Topological Methods in Nonlinear Analysis Volume 53, No. 1, 2019, 111–125 DOI: 10.12775/TMNA.2018.041

© 2019 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

OPTIMAL RETRACTION PROBLEM FOR PROPER k-BALL-CONTRACTIVE MAPPINGS

IN $C^{m}[0,1]$

Diana Caponetti — Alessandro Trombetta — Giulio Trombetta

ABSTRACT. In this paper for any $\varepsilon > 0$ we construct a new proper k-ball-contractive retraction of the closed unit ball of the Banach space $C^m[0,1]$ onto its boundary with $k < 1 + \varepsilon$, so that the Wośko constant $W_{\gamma}(C^m[0,1])$ is equal to 1.

1. Introduction and preliminaries

Let X be an infinite-dimensional Banach space with the closed unit ball B(X) and the unit sphere S(X). After two works by Klee [22] and [23] it is known that there exists a retraction $R \colon B(X) \to S(X)$, i.e. R is a continuous mapping such that Rx = x, for all $x \in S(X)$. As concerns the metric properties of such retractions Benyamini and Sternfeld ([5]), following Nowak ([24]), have obtained the remarkable result that for every Banach space X there exists a retraction of B(X) onto S(X) satisfying, for some constant L, the L-Lipschitz condition

$$||Rx - Ry|| \le L||x - y||$$
 for all $x, y \in B(X)$.

Clearly the same is not true for spaces of finite dimension due to the Brouwer's Non Retraction Theorem. The optimal retraction problem, considered for the first time in [17], consists in the evaluation of the constant

$$k_0(X) = \inf\{L : \text{there is a } L\text{-Lipschitz retraction } R : B(X) \to S(X)\}.$$

2010 Mathematics Subject Classification. Primary: 47H09; Secondary: 46B20, 54C14. Key words and phrases. Retraction; measure of noncompactness; proper mapping.

There is no space X for which the exact value of $k_0(X)$ is known, for a survey on the subject we refer to [13], [18], [19] and bibliography therein. The universal known bound from below is $k_0(X) \geq 3$; for some spaces there are better estimates, for example, $k_0(H) \geq 4.58$ for Hilbert space H (see [14]), $k_0(l^1) \geq 4$ (see [6]). From the above it is known that the supremum is finite and an attempt to give an estimate ends with $k_0(X) < 256 \cdot 10^9$, for any Banach space X (see [1]). Moreover we recall $k_0(L_1[0,1]) \leq 8$ (see [20]), $k_0(l^1) \leq 8$ (see [2]), $k_0(l^\infty) \leq 12 + 2\sqrt{30} = 22.95 \dots$ (see [14]) and $k_0(X) \leq 4(2 + \sqrt{3}) = 14.92 \dots$ where X is one of the space: $BC(\mathbb{R})$, C[0,1], c_0 , c (see [26]). At present the estimate $k_0(C_0[0,1]) \leq 2(2 + \sqrt{2}) = 6.828 \dots$ is the minimum of upper bounds over all Banach spaces for which the upper bound is known (see [25]).

Consideration of another metric property, namely the measures of noncompactness of above retractions leads to some more results useful in applications as, for instance, applications to theorems of the Birkhoff-Kellog type (see [8], [9], [11], [16], [21]). Let us recall that the Hausdorff measure of noncompactness $\gamma(A)$ of a bounded subset A of X is the infimum of all $\varepsilon > 0$ such that A has a finite ε -net in X. A mapping $T : \mathrm{dom}(T) \subset X \to X$ is said to be k-ball-contractive with constant $k \geq 0$ if it is continuous and verifies, for each bounded subset A of $\mathrm{dom}(T)$,

$$\gamma(TA) \le k\gamma(A)$$
.

In [28] Wośko has proved that in the space X = C[0, 1] of all real valued continuous functions defined on [0, 1] endowed with the maximum norm it is possible to construct for every $\varepsilon > 0$ a k-ball-contractive retraction of B(X) onto S(X) such that $k < 1 + \varepsilon$. The optimal retraction problem for k-ball-contractive mappings will now concern the evaluation of the so-called Wośko constant (see [4])

$$W_{\gamma}(X) = \inf\{k \geq 1 : \text{there is a } k\text{-ball-contractive retraction } R : B(X) \to S(X)\}.$$

Obviously, the same problem can be posed by replacing γ with an equivalent measure of noncompactness, for instance the Kuratowski or the lattice measure of noncompactness. Observe that the situation differs from the Lipschitz case. On one hand there are good estimates for $W_{\gamma}(X)$ in many Banach spaces X, which are useful for applications. Concerning general results in the setting of Banach spaces, in [27] it was proved that $W_{\gamma}(X) \leq 6$ for any Banach space X, reaching the value 4 or 3 depending on the geometry of the space. Moreover, it has been proved that $W_{\gamma}(X) = 1$ in some spaces of continuous functions ([7], [15]), in some classical Banach spaces of measurable functions ([12]) and in Banach spaces whose norm is monotone with respect to some basis ([3]). In [10] the problem of evaluating the Wośko constant has been considered in the setting of F-normed spaces. We recall that the problem whether there is some Banach space X in which a 1-ball-contractive retraction exists has been solved

positively in [12], where it is shown that it is so in Orlicz and Lorentz spaces. We observe that there is not a unified method to evaluate $W_{\gamma}(X)$, most of the evaluations have required individual constructions in each space X. On the other hand we point out that in opposite to the limitation $k_0(X) \geq 3$ in any Banach space X, there is no Banach space X for which it has been proved $W_{\gamma}(X) > 1$.

For a continuous mapping $T: \text{dom}(T) \subset X \to X$ we also consider the following quantitative characteristic (see, for example, [3], [11], [16]):

$$\omega(T) = \sup\{k \geq 0 : \gamma(TA) \geq k\gamma(A) \text{ for every bounded } A \subset \text{dom}(T)\},\$$

called the lower Hausdorff measure of noncompactness of T. We observe that this characteristic is related to properness of the mapping, since from $\omega(T) > 0$ it follows that T is a proper mapping, i.e. $T^{-1}K$ is compact for each compact subset K of X. Let $C^m[0,1]$ be the Banach space of all real valued m-times continuously differentiable functions defined on [0,1] with the norm

$$||f||_m = \max\{||f^{(s)}|| : s = 0, \dots, m\},\$$

where $f^{(0)} = f$ and $\|\cdot\|$ denotes the maximum norm. The aim of this paper is to prove that $W_{\gamma}(C^m[0,1]) = 1$. To this end we construct a 1-ball-contractive mapping Q_m from the closed unit ball $B(C^m[0,1])$ into itself such that $Q_m f = f$ for all $f \in S(C^m[0,1])$. Then for each u > 0 we consider a compact perturbation $Q_m + P_{u,m}$ of the mapping Q_m , by normalizing such mapping we obtain a retraction $R_{u,m}$. The retractions $R_{u,m}$ we construct satisfy $\omega(R_{u,m}) > 0$. Moreover given $\varepsilon > 0$ arbitrarily fixed we can find u > 0 such that the retraction $R_{u,m}$ is k-ball-contractive with $k < 1 + \varepsilon$, so that $W_{\gamma}(C^m[0,1]) = 1$. For m = 0, we recover the result $W_{\gamma}(C[0,1]) = 1$ of Wośko ([28]).

2. The mapping Q_m

Let $C^m = C^m[0,1]$. We start by defining a mapping Q_m from $B(C^m)$ into C^m by setting, for each $f \in B(C^m)$,

$$(Q_m f)(t) = \begin{cases} \left(\frac{1 + \|f\|_m}{2}\right)^m f\left(\frac{2}{1 + \|f\|_m}t\right) & \text{if } t \in \left[0, \frac{1 + \|f\|_m}{2}\right], \\ \sum_{i=0}^m \frac{1}{i!} \left(t - \frac{1 + \|f\|_m}{2}\right)^i \left(\frac{1 + \|f\|_m}{2}\right)^{m-i} f^{(i)}(1) \\ & \text{if } t \in \left(\frac{1 + \|f\|_m}{2}, 1\right]. \end{cases}$$

In this section we prove that the mapping Q_m maps $B(C^m)$ into itself and that it is a 1-ball-contractive mapping, moreover we obtain $\omega(Q_m) \geq 1/(2^m(m+1))$.

For our convenience, given $f \in C^m$ and $a \in [1, 2]$, we introduce the function $f_a : [0, 1] \to \mathbb{R}$ defined by

$$f_a(t) = \begin{cases} \frac{1}{a^m} f(at) & \text{if } t \in \left[0, \frac{1}{a}\right], \\ \sum_{i=0}^m \frac{1}{i!} \left(t - \frac{1}{a}\right)^i \frac{1}{a^{m-i}} f^{(i)}(1) & \text{if } t \in \left(\frac{1}{a}, 1\right]. \end{cases}$$

We observe that, for $f \in C^m$, we have $f_a \in C^m$ and, for s = 0, ..., m,

$$f_a^{(s)}(t) = \begin{cases} \frac{1}{a^{m-s}} f^{(s)}(at) & \text{if } t \in \left[0, \frac{1}{a}\right], \\ \sum_{i=s}^m \frac{1}{(i-s)!} \left(t - \frac{1}{a}\right)^{i-s} \frac{1}{a^{m-i}} f^{(i)}(1) & \text{if } t \in \left(\frac{1}{a}, 1\right]. \end{cases}$$

Using the above notation, for $f \in B(\mathbb{C}^m)$, we may write $Q_m f = f_{2/(1+\|f\|_m)}$. We begin with the following result.

LEMMA 2.1. Let $f \in C^m$, then for any $a \in [1,2]$ we have

$$\frac{1}{a^m} ||f||_m \le ||f_a||_m \le ||f||_m.$$

PROOF. Let $f \in C^m$. Since the result is obvious when a = 1, we assume $a \in (1,2]$. To obtain the right inequality we prove $||f_a^{(s)}|| \leq ||f||_m$ for each $s \in \{0,\ldots,m\}$. Indeed, we have

$$||f_a^{(s)}|| = \max\left\{\frac{1}{a^{m-s}}||f^{(s)}||, \max_{t \in [1/a,1]} \left| \sum_{i=s}^{m} \frac{1}{(i-s)!} \left(t - \frac{1}{a}\right)^{i-s} \frac{1}{a^{m-i}} f^{(i)}(1) \right| \right\}$$

$$\leq \max\left\{\frac{1}{a^{m-s}}||f^{(s)}||, \sum_{i=s}^{m} \frac{1}{(i-s)!} \left(1 - \frac{1}{a}\right)^{i-s} \frac{1}{a^{m-i}} ||f^{(i)}|| \right\}$$

$$= \sum_{i=s}^{m} \frac{1}{(i-s)!} \left(1 - \frac{1}{a}\right)^{i-s} \frac{1}{a^{m-i}} ||f^{(i)}|| \leq ||f||_{m} \sum_{i=s}^{m} \left(1 - \frac{1}{a}\right)^{i-s} \frac{1}{a^{m-i}}$$

$$\leq ||f||_{m} \left[\frac{1}{a^{m-s}} + \left(1 - \frac{1}{a}\right) \sum_{i=s+1}^{m} \frac{1}{a^{m-i}} \right] = ||f||_{m}.$$

On the other hand, we obtain the left inequality by observing that

$$||f_a||_m = \max \{||f_a||, ||f_a^{(1)}||, \dots, ||f_a^{(m)}||\}$$

$$\geq \max \left\{ \frac{1}{a^m} ||f||, \frac{1}{a^{m-1}} ||f^{(1)}||, \dots, ||f^{(m)}|| \right\}$$

$$\geq \frac{1}{a^m} \max \{||f||, ||f^{(1)}||, \dots, ||f^{(m)}||\} = \frac{1}{a^m} ||f||_m.$$

We note that by the definition of Q_m we have $Q_m f = f$ for all $f \in S(\mathbb{C}^m)$, and by Lemma 2.1 we have indeed that Q_m maps $B(\mathbb{C}^m)$ into itself.

In the sequel we will require the following lemma.

LEMMA 2.2. Let $f \in C^m$ and $\{a_n\}$ a sequence in [1,2] such that $a_n \to a$. Then $||f_{a_n} - f_a||_m \to 0$.

PROOF. Observe that for f=0 the assertion is immediate. For $f\neq 0$ we prove that $||f_{a_n}^{(s)}-f_a^{(s)}||\to 0$ for any $s\in\{0,\ldots,m\}$, and this will give the thesis. Let $\varepsilon>0$ be given. Since $f^{(s)}$, for any $s\in\{0,\ldots,m\}$, is uniformly continuous on [0,1], we find $\delta>0$ such that

(2.1)
$$|f^{(s)}(t_1) - f^{(s)}(t_2)| \le \frac{\varepsilon}{3}$$

for $t_1, t_2 \in [0, 1]$ and $|t_1 - t_2| \le \delta$. Moreover, if $s \in \{0, ..., m - 1\}$, we choose \overline{n} such that for all $n \ge \overline{n}$ we have $|a_n - a| \le \delta$ and

(2.2)
$$\left| \frac{1}{a_n^{m-i}} - \frac{1}{a^{m-i}} \right| \le \frac{\varepsilon}{3(m-s)\|f\|_m}, \quad \text{for} \quad i = s, \dots, m-1.$$

Now, for any fixed $s \in \{0, ..., m\}$, we prove $|f_{a_n}^{(s)}(t) - f_a^{(s)}(t)| \le \varepsilon$, for every $n \ge \overline{n}$ and for all $t \in [0, 1]$. To this end, suppose first $t \in [0, 1/a] \cap [0, 1/a_n]$. Then we have

$$|f_{a_n}^{(s)}(t) - f_a^{(s)}(t)| = \left| \frac{1}{a_n^{m-s}} f^{(s)}(a_n t) - \frac{1}{a^{m-s}} f^{(s)}(a t) \right|$$

$$\leq \left| f^{(s)}(a_n t) \right| \left| \frac{1}{a_n^{m-s}} - \frac{1}{a^{m-s}} \right| + \frac{1}{a^{m-s}} \left| f^{(s)}(a_n t) - f^{(s)}(a t) \right|$$

$$\leq \left\| f^{(s)} \right\| \left| \frac{1}{a_n^{m-s}} - \frac{1}{a^{m-s}} \right| + \left| f^{(s)}(a_n t) - f^{(s)}(a t) \right|$$

$$\leq \left\| f \right\|_m \left| \frac{1}{a_n^{m-s}} - \frac{1}{a^{m-s}} \right| + \left| f^{(s)}(a_n t) - f^{(s)}(a t) \right|$$

$$\leq \frac{\varepsilon}{3(m-s)} + \frac{\varepsilon}{3} \leq \varepsilon.$$

Assume now $a \le a_n$ and $t \in [1/a_n, 1/a]$. Then, since $|1 - at| \le |a_n - a| \le \delta$, by (2.1) we get

$$(2.3) \left| f^{(s)}(at) - f^{(s)}(1) \right| \le \frac{\varepsilon}{3}.$$

Using (2.2) and (2.3) we obtain

$$\begin{aligned} \left| f_{a_n}^{(s)}(t) - f_a^{(s)}(t) \right| &= \left| \frac{1}{a^{m-s}} f^{(s)}(at) - \sum_{i=s}^m \frac{1}{(i-s)!} \left(t - \frac{1}{a_n} \right)^{i-s} \frac{1}{a_n^{m-i}} f^{(i)}(1) \right| \\ &\leq \left| \frac{1}{a^{m-s}} f^{(s)}(at) - \frac{1}{a_n^{m-s}} f^{(s)}(1) \right| + \sum_{i=s+1}^m \left\| f^{(i)} \right\| \left| \frac{1}{a} - \frac{1}{a_n} \right|^{i-s} \\ &\leq \left| \frac{1}{a^{m-s}} f^{(s)}(at) - \frac{1}{a_n^{m-s}} f^{(s)}(at) \right| \\ &+ \left| \frac{1}{a_n^{m-s}} f^{(s)}(at) - \frac{1}{a_n^{m-s}} f^{(s)}(1) \right| + \left\| f \right\|_m \sum_{i=s+1}^m \left| \frac{1}{a} - \frac{1}{a_n} \right|^{i-s} \end{aligned}$$

$$\leq \|f\|_m \left| \frac{1}{a^{m-s}} - \frac{1}{a_n^{m-s}} \right| + \left| f^{(s)}(at) - f^{(s)}(1) \right| + \|f\|_m (m-s) \left| \frac{1}{a} - \frac{1}{a_n} \right|$$

$$\leq \frac{\varepsilon}{3(m-s)} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \leq \varepsilon.$$

If $a_n \le a$ and $t \in [1/a, 1/a_n]$, the assertion follows as in the previous case. Finally, considering the case $t \in [\max\{1/a, 1/a_n\}, 1]$, we have

$$|f_{a_n}^{(s)}(t) - f_a^{(s)}(t)| = \left| \sum_{i=s}^m \frac{f^{(i)}(1)}{(i-s)!} \left[\left(t - \frac{1}{a_n} \right)^{i-s} \frac{1}{a_n^{m-i}} - \left(t - \frac{1}{a} \right)^{i-s} \frac{1}{a^{m-i}} \right] \right|$$

$$\leq ||f||_m \sum_{i=s}^m \frac{1}{(i-s)!} \left| \left(t - \frac{1}{a_n} \right)^{i-s} \frac{1}{a_n^{m-i}} - \left(t - \frac{1}{a} \right)^{i-s} \frac{1}{a^{m-i}} \right|$$

where, for $i \in \{s, \ldots, m\}$,

$$\begin{split} &\frac{1}{(i-s)!} \left| \left(t - \frac{1}{a_n}\right)^{i-s} \frac{1}{a_n^{m-i}} - \left(t - \frac{1}{a}\right)^{i-s} \frac{1}{a^{m-i}} \right| \\ &\leq \frac{1}{(i-s)!} \left| \left(t - \frac{1}{a_n}\right)^{i-s} \frac{1}{a_n^{m-i}} - \left(t - \frac{1}{a}\right)^{i-s} \frac{1}{a_n^{m-i}} \right| \\ &\quad + \frac{1}{(i-s)!} \left| \left(t - \frac{1}{a}\right)^{i-s} \frac{1}{a_n^{m-i}} - \left(t - \frac{1}{a}\right)^{i-s} \frac{1}{a^{m-i}} \right| \\ &\leq \frac{1}{(i-s)!} \left| \left(t - \frac{1}{a_n}\right)^{i-s} - \left(t - \frac{1}{a}\right)^{i-s} \right| + \frac{1}{(i-s)!} \left| \frac{1}{a_n^{m-i}} - \frac{1}{a^{m-i}} \right| \\ &\leq \frac{1}{(i-s)!} \left| \frac{1}{a_n} - \frac{1}{a} \right| \left| \left(t - \frac{1}{a_n}\right)^{i-s-1} + \ldots + \left(t - \frac{1}{a}\right)^{i-s-1} \right| + \left| \frac{1}{a_n^{m-i}} - \frac{1}{a^{m-i}} \right| \\ &\leq \frac{i-s}{(i-s)!} \left| \frac{1}{a_n} - \frac{1}{a} \right| + \left| \frac{1}{a_n^{m-i}} - \frac{1}{a^{m-i}} \right|. \end{split}$$

Consequently, using (2.2), we obtain

$$\begin{aligned} \left| f_{a_n}^{(s)}(t) - f_a^{(s)}(t) \right| &\leq \|f\|_m \left[\sum_{i=s+1}^m \left| \frac{1}{a_n} - \frac{1}{a} \right| + \sum_{i=s}^{m-1} \left| \frac{1}{a_n^{m-i}} - \frac{1}{a^{m-i}} \right| \right] \\ &\leq \|f\|_m \left[(m-s) \left| \frac{1}{a_n} - \frac{1}{a} \right| + (m-s) \left| \frac{1}{a_n^{m-i}} - \frac{1}{a^{m-i}} \right| \right] \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon. \ \Box \end{aligned}$$

Proposition 2.3. The mapping Q_m is 1-ball-contractive.

PROOF. Let $\{f_n\}$ be a sequence in $B(C^m)$ and f a function in $B(C^m)$ such that $||f_n - f||_m \to 0$. Set $a_n = 2/(1 + ||f_n||_m)$ and $a = 2/(1 + ||f||_m)$, then $a_n \in [1, 2]$ for each $n \in \mathbb{N}$, $a \in [1, 2]$ and $a_n \to a$. Moreover,

$$\|Q_m f_n - Q_m f\|_m = \|(f_n)_{2/(1+\|f_n\|_m)} - f_{2/(1+\|f\|_m)}\|_m = \|(f_n)_{a_n} - f_a\|_m.$$

Since, by the hypothesis and Lemma 2.2, we have

$$||(f_n)_{a_n} - f_a||_m \le ||(f_n)_{a_n} - f_{a_n}||_m + ||f_{a_n} - f_a||_m$$

$$= ||(f_n - f)_{a_n}||_m + ||f_{a_n} - f_a||_m \le ||f_n - f||_m + ||f_{a_n} - f_a||_m \to 0,$$

we conclude that the mapping Q_m is continuous.

Now, to complete the proof, we show that for $M \subseteq B(\mathbb{C}^m)$ we have

$$\gamma(Q_m M) \le \gamma(M).$$

First we observe that for $f \in C^m$ the set $A_f = \{f_a : a \in [1,2]\}$ is compact. Indeed, if $\{f_{a_n}\}$ is a sequence of elements in A_f and $\{a_{n_k}\}$ a subsequence of $\{a_n\}$ which is convergent, say to a, then by Lemma 2.2 we have $||f_{a_{n_k}} - f_a||_m \to 0$.

Now, let $\alpha > \gamma(M)$. Let $\{\varphi_1, \ldots, \varphi_l\}$ an α -net for M in C^m . Then the set $A = \bigcup_{i=1}^l A_{\varphi_i}$ is compact. Hence given $\delta > 0$ we can choose a δ -net $\{\psi_1, \ldots, \psi_p\}$ for A in C^m .

For $g \in Q_m M$ arbitrarily fixed, let $f \in M$ such that $Q_m f = g$. Then choose $i \in \{1, \dots, l\}$ such that $||f - \varphi_i||_m \le \alpha$ and $j \in \{1, \dots, p\}$ such that

$$\|(\varphi_i)_{2/(1+\|f\|_m)} - \psi_j\|_m \le \delta.$$

Then we obtain

$$||g - \psi_j||_m = ||Q_m f - \psi_j||_m = ||f_{2/(1+||f||_m)} - \psi_j||_m$$

$$\leq ||f_{2/(1+||f||_m)} - (\varphi_i)_{2/(1+||f||_m)}|| + ||(\varphi_i)_{2/(1+||f||_m)} - \psi_j||_m$$

$$\leq ||f - \varphi_i||_m + \delta \leq \alpha + \delta.$$

We have proved $\gamma(Q_m M) \leq \alpha + \delta$, by the arbitrariness of δ we have the desired result $\gamma(Q_m M) \leq \gamma(M)$.

Now, for $f \in C^m$ and $a \in [1, 2]$, we set

$$\left(f^{1/a})(t)=a^mf\bigg(\frac{1}{a}\,t\bigg),\quad \text{if}\ \ t\in[0,1].$$

We need the following two lemmas. The proof of the first one is similar to the first case we have just considered in Lemma 2.2; hence it is omitted.

LEMMA 2.4. Let $f \in C^m$ and $\{a_n\}$ a sequence in [1,2] such that $a_n \to a$. Then $\|f^{1/a_n} - f^{1/a}\|_{m} \to 0$.

LEMMA 2.5. Let $f \in B(C^m)$, $g \in C^m$ and $a \in [1, 2]$. Then

$$||f_a - (g^{1/a})_a||_m \le (m+1)||f_a - g||_m.$$

PROOF. Let $f \in B(C^m)$, $g \in C^m$ and $a \in [1, 2]$. To prove the claim we will show that, for $s = 0, \ldots, m$, we have

$$\left\| f_a^{(s)} - \left(\left(g^{1/a} \right)_a \right)^{(s)} \right\| \le (m+1) \| f_a - g \|_m.$$

Clearly $g^{1/a} \in C^m$, where for each s = 0, ..., m we have

$$(g^{1/a})^{(s)}(t) = a^{m-s}g^{(s)}\left(\frac{1}{a}t\right) \text{ for } t \in [0,1].$$

Hence we can consider $(g^{1/a})_a$, and then we have

$$(g^{1/a})_a(t) = \begin{cases} g(t) & \text{if } t \in \left[0, \frac{1}{a}\right], \\ \sum_{i=0}^m \frac{1}{i!} \left(t - \frac{1}{a}\right)^i g^{(i)} \left(\frac{1}{a}\right) & \text{if } t \in \left(\frac{1}{a}, 1\right]. \end{cases}$$

Thus

$$\begin{split} \left\| f_a^{(s)} - \left(\left(g^{1/a} \right)_a \right)^{(s)} \right\| &= \max \left\{ \max_{t \in [0, 1/a]} \left| f_a^{(s)}(t) - g^{(s)}(t) \right|, \right. \\ &\left. \max_{t \in [1/a, 1]} \left| \sum_{i=s}^m \frac{1}{(i-s)!} \left(t - \frac{1}{a} \right)^{i-s} \frac{1}{a^{m-i}} f^{(i)}(1) \right. \\ &\left. - \sum_{i=s}^m \frac{1}{(i-s)!} \left(t - \frac{1}{a} \right)^{i-s} g^{(i)} \left(\frac{1}{a} \right) \right| \right\} \\ &\leq \max \left\{ \left\| f_a^{(s)} - g^{(s)} \right\|, \\ &\left. \max_{t \in [1/a, 1]} \sum_{i=s}^m \frac{1}{(i-s)!} \left(t - \frac{1}{a} \right)^{i-s} \left| \frac{1}{a^{m-i}} f^{(i)}(1) - g^{(i)} \left(\frac{1}{a} \right) \right| \right\} \right. \\ &\leq \max \left\{ \left\| f_a^{(s)} - g^{(s)} \right\|, \sum_{i=s}^m \left| \frac{1}{a^{m-i}} f^{(i)}(1) - g^{(i)} \left(\frac{1}{a} \right) \right| \right\} \\ &= \max \left\{ \left\| f_a^{(s)} - g^{(s)} \right\|, \sum_{i=s}^m \left| f_a^{(i)} \left(\frac{1}{a} \right) - g^{(i)} \left(\frac{1}{a} \right) \right| \right\} \right. \\ &\leq \max \left\{ \left\| f_a^{(s)} - g^{(s)} \right\|, \sum_{i=s}^m \left| f_a^{(i)} - g^{(i)} \right| \right\} \\ &= \left\| f_a^{(s)} - g^{(s)} \right\| + \ldots + \left\| f_a^{(m)} - g^{(m)} \right\| \\ &\leq (m-s+1) \|f_a - g\|_m \leq (m+1) \|f_a - g\|_m, \end{split}$$

which completes the proof.

PROPOSITION 2.6. For the mapping Q_m the following estimate of its lower Hausdorff measure of noncompactness holds:

$$\omega(Q_m) \ge \frac{1}{2^m(m+1)}.$$

PROOF. It is enough to show that for $M \subseteq B(\mathbb{C}^m)$ we have

(2.4)
$$\frac{1}{2^m(m+1)}\gamma(M) \le \gamma(Q_m M).$$

If $f \in C^m$, using Lemma 2.4, it follows that the set $A^f = \{f^{1/a} : a \in [1,2]\}$ is compact. Now let $\eta > \gamma(Q_m M)$. Fix an η -net $\{\lambda_1, \ldots, \lambda_q\}$ for $Q_m M$ in C^m . Then the set $K = \bigcup_{i=1}^q A^{\lambda_i}$ is also compact in C^m .

Let $\delta > 0$ be given, and choose a δ -net $\{\xi_1, \ldots, \xi_r\}$ for K in C^m . Let $f \in M$. Fix $i \in \{1, \ldots, q\}$ such that $\|Q_m f - \lambda_i\|_m \leq \eta$. Since $(\lambda_i)^{(1+\|f\|_m)/2} \in K$ we can choose $j \in \{1, \ldots, r\}$ such that $\|(\lambda_i)^{(1+\|f\|_m)/2} - \xi_j\|_m \leq \delta$. Then

$$||f - \xi_j||_m \le ||f - (\lambda_i)^{(1+||f||_m)/2}||_m + ||(\lambda_i)^{(1+||f||_m)/2} - \xi_j||_m$$

$$\le 2^m ||f_{2/(1+||f||_m)} - ((\lambda_i)^{(1+||f||_m)/2})_{2/(1+||f||_m)}||_m + \delta.$$

Now, by Lemma 2.5, we have

$$||f_{2/(1+||f||_m)} - ((\lambda_i)^{(1+||f||_m)/2})_{2/(1+||f||_m)}||_m \le (m+1)||f_{2/(1+||f||_m)} - \lambda_i||_m,$$

hence we obtain

$$||f - \xi_j||_m \le 2^m (m+1) ||f_{2/(1+||f||_m)} - \lambda_i||_m + \delta$$

= $2^m (m+1) ||Q_m f - \lambda_i||_m + \delta \le 2^m (m+1) \eta + \delta.$

Therefore

$$\frac{1}{2^m(m+1)}\,\gamma(M) \le \eta + \frac{\delta}{2^m(m+1)}.$$

By the arbitrariness of δ we obtain (2.4), and the proof is completed.

3. The mapping $P_{u,m}$

For u > 0, we define $P_{u,m} : B(C^m) \to C^m$ by setting

$$(P_{u,m}f)(t) = \begin{cases} 0 & \text{if } t \in \left[0, \frac{1 + \|f\|_m}{2}\right], \\ \frac{u}{(m+1)!} \left(t - \frac{1 + \|f\|_m}{2}\right)^{m+1} & \text{if } t \in \left(\frac{1 + \|f\|_m}{2}, 1\right]. \end{cases}$$

We observe that if f and $g \in B(C^m)$ and $||f||_m = ||g||_m$ we have $P_{u,m}f = P_{u,m}g$, in particular $P_{u,m}f$ coincides with the null function if $||f||_m = 1$.

Clearly $P_{u,m}f \in \mathbb{C}^m$, and for $s = 0, \dots, m$ we have

$$(P_{u,m}f)^{(s)}(t) = \begin{cases} 0 & \text{if } t \in \left[0, \frac{1 + \|f\|_m}{2}\right], \\ \frac{u}{(m+1-s)!} \left(t - \frac{1 + \|f\|_m}{2}\right)^{m+1-s} & \text{if } t \in \left(\frac{1 + \|f\|_m}{2}, 1\right]. \end{cases}$$

In particular, we have $(P_{u,m}f)^{(m)} = P_{u,0}f$.

LEMMA 3.1. Let u > 0. Let $\{f_n\}$ be a sequence in $B(C^m)$ and $f \in B(C^m)$ such that $||f_n||_m \to ||f||_m$, then $||P_{u,m}f_n - P_{u,m}f||_m \to 0$.

PROOF. We will show, that for each s = 0, ..., m we have

(3.1)
$$||(P_{u,m}f_n)^{(s)} - (P_{u,m}f)^{(s)}|| \to 0.$$

To this end, fix $s \in \{0, ..., m\}$ and $\varepsilon > 0$. Find \overline{n} such that for all $n \geq \overline{n}$ we have $\left| \|f_n\|_m - \|f\|_m \right| \leq \varepsilon/u$. We will prove that, for every $n \geq \overline{n}$,

(3.2)
$$|(P_{u,m}f_n)^{(s)}(t) - (P_{u,m}f)^{(s)}(t)| \le \varepsilon, \quad \text{for all } t \in [0,1].$$

If $t \in [0, (1 + ||f||_m)/2] \cap [0, (1 + ||f_n||_m)/2]$, then

$$|(P_{u,m}f_n)^{(s)}(t) - (P_{u,m}f)^{(s)}(t)| = 0.$$

Assume now $||f||_m \le ||f_n||_m$ and $t \in [(1 + ||f||_m)/2, (1 + ||f_n||_m)/2]$, then

$$\left| (P_{u,m}f_n)^{(s)}(t) - (P_{u,m}f)^{(s)}(t) \right| = \frac{u}{(m+1-s)!} \left(t - \frac{1+\|f\|_m}{2} \right)^{m+1-s}$$

$$\leq \frac{u}{(m+1-s)!} \left| \frac{1+\|f_n\|_m}{2} - \frac{1+\|f\|_m}{2} \right|^{m+1-s} \leq u \left| \|f_n\|_m - \|f\|_m \right| \leq \varepsilon.$$

If we assume $||f_n||_m \le ||f||_m$ and $t \in [(1 + ||f_n||_m)/2, (1 + ||f||_m)/2]$, then similarly to the previous case we have

$$\left| (P_{u,m} f_n)^{(s)}(t) - (P_{u,m} f)^{(s)}(t) \right| = \frac{u}{(m+1-s)!} \left(t - \frac{1 + \|f_n\|_m}{2} \right)^{m+1-s} \le \varepsilon.$$

Finally we assume $t \in [\max\{(1 + ||f_n||_m)/2, (1 + ||f||_m)/2\}, 1]$. Then

$$\begin{aligned} & |(P_{u,m}f_n)^{(s)}(t) - (P_{u,m}f)^{(s)}(t)| \\ & \leq \frac{u}{(m+1-s)!} \left| \left(t - \frac{1+\|f_n\|_m}{2} \right)^{m+1-s} - \left(t - \frac{1+\|f\|_m}{2} \right)^{m+1-s} \right| \\ & \leq \frac{u}{(m+1-s)!} \left| \frac{\|f_n\|_m - \|f\|_m}{2} \right| \left[\left(t - \frac{1+\|f_n\|_m}{2} \right)^{m-s} \\ & + \ldots + \left(t - \frac{1+\|f\|_m}{2} \right)^{m-s} \right] \\ & \leq \frac{u}{(m+1-s)!} \left| \frac{\|f_n\|_m - \|f\|_m}{2} \right| (m+1-s) \leq u \left| \|f_n\|_m - \|f\|_m \right| \leq \varepsilon. \ \Box \end{aligned}$$

Proposition 3.2. Let u > 0. The mapping $P_{u,m}$ is compact.

PROOF. Let $\{f_n\}$ be a sequence in $B(C^m)$ and $f \in B(C^m)$ such that

$$||f_n - f||_m \to 0.$$

Then $||f_n||_m \to ||f||_m$, and Lemma 3.1 implies that $P_{u,m}$ is continuous.

Now we prove that the mapping $P_{u,m}$ is sequentially compact. To this end let $\{g_n\}$ be a sequence in $P_{u,m}(B(C^m))$. For each $n \in \mathbb{N}$ fix $h_n \in B(C^m)$ such that $g_n = P_{u,m}h_n$. Passing, if necessary, to a subsequence, we may assume without loss of generality that $||h_n||_m \to c \in [0,1]$. Now we choose $h \in B(C^m)$ such

that $||h||_m = c$ so that $||h_n||_m \to ||h||_m$. Set $g = P_{u,m}h$. Since $||g_n - g||_m = ||P_{u,m}h_n - P_{u,m}h||_m$, Lemma 3.1 implies $||g_n - g||_m \to 0$, as desired.

4. The retraction $R_{u,m}$

Let u > 0 be arbitrarily fixed. We define $T_{u,m} : B(C^m) \to C^m$, by setting

$$T_{u,m} = Q_m + P_{u,m}.$$

Clearly $T_{u,m}$ is a 1-ball-contractive mapping. Our first step is that of proving that $\inf_{f \in B(C^m)} ||T_{u,m}f||_m > 0$. It will require the following lemma.

LEMMA 4.1. Let u > 0 and $f \in B(C^m)$. If $0 \le ||f||_m \le u/(u+4)$, then we have

$$\max\left\{\|f^{(m)}\|, -\|f^{(m)}\| + \frac{u}{2}(1 - \|f\|_m)\right\} \ge \frac{u}{u+4}.$$

PROOF. For every $c \in [0,1]$, we define the auxiliary function $\varphi_c \colon [0,c] \to \mathbb{R}$ by setting

$$\varphi_c(x) = -x + \frac{u}{2}(1-c), \text{ for } x \in [0, c],$$

and we denote by φ the function $\varphi(x) = x$ for $x \in [0, 1]$. Then we set

$$c_u = \max\{c : c \in [0,1] \text{ and } \varphi_c(x) \ge \varphi(x) \text{ for } x \in [0,c]\}.$$

A straightforward calculation shows that $c_u = u/(u+4)$. Then, for every $c \in [0, c_u]$, the function $\psi_c : [0, 1] \to \mathbb{R}$ defined by

$$\psi_c(x) = \max\{\varphi(x), \varphi_c(x)\} = \max\left\{x, -x + \frac{u}{2}(1-c)\right\}$$

satisfies

$$\min_{x \in [0,c]} \psi_c(x) \ge \frac{u}{u+4}.$$

Now, if $f \in B(C^m)$ and $0 \le ||f||_m \le u/(u+4)$, the result follows by (4.1) considering $c = ||f||_m$ and letting $x = ||f^{(m)}||$.

Proposition 4.2. Let u > 0 and $f \in B(\mathbb{C}^m)$. Then

$$||T_{u,m}f||_m \ge \frac{1}{2^m} \left(1 + \frac{u}{u+4}\right)^m \frac{u}{u+4}.$$

PROOF. Fix u > 0 and $f \in B(\mathbb{C}^m)$. Assume first that $0 \le ||f||_m \le u/(u+4)$. We have

$$||T_{u,m}f||_{m} \ge ||(T_{u,m}f)^{(m)}|| = \max_{t \in [0,1]} |(T_{u,m}f)^{(m)}(t)|$$

$$= \max \left\{ \max_{t \in [0,(1+||f||_{m})/2]} \left| f^{(m)} \left(\frac{2}{1+||f||_{m}} t \right) \right|,$$

$$\max_{t \in [(1+||f||_{m})/2,1]} \left| f^{(m)}(1) + u \left(t - \frac{1+||f||_{m}}{2} \right) \right| \right\}$$

$$= \max \left\{ ||f^{(m)}||, \left| f^{(m)}(1) + \frac{u}{2} (1 - ||f||_{m}) \right| \right\}$$

$$\ge \max \left\{ ||f^{(m)}||, f^{(m)}(1) + \frac{u}{2} (1 - ||f||_{m}) \right\}$$

$$\ge \max \left\{ ||f^{(m)}||, -||f^{(m)}|| + \frac{u}{2} (1 - ||f||_{m}) \right\}.$$

In view of Lemma 4.1 we obtain $||T_{u,m}f||_m \ge u/(u+4)$. Now assume $u/(u+4) \le ||f||_m \le 1$. We have

$$||T_{u,m}f||_{m} \ge \max \left\{ \left(\frac{1 + ||f||_{m}}{2} \right)^{m} ||f||, \left(\frac{1 + ||f||_{m}}{2} \right)^{m-1} ||f^{(1)}||, \dots, ||f^{(m)}|| \right\}$$

$$\ge \left(\frac{1 + ||f||_{m}}{2} \right)^{m} \max \left\{ ||f||, ||f^{(1)}||, \dots, ||f^{(m)}|| \right\}$$

$$= \left(\frac{1 + ||f||_{m}}{2} \right)^{m} ||f||_{m} \ge \frac{1}{2^{m}} \left(1 + \frac{u}{u+4} \right)^{m} \frac{u}{u+4}.$$

The proof is completed.

We recall the following properties of the measure γ , which tacitly will be used in the proof of our main result: for bounded sets $A, B \subset X$

- 1. $\gamma(A) = 0$ if and only if A is precompact,
- 2. $\gamma(A) \leq \gamma(B)$ for $A \subseteq B$,
- 3. $\gamma(\overline{\operatorname{co}} A) = \gamma(A)$ where $\overline{\operatorname{co}} A$ denotes the closed convex hull of A,
- 4. $\gamma(A \cup B) = \max{\{\gamma(A), \gamma(B)\}},$
- 5. $\gamma(A+B) \le \gamma(A) + \gamma(B)$,
- 6. $\gamma(\lambda A) = |\lambda| \gamma(A)$ for all $\lambda \in \mathbb{R}$,
- 7. $\gamma([0,1]A) = \gamma(A)$.

THEOREM 4.3. For any $\varepsilon > 0$ there exists a proper k-ball-contractive retraction of the closed unit ball $B(C^m)$ onto $S(C^m)$ with $k < 1 + \varepsilon$, so that $W_{\gamma}(C^m[0,1]) = 1$.

PROOF. Given u > 0, in view of Proposition 4.2, we can define a retraction $R_{u,m} : B(C^m) \to S(C^m)$ by setting

$$R_{u,m}f = \frac{1}{\|T_{u,m}f\|_m} T_{u,m}f.$$

Let now $M \subseteq B(\mathbb{C}^m)$. Since $P_{u,m}$ is a compact mapping, from Propositions 2.3 and 2.6 it follows that

(4.2)
$$\frac{1}{2^m(m+1)}\gamma(M) \le \gamma(T_{u,m}M) \le \gamma(M).$$

Moreover, by the definition of $R_{u,m}$ and by Proposition 4.2, we get

$$R_{u,m}M \subseteq \left[0, \left(\frac{1}{2^m}\left(1 + \frac{u}{u+4}\right)^m \frac{u}{u+4}\right)^{-1}\right] T_{u,m}M.$$

Therefore, using the properties of γ , from (4.2) it follows

$$\gamma(R_{u,m}M) \le \left(\frac{1}{2^m} \left(1 + \frac{u}{u+4}\right)^m \frac{u}{u+4}\right)^{-1} \gamma(M),$$

this means that the retraction $R_{u,m}$ is k_u -ball-contractive with

$$k_u = \left(\frac{1}{2^m} \left(1 + \frac{u}{u+4}\right)^m \frac{u}{u+4}\right)^{-1}.$$

On the other hand, an easy calculation shows that

$$||T_{u,m}f||_m \le ||Q_mf||_m + ||P_{u,m}f||_m \le 1 + \frac{u}{2}$$

for all $f \in B(\mathbb{C}^m)$, and so we have

$$T_{u,m}M \subseteq \left[0, 1 + \frac{u}{2}\right]R_{u,m}M.$$

Therefore we get

$$\gamma(T_{u,m}M) \le \left(1 + \frac{u}{2}\right)\gamma(R_{u,m}M),$$

and from (4.2)

$$\frac{1}{2^m(m+1)}\bigg(1+\frac{u}{2}\bigg)^{-1}\gamma(M) \le \gamma(R_{u,m}M).$$

The latter inequality implies

$$\omega(R_{u,m}) \ge \frac{1}{2^m(m+1)} \left(1 + \frac{u}{2}\right)^{-1},$$

consequently $\omega(R_{u,m}) > 0$ for every u > 0, so that $R_{u,m}$ is a proper retraction. Now given $\varepsilon > 0$, since

$$\lim_{u\to\infty}\frac{1}{2^m}\bigg(1+\frac{u}{u+4}\bigg)^m\frac{u}{u+4}=1,$$

we can find $\overline{u} > 0$ such that $k_{\overline{u}} < 1 + \varepsilon$. Then letting $k = k_{\overline{u}}$ we have that $R_{\overline{u},m}$ is the desired proper k-ball-contractive retraction.

Acknowledgments. We thank the anonymous reviewers for the careful reading of the manuscript and their many insightful comments and suggestions.

References

- [1] M. Annoni, Retrazioni e minimo spostamento negli spazi di Banach, Degree Thesis, (2005).
- [2] M. Annoni and E. Casini, An upper bound for the Lipschitz retraction constant in l₁, Studia Math. 180 (2007), no. 1, 73–76.
- [3] J. APPELL, N.A. ERZAKOVA, S. FALCON SANTANA AND M. VÄTH, On some Banach space constants arising in nonlinear fixed point and eigenvalue theory, Fixed Point Theory Appl. 4 (2004), 317–336.
- [4] J. APPELL, E. DE PASCALE AND A. VIGNOLI, Nonlinear Spectral Theory, de Gruyter, Berlin, 2004.
- [5] Y. Benyamini and Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), no. 3, 439–445.
- [6] K. BOLIBOK, Minimal displacement and retraction problems for balls in Banach spaces, Mariae Curie-Skłodowska University, Ph.D. Thesis, 1999 (in Polish).
- [7] D. CAPONETTI AND G. TROMBETTA, On proper k-ball contractive retractions in the Banach space $BC([0,\infty))$, Nonlinear Func. Anal. Appl. 10 (2005), no. 3, 461–467.
- [8] D. CAPONETTI, A.TROMBETTA AND G. TROMBETTA, A note on boundary conditions for nonlinear operators, Indian J. Pure Appl. Math. 39 (2008), no. 5, 423–433.
- [9] D. CAPONETTI, A.TROMBETTA AND G. TROMBETTA, On boundary conditions for wedge operators on radial sets, Numer. Funct. Anal. Optim. 29 (2008), no. 9–10, 979–986.
- [10] D. CAPONETTI, A.TROMBETTA AND G. TROMBETTA, Examples of proper k-ball contractive retractions in F-normed spaces, J. Math. Anal. Appl. 335 (2007), no. 2, 1105–1118.
- [11] D. CAPONETTI, A.TROMBETTA AND G. TROMBETTA, An extension of Guo's theorem via k-\(\psi\)-contractive retractions, Nonlinear Anal. **64** (2006), no. 9, 1897–1907.
- [12] D. CAPONETTI, A.TROMBETTA AND G. TROMBETTA, Proper 1-ball contractive retractions in Banach spaces of measurable functions, Bull. Austral. Math. Soc. 72 (2005), no. 2, 299–315.
- [13] E. CASINI AND K. GOEBEL, Why and how much Brouwer's fixed point theorem fails in noncompact setting?, Milan J. Math. 78 (2010), no. 2, 371–394.
- [14] E. CASINI AND L. PIASECKI, The minimal displacement and optimal retraction problems in some Banach spaces, J. Nonlinear Convex Anal. 18 (2017), no. 1, 61–71.
- [15] V. COLAO, A. TROMBETTA AND G. TROMBETTA, Hausdorff norms of retractions in Banach spaces of continuous functions, Taiwanese J. Math. 13 (2009), no. 4, 1139–1158.
- [16] W. Feng, A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal. 2 (1997), 163–183.
- [17] K. GOEBEL, On the minimal displacement of points under Lipschitzian mappings, Pacific J. Math. 45 (1973), 151–163.
- [18] K. Goebel, On the problem of retracting balls onto their boundary, Abstr. Appl. Anal. 2 (2003), 101–110.
- [19] K. GOEBEL AND W. A. KIRK, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
- [20] K. Goebel, G. Marino, L. Muglia and R. Volpe, The retraction constant and minimal displacement characteristic of some Banach spaces, Nonlinear Anal. 67 (2007), no. 3, 735– 744.

- [21] I.-S. Kim and M. Väth, Some remarks on measures of noncompactness and retractions onto spheres, Topology Appl. 154 (2007), no. 17, 3056–3069.
- [22] V. Klee, Convex bodies and periodic homeomorphisms in Hilbert spaces, Trans. Amer. Math. Soc. 74 (1953), 10–43.
- [23] V. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45.
- [24] B. NOWAK, On the Lipschitz retraction of the unit ball in infinite dimensional Banach spaces onto boundary, Bull. Acad. Polon. Sci. 27 (1979), 861–864.
- [25] L. PIASECKI, Retracting ball onto sphere in $BC_0(\mathbb{R})$, Topol. Methods Nonlinear Anal. 33 (2009), no. 2, 307–313.
- [26] L. PIASECKI, Retracting a ball onto a sphere in some Banach spaces, Nonlinear Anal. 74 (2011), no. 2, 396–399.
- [27] M. VÄTH, On the minimal displacement problem of γ-Lipschitz maps and γ-Lipschitz retractions onto the sphere, Z. Anal. Anwend. 21 (2002), no. 4, 901–914.
- [28] J. Wośko, An example related to the retraction problem, Ann. Univ. Mariae Curie-Skłodowska **45** (1991), 127–130.

Manuscript received September 26, 2017

accepted March 27, 2018

DIANA CAPONETTI Department of Mathematics and Computer Science University of Palermo 90123 Palermo, ITALY

 $E\text{-}mail\ address:$ diana.caponetti@unipa.it

ALESSANDRO TROMBETTA AND GIULIO TROMBETTA Department of Mathematics and Computer Science University of Calabria 87036 Arcavacata di Rende (CS), ITALY

 $\hbox{\it E-mail address: $aletromb@unical.it, trombetta@unical.it}$