ 1− s)!

∣∣∣∣1 + ‖fn‖m
2

− 1 + ‖f‖m
2

∣∣∣∣m+1−s

≤ u
∣∣‖fn‖m − ‖f‖m∣∣ ≤ ε.

If we assume ‖fn‖m ≤ ‖f‖m and t ∈ [(1 + ‖fn‖m)/2, (1 + ‖f‖m)/2], then simi-

larly to the previous case we have∣∣(Pu,mfn)(s)(t)− (Pu,mf)(s)(t)
∣∣ =

u

(m+ 1− s)!

(
t− 1 + ‖fn‖m

2

)m+1−s

≤ ε.

Finally we assume t ∈ [max{(1 + ‖fn‖m)/2, (1 + ‖f‖m)/2}, 1]. Then∣∣(Pu,mfn)(s)(t)− (Pu,mf)(s)(t)
∣∣

≤ u

(m+ 1− s)!

∣∣∣∣(t− 1 + ‖fn‖m
2

)m+1−s

−
(
t− 1 + ‖f‖m

2

)m+1−s∣∣∣∣
≤ u

(m+ 1− s)!

∣∣∣∣‖fn‖m − ‖f‖m2

∣∣∣∣[(t− 1 + ‖fn‖m
2

)m−s
+ . . .+

(
t− 1 + ‖f‖m

2

)m−s]
≤ u

(m+ 1− s)!

∣∣∣∣‖fn‖m − ‖f‖m2

∣∣∣∣(m+ 1− s) ≤ u
∣∣∣∣ ‖fn‖m − ‖f‖m∣∣∣∣ ≤ ε. �

Proposition 3.2. Let u > 0. The mapping Pu,m is compact.

Proof. Let {fn} be a sequence in B(Cm) and f ∈ B(Cm) such that

‖fn − f‖m → 0.

Then ‖fn‖m → ‖f‖m, and Lemma 3.1 implies that Pu,m is continuous.

Now we prove that the mapping Pu,m is sequentially compact. To this end let

{gn} be a sequence in Pu,m(B(Cm)). For each n ∈ N fix hn ∈ B(Cm) such that

gn = Pu,mhn. Passing, if necessary, to a subsequence, we may assume without

loss of generality that ‖hn‖m → c ∈ [0, 1]. Now we choose h ∈ B(Cm) such
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that ‖h‖m = c so that ‖hn‖m → ‖h‖m. Set g = Pu,mh. Since ‖gn − g‖m =

‖Pu,mhn − Pu,mh‖m, Lemma 3.1 implies ‖gn − g‖m → 0, as desired. �

4. The retraction Ru,m

Let u > 0 be arbitrarily fixed. We define Tu,m : B(Cm)→ Cm, by setting

Tu,m = Qm + Pu,m.

Clearly Tu,m is a 1-ball-contractive mapping. Our first step is that of proving

that inf
f∈B(Cm)

‖Tu,mf‖m > 0. It will require the following lemma.

Lemma 4.1. Let u > 0 and f ∈ B(Cm). If 0 ≤ ‖f‖m ≤ u/(u+ 4), then we

have

max

{
‖f (m)‖,−‖f (m)‖+

u

2
(1− ‖f‖m)

}
≥ u

u+ 4
.

Proof. For every c ∈ [0, 1], we define the auxiliary function ϕc : [0, c] → R
by setting

ϕc(x) = −x+
u

2
(1− c), for x ∈ [0, c],

and we denote by ϕ the function ϕ(x) = x for x ∈ [0, 1]. Then we set

cu = max{c : c ∈ [0, 1] and ϕc(x) ≥ ϕ(x) for x ∈ [0, c]}.

A straightforward calculation shows that cu = u/(u+ 4). Then, for every c ∈
[0, cu], the function ψc : [0, 1]→ R defined by

ψc(x) = max{ϕ(x), ϕc(x)} = max

{
x,−x+

u

2
(1− c)

}
satisfies

(4.1) min
x∈[0,c]

ψc(x) ≥ u

u+ 4
.

Now, if f ∈ B(Cm) and 0 ≤ ‖f‖m ≤ u/(u+ 4), the result follows by (4.1)

considering c = ‖f‖m and letting x = ‖f (m)‖ . �

Proposition 4.2. Let u > 0 and f ∈ B(Cm). Then

‖Tu,mf‖m ≥
1

2m

(
1 +

u

u+ 4

)m
u

u+ 4
.
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Proof. Fix u > 0 and f ∈ B(Cm). Assume first that 0 ≤ ‖f‖m ≤ u/(u+ 4).

We have

‖Tu,mf‖m ≥‖(Tu,mf)(m)‖ = max
t∈[0,1]

∣∣(Tu,mf)(m)(t)
∣∣

= max

{
max

t∈[0,(1+‖f‖m)/2]

∣∣∣∣f (m)

(
2

1 + ‖f‖m
t

)∣∣∣∣,
max

t∈[(1+‖f‖m)/2,1]

∣∣∣∣f (m)(1) + u

(
t− 1 + ‖f‖m

2

)∣∣∣∣}
= max

{
‖f (m)‖,

∣∣∣∣f (m)(1) +
u

2
(1− ‖f‖m)

∣∣∣∣}
≥ max

{
‖f (m)‖, f (m)(1) +

u

2
(1− ‖f‖m)

}
≥ max

{
‖f (m)‖,−‖f (m)‖+

u

2
(1− ‖f‖m)

}
.

In view of Lemma 4.1 we obtain ‖Tu,mf‖m ≥ u/(u+ 4).

Now assume u/(u+ 4) ≤ ‖f‖m ≤ 1. We have

‖Tu,mf‖m ≥ max

{(
1 + ‖f‖m

2

)m
‖f‖,

(
1 + ‖f‖m

2

)m−1∥∥f (1)∥∥, . . . ,∥∥f (m)
∥∥}

≥
(

1 + ‖f‖m
2

)m
max

{
‖f‖,

∥∥f (1)∥∥, . . . ,∥∥f (m)
∥∥}

=

(
1 + ‖f‖m

2

)m
‖f‖m ≥

1

2m

(
1 +

u

u+ 4

)m
u

u+ 4
.

The proof is completed. �

We recall the following properties of the measure γ, which tacitly will be

used in the proof of our main result: for bounded sets A,B ⊂ X

1. γ(A) = 0 if and only if A is precompact,

2. γ(A) ≤ γ(B) for A ⊆ B,

3. γ(coA) = γ(A) where coA denotes the closed convex hull of A,

4. γ(A ∪B) = max{γ(A), γ(B)},
5. γ(A+B) ≤ γ(A) + γ(B),

6. γ(λA) = |λ|γ(A) for all λ ∈ R,

7. γ([0, 1]A) = γ(A).

Theorem 4.3. For any ε > 0 there exists a proper k-ball-contractive re-

traction of the closed unit ball B(Cm) onto S(Cm) with k < 1 + ε, so that

Wγ(Cm[0, 1]) = 1.
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Proof. Given u > 0, in view of Proposition 4.2, we can define a retraction

Ru,m : B(Cm)→ S(Cm) by setting

Ru,mf =
1

‖Tu,mf‖m
Tu,mf.

Let now M ⊆ B(Cm). Since Pu,m is a compact mapping, from Propositions 2.3

and 2.6 it follows that

(4.2)
1

2m(m+ 1)
γ(M) ≤ γ(Tu,mM) ≤ γ(M).

Moreover, by the definition of Ru,m and by Proposition 4.2, we get

Ru,mM ⊆
[
0,

(
1

2m

(
1 +

u

u+ 4

)m
u

u+ 4

)−1]
Tu,mM.

Therefore, using the properties of γ, from (4.2) it follows

γ(Ru,mM) ≤
(

1

2m

(
1 +

u

u+ 4

)m
u

u+ 4

)−1
γ(M),

this means that the retraction Ru,m is ku-ball-contractive with

ku =

(
1

2m

(
1 +

u

u+ 4

)m
u

u+ 4

)−1
.

On the other hand, an easy calculation shows that

‖Tu,mf‖m ≤ ‖Qmf‖m + ‖Pu,mf‖m ≤ 1 +
u

2

for all f ∈ B(Cm), and so we have

Tu,mM ⊆
[
0, 1 +

u

2

]
Ru,mM.

Therefore we get

γ(Tu,mM) ≤
(

1 +
u

2

)
γ(Ru,mM),

and from (4.2)

1

2m(m+ 1)

(
1 +

u

2

)−1
γ(M) ≤ γ(Ru,mM).

The latter inequality implies

ω(Ru,m) ≥ 1

2m(m+ 1)

(
1 +

u

2

)−1
,

consequently ω(Ru,m) > 0 for every u > 0, so that Ru,m is a proper retraction.

Now given ε > 0, since

lim
u→∞

1

2m

(
1 +

u

u+ 4

)m
u

u+ 4
= 1,

we can find u > 0 such that ku < 1 + ε. Then letting k = ku we have that Ru,m
is the desired proper k-ball-contractive retraction. �
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