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GEODESICS ON SO(N)

AND A CLASS OF SPHERICALLY SYMMETRIC MAPS

AS SOLUTIONS TO A NONLINEAR GENERALISED

HARMONIC MAP PROBLEM

Stuart Day — Ali Taheri

Abstract. We address questions on existence, multiplicity as well as qual-

itative features including rotational symmetry for certain classes of geomet-

rically motivated maps serving as solutions to the nonlinear system
−div[F ′(|x|, |∇u|2)∇u] = F ′(|x|, |∇u|2)|∇u|2u in Xn,

|u| = 1 in Xn,

u = ϕ on ∂Xn.

Here ϕ ∈ C∞(∂Xn, Sn−1) is a suitable boundary map, F ′ is the derivative

of F with respect to the second argument, u ∈W 1,p(Xn, Sn−1) for a fixed
1 < p < ∞ and Xn = {x ∈ Rn : a < |x| < b} is a generalised annulus.

Of particular interest are spherical twists and whirls, where following [26],

a spherical twist refers to a rotationally symmetric map of the form u : x 7→
Q(|x|)x|x|−1 with Q some suitable path in C ([a, b], SO(n)) and a whirl has

a similar but more complex structure with only 2-plane symmetries. We

establish the existence of an infinite family of such solutions and illustrate
an interesting discrepancy between odd and even dimensions.
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1. Introduction

Let Xn = Xn[a, b] = {x ∈ Rn : a < |x| < b} with 0 < a < b < ∞ be

a generalised annulus and consider the energy functional

(1.1) F[u;Xn] :=

∫
Xn

F (|x|, |∇u|2) dx.

Here F ∈ C 1,2([a, b] × R), that is, C 1 with respect to the first variable and C 2

with respect to the second, is bounded below, suitably convex and monotone in

the second argument with a p-growth at infinity (see Section 2 for details). In

this paper we aim to extremise F over the space of admissible maps given by

(1.2) A p
ϕ (Xn) := {u ∈W 1,p(Xn,Sn−1) : u = ϕ on ∂Xn},

for some fixed 1 < p < ∞ and suitable boundary map ϕ ∈ C∞(∂Xn,Sn−1).

Note that here ∂Xn = ∂Xna ∪ ∂Xnb and as customary (1)

W 1,p(Xn,Sn−1) := {u ∈W 1,p(Xn,Rn) : |u| = 1 a.e. in Xn}.

One motivation for studying such problems comes from liquid crystal theory

and in particular the well-known Oseen–Frank model where the aim is to describe

and classify the director fields u arising as extremisers and minimisers of the

energy functional

EOF[u; Ω] =

∫
Ω

W (u,∇u) dx, u ∈W 1,2(Ω,Sn−1),

subject to suitable boundary conditions. In this setting Ω ⊂ R3 is a bounded

domain representing the body, u is a unit vector-field on Ω (the director field)

with ∇u denoting its gradient and the energy density W = W (u,∇u) is given by

W (u,∇u) = k1|∇ · u|2 + k2|u · (∇× u)|2

+ k3|u× (∇× u)|2 + (k2 + k4)(tr(∇u)2 − (∇ · u)2).

Here kj (1 ≤ j ≤ 4) are the Frank constants that are assumed to satisfy the strict

form of Ericksen inequalities [9]: k1, k2, k3 > 0, k2 > |k4| and 2k1 > k2 + k4,

which result in the coercivity inequality W (u,∇u) ≥ α|∇u|2 for all vector fields

u and some α > 0. Using the identity

tr(∇u)2 + |u · (∇× u)|2 + |u× (∇× u)|2 = |∇u|2,

it is seen that in the case of “equal elastic constants”, that is, k1 = k2 = k3 =: k,

(k4 = 0) the Oseen–Frank energy reduces to a constant multiple of the Dirichlet

energy, here, F with F (r, t) = kt. Note also that tr(∇u)2 − (∇ · u)2 is a null-

Lagrangian, that is, its integral depends only on the boundary values of u (cf.

e.g. [1], [10], [28]).

(1) For more on the structure of Sobolev spaces of maps between Riemannian manifolds

see [2], [4], [10], [12], [23] and the references therein.
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Moving on by considering the first order condition d/dε(F[uε;Xn])|ε=0 = 0

where uε = (u+εψ)/|u+ εψ| for ψ ∈ C∞0 (Xn,Rn) and ε ∈ R is sufficiently small

one can formulate the Euler–Lagrange equation associated with F on A p
ϕ (Xn) as

the nonlinear system

(1.3)


L [u] = div[F ′(|x|, |∇u|2)∇u] + F ′(|x|, |∇u|2)|∇u|2u = 0 in Xn,
|u| = 1 in Xn,
u = ϕ on ∂Xn.

Note that here F ′ denotes the derivative of F with respect to the second variable

and the divergence operator on the first line acts row-wise. (2)

We will look at the particular example F (r, t) = h(r)tp/2 with 1 < p < ∞
and h ∈ C 1([a, b]) satisfying h > 0 on [a, b]. (Here in view of the explicit form of

the integrand we can slightly relax the regularity assumptions as stated earlier.)

This leads to a generalisation of the usual Dirichlet energy called the weighted

p-energy taking the form

(1.4) Ehp [u;Xn] :=

∫
Xn

h(|x|)|∇u|p dx =

∫ b

a

∫
Sn−1

h(r)|∇u|prn−1 dr dHn−1(θ),

where the Euler–Lagrange equation in this case is as formulated by the system

(1.3) with the differential operator L being

(1.5) L [u] = h∆pu+ |∇u|p−2∇u∇h+ h|∇u|pu = 0.

Here ∇h = ḣx|x|−1, ḣ = dh/dr and ∆pu = div(|∇u|p−2∇u) is the p-Laplacian.

For h ≡ 1 and p = 2, as stated, (1.4) is the Dirichlet energy while for the given

range of p, (1.5) is the celebrated p-harmonic map equation. In analogy, we refer

to solutions to (1.5) for arbitrary h as weighted p-harmonic maps. (For more on

p-harmonic maps — the case h ≡ 1 — the reader is referred to [10], [13], [17],

[22] for regularity results and [3], [11], [15], [16] for further results in particular

on the structure of minimisers. See also [8], [10], [14] and the references therein.)

The first class of maps we examine in this paper as solutions to the nonlinear

system (1.3) are the so-called spherical twists as introduced in [26] (see also

[20], [21], [24], [25]). Recall that a spherical twist by definition is a map u ∈
C (Xn,Sn−1) of the form

(1.6) u : x = rθ 7→ Q(r)θ = Q(|x|)x|x|−1, x ∈ Xn,

where a ≤ r = |x| ≤ b and Q ∈ C ([a, b],SO(n)). For obvious geometric reasons

the continuous curve [a, b] 3 r 7→ Q(r) ∈ SO(n) will be referred to as the twist

path associated with the spherical twist u. Now for a spherical twist u = Q(r)θ

(2) A particular solution to this system is the radial projection u(x) = x/|x| where ϕ = x/|x|
on ∂Xn. For reasons that will be clear later we call this the trivial solution (see Section 2).
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to be admissible, that is, to lie in A p
ϕ (Xn), it is evident that the boundary map

ϕ must have the form

ϕ(rθ) =

Raθ, ∂Xna = {x : |x| = a},
Rbθ, ∂Xnb = {x : |x| = b},

(1.7)

with Ra,Rb in SO(n); or on the level of the twist path, Q(a) = Ra, Q(b) = Rb.

Indeed since for any rotation v = Pu of u, upon referring to (1.3), we have

L [v] = L [Pu] = PL [u], L [v] = 0 ⇐⇒ PL [u] = 0 ⇐⇒ L [u] = 0,

there is no loss of generality in specialising to Ra = In, Rb = R, R ∈ SO(n).

We henceforth aim to describe those twist paths Q ∈ C 2([a, b],SO(n)) such that

the corresponding spherical twist u = Q(r)θ gives a (classical) solution to the

system of Euler–Lagrange equations (1.3). This as will be seen involves a study

of the geodesics of the compact lie group SO(n) and their links with geodesics

on the sphere.

The approach here is to restrict the energy to the space of spherical twists.

Existence of multiple solutions to the resulting Euler–Lagrange equation follows

by using variational methods. A more refined analysis then fully characterises the

spherical twists associated with such extremising twist paths that grant solutions

to the original system (1.3). We will see that here there is a curious discrepancy

between odd and even dimensions in that in even dimensions there is an infinite

family of spherical twist solutions to the system (1.3) whereas in odd dimensions

there is either one or none depending as to whether R = In or not! More specifi-

cally the following statement is proved in Section 2. Note that in the formulation

below we are taking advantage of the diagonalisation R = GRDRGt
R with GR,DR

orthogonal and DR block diagonal, specifically, DR = diag(R[η], . . . ,R[η]) for n

even and DR = diag(R[η], . . . ,R[η], 1) for n odd where R[η] is the usual 2 × 2

rotation matrix by angle η ∈ R. (See (2.7)–(2.9) for more details.)

Theorem 1.1. The spherical twist u = Q(r)θ is a solution of the Euler–

Lagrange system (1.3) provided that depending on n being even or odd the twist

path Q = Q(r) has the explicit form below:

(a) (n even) For m ∈ Z and P in the centraliser of DR in O(n) we have

(1.8) Q(r;m) = GRP diag(R[G ](r), . . . ,R[G ](r))PtGt
R,

where G = G (r;m) ∈ C 2([a, b],R) is the unique solution to the boundary

value problem
d

dr

[
F ′
(
r,
n− 1

r2
+ Ġ 2

)
rn−1Ġ

]
= 0,

G (a) = 0,

G (b) = 2πm+ η.

(1.9)
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(b) (n odd) R = In and Q(r) ≡ In.

We remark that in the case n odd, that is, (b) above, the problem admits

a solution in the form of a spherical twist if and only if R = In, in which

case this solution is the radial projection u = x/|x|. Hence unlike the n even

case here there are no solutions for other choices of R. We also introduce and

establish conditions that result in a converse to this theorem (see Remark 2.3

and Lemma 2.5 for details).

The second class of maps we examine in this paper as solutions to the system

(1.3) are the spherical whirls (or whirls for simplicity). These by definition are

maps u ∈ C (Xn,Sn−1) of the form

u : x 7→ Q(ρ1, . . . , ρN )x|x|−1, x ∈ Xn,

where Q = Q(ρ1, . . . , ρN ) is a continuous SO(n)-valued map depending on the

spatial variable x = (x1, . . . , xn) through the 2-plane variables ρ = (ρ1, . . . , ρN ),

that, depending on the dimension n being even or odd, we have the description:

(a) (n even) writing n = 2N we set k = N and then

ρj =
√
x2

2j−1 + x2
2j for 1 ≤ j ≤ N.

(b) (n odd) writing n = 2N − 1 we set k = N − 1 and then

ρj :=


√
x2

2j−1 + x2
2j for 1 ≤ j ≤ N − 1,

xn for j = N.

It is seen that the 2-plane variables ρ = (ρ1, . . . , ρN ) lie in AN ⊂ RN where

AN = {ρ ∈ RN+ : a < |ρ| < b} (n = 2N) and AN = {ρ ∈ RN−1
+ ×R : a < |ρ| < b}

(n = 2N − 1). On account of this and as a result of the earlier discussion we

hereafter suppose Q ∈ C (AN ,SO(n)). Indeed prompted by the commutativity

and rotational symmetry of whirls as will become clear later (see also [7], [18],

[19]) we assume Q to take values on a fixed maximal torus of SO(n), here, and

for spherical whirls as (3)

(1.10) Q(ρ) =

diag(R[f1], . . . ,R[fk]) for n = 2N,

diag(R[f1], . . . ,R[fk], 1) for n = 2N − 1,

where for each 1 ≤ l ≤ k, fl ∈ C (AN ,R) satisfies fl ≡ 0 when |ρ| = a and fl ≡
2πm+ η for some m ∈ Z when |ρ| = b. For a spherical whirl u = Q(ρ1, . . . , ρN )θ

(3) As any pair of maximal tori on a compact Lie group are conjugate the general form of

(1.10) will be PQ(ρ)Pt with P ∈ SO(n). Here without loss of generality we have set P = In and

taken the maximal torus the one just described. Note that as a result in the description of the

boundary map ϕ we have R = diag(R[η], . . . ,R[η]) (n = 2N) and R = diag(R[η], . . . ,R[η], 1)

(n = 2N − 1).
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the weighted p-energy (1.4) can be seen to reduce for p = 2 to

Eh2 [u;Xn] =

∫
Xn

h(r)

[
n− 1

r2
+

1

r2

k∑
l=1

|∇fl|2ρ2
l

]
dx.

As a result extremisers of Eh2 within the class of whirls should satisfy for each

fl = fl(ρ1, . . . , ρN ) the equation (see Section 3 for details and notation)

div

(
h(r)

ρ2
l

r2

k∏
j=1

ρj∇f
)

= 0 in AN ,

f ≡ 0 on (∂AN )a,

f ≡ 2mπ + η on (∂AN )b,

ρ2
l

k∏
j=1

ρj∂νf = 0 on ΓN .

We see that the above has a unique solution for each m ∈ Z given explicitly by

the formulation

(1.11) f(ρ;m) =
2πm+ η

β(b)
β(|ρ|), β(t) :=

∫ t

a

s1−n

h(s)
ds, ρ ∈ AN ,

where |ρ|2 =
N∑
l=1

ρ2
l and for the integral on the right a ≤ t ≤ b. Using the tech-

niques developed and used in Section 2 we then prove the following statement.

Theorem 1.2. Consider the weighted Dirichlet energy Eh2 as given by (1.4)

with h ∈ C 1([a, b]) satisfying h > 0 on [a, b], the system (1.3) with F (r, t) = h(r)t

and ϕ as above. Then, depending on n being even or odd, the following hold.

(a) (n even) There is a countably infinite family of spherical whirls serving

as solutions to (1.3). Specifically, for each m ∈ Z the map u(x) =

Q(ρ;m)x|x|−1 with Q(ρ;m) = diag(R[f ](ρ;m), . . . ,R[f ](ρ;m)) and f =

f(ρ,m) as in (1.11) is a solution to (1.3).

(b) (n odd) The only solution to (1.3) in the form of a spherical whirl is

the radial projection u ≡ x|x|−1 and only when R = In (respectively,

ϕ = x|x|−1).

2. Spherical twists as extremisers of the F-energy
and the nonlinear system (1.3)

Let Xn = Xn[a, b] be as before and consider the F-energy functional as given

by the integral

F[u;Xn] :=

∫
Xn

F (|x|, |∇u|2) dx.(2.1)
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We assume that F ∈ C 1,2([a, b]×R), that is, C 1 with respect to the first variable

and C 2 with respect to the second. Furthermore, we assume there exist c1, c2 > 0

and c0 ∈ R such that

|F ′(r, ζ2)ζ| ≤ c2|ζ|p−1 for all a ≤ r ≤ b, for all ζ ∈ R,

c0 + c1|ζ|p ≤ F (r, ζ2) ≤ c2|ζ|p for all a ≤ r ≤ b, for all ζ ∈ R,

with 1 < p <∞ fixed. As a result F is well-defined and finite on W 1,p(Xn,Sn−1).

We further assume that F ′ > 0, F ′′ ≥ 0 on [a, b]×(0,∞) (recall that ′ denotes de-

rivative in the second argument) and that the function ζ 7→ F (r, ζ2) is uniformly

convex in ζ for all a ≤ r ≤ b and ζ ∈ R.

We seek to extremise F over the space A p
ϕ (Xn) defined by (1.2) with ϕ given

by (1.7) and establish the existence of multiple spherical twist solutions to the

associated Euler-Lagrange system given by (1.3). We start by calculating some

useful quantities associated with spherical twists.

We seek to extremise F over the space A p
ϕ (Xn) defined by (1.2) with ϕ given

by (1.7) and establish the existence of multiple spherical twist solutions to the

associated Euler–Lagrange system given by (1.3). We start by calculating some

useful quantities associated with spherical twists.

Proposition 2.1 (Key identities). Suppose u is a spherical twist with a twice

continuously differentiable twist path Q. Then with r = |x|, θ = x/|x| we have

(a) ∇u =
Q + (rQ̇−Q)θ ⊗ θ

r
.

(b) |∇u|2 =
n− 1

r2
+ |Q̇θ|2.

(c) ∆u =
1

r2
((n− 1)(rQ̇−Q) + r2Q̈)θ.

(d) ∆pu = |∇u|p−4

{
p− 2

2r
(Q + (rQ̇−Q)θ ⊗ θ)

(
∇|Q̇θ|2 − 2(n− 1)

r3
θ

)
+

1

r2

(
n− 1

r2
+ |Q̇θ|2

)
((n− 1)(rQ̇−Q) + r2Q̈) θ

}
.

(e) div [F ′(r, |∇u|2)∇u]

=
1

r
F ′′(r, |∇u|2)(Q + (rQ̇−Q)θ ⊗ θ)

(
∇|Q̇θ|2 − 2(n− 1)

r3
θ

)
+ ∂rF

′(r, |∇u|2)Q̇θ +
1

r2
F ′(r, |∇u|2)((n− 1)(rQ̇−Q) + r2Q̈)θ.

Proof. Let u = Q(r)θ be a spherical twist with a differentiable twist path Q.

A straightforward differentiation then yields ∇u = (Q+(rQ̇−Q)θ⊗θ)/r. Hence

upon calculating the Hilbert–Schmidt norm of this gradient we have

|∇u|2 = tr {[∇u][∇u]t} =
n− 1

r2
+ |Q̇θ|2.
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These are the first two identities in the list. To pass on to the remaining ones,

assuming a further differentiability on Q, we can write, by using the chain rule:

div [F ′(r, |∇u|2)∇u] = ∇u∇[F ′(r, |∇u|2)] + F ′(r, |∇u|2)∆u(2.2)

= F ′′(r, |∇u|2)∇u∇(|∇u|2) + ∂rF
′(r, |∇u|2)∇u θ + F ′(r, |∇u|2)∆u.

Now differentiating the Hilbert–Schmidt norm squared |∇u|2 using the second

identity in the list we can write

(2.3) ∇|∇u|2 = ∇[(n− 1)r−2 + |Q̇θ|2] = ∇|Q̇θ|2 − 2(n− 1)r−3θ,

and likewise taking the divergence of ∇u gives ∆u as formulated in the third

identity. Substituting these two into (2.2) gives the fifth identity in the list. Fi-

nally the fourth identity describing ∆pu follows from the fifth one by specialising

to F (r, t) = 2p−1tp/2. �

Using the calculations in Proposition 2.1, for a given spherical twist u =

Q(r)θ and exponent 1 ≤ p < ∞, we can express the W 1,p-Sobolev norm by

writing

‖u‖pW 1,p(Xn) =

∫
Xn

(|u|p + |∇u|p) dx

=

∫ b

a

∫
Sn−1

{
|Qθ|p +

(
n− 1

r2
+ |Q̇θ|2

)p/2}
rn−1 dr dHn−1(θ),

and its straightforward to see that this is finite if and only if

Q ∈W 1,p((a, b),SO(n)).

With this in mind we introduce the space of admissible twist paths

(2.4) Bp
R = Bp

R([a, b]) := {Q ∈W 1,p((a, b), SO(n)) : Q(a) = In, Q(b) = R}.

Then, for the boundary map ϕ defined by (1.7) with Ra = In and Rb = R ∈
SO(n), we have

u = Q(r)θ ∈ A p
ϕ (Xn)⇐⇒ Q ∈ Bp

R([a, b]).

Again, by referring to the calculations in Proposition 2.1, we can write the F-

energy of a spherical twist u = Q(r)θ as

F[Q(r)θ;Xn] =

∫
Xn

F

(
r,
n− 1

r2
+ |Q̇θ|2

)
dx(2.5)

=

∫ b

a

∫
Sn−1

F

(
r,
n− 1

r2
+ |Q̇θ|2

)
rn−1 dr dHn−1(θ)

=

∫ b

a

G(r, Q̇)rn−1 dr =: G[Q; (a, b)]

hence, introducing the energy functional Q 7→ G[Q; (a, b)] on the space of twist

paths Bp
R, where in the last line the integrand G = G(r,H) with a ≤ r ≤ b and
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H first in the space of n× n skew-symmetric matrices (i.e. satisfying Ht = −H)

and then extended to all n× n matrices H (see Lemma 2.2 below) is given by

G(r,H) :=

∫
Sn−1

F

(
r,
n− 1

r2
+ |Hθ|2

)
dHn−1(θ).(2.6)

In what follows for the sake of convenience and future reference we assume

that the orthogonal matrix R, describing the boundary map ϕ, is expressed in

an orthogonally block diagonalised form as:

(1) (n even) with n = 2k,

(2.7) R = GRDRGt
R := GR tr(∇u)2 − (∇ · u)2diag(R[η1],R[η2], . . . ,R[ηk])Gt

R,

(2) (n odd) with n = 2k + 1,

(2.8) R = GRDRGt
R := GRdiag(R[η1],R[η2], . . . ,R[ηk], 1)Gt

R.

Here GR and DR are both n × n orthogonal matrices and R[s] (with real s)

refers to the usual 2× 2 rotation matrix (counter clockwise rotation by angle s)

as given by (cf. also (2.15) below)

R[s] := exp(sJ) =

[
cos s − sin s

sin s cos s

]
.(2.9)

Note that there is no uniqueness in the choice of GR, however, in what follows

we pick one such GR and then fix it throughout. We begin by computing the

Euler–Lagrange equation associated with G over the space Bp
R.

Lemma 2.2. The Euler–Lagrange equation associated with the energy G de-

fined by (2.5) over the space of admissible twist paths Bp
R is given by

(2.10)

∫
Sn−1

d

dr

{
rn−1F ′

(
r,
n− 1

r2
+ |Q̇θ|2

)
· [Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ]

}
dHn−1(θ) = 0.

Proof. First fix Q and for ε > 0 define the variation Qε = Q + ε(F− Ft)Q

where F ∈ C∞0 ((a, b),Mn×n) is arbitrary. Then to the first order in ε one can

compute that Qε takes values in SO(n). We differentiate with respect to ε and
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set equal to zero and with a slight abuse of notation write

0 =
d

dε
G[Qε; (a, b)]

∣∣∣∣
ε=0

=
d

dε

∫ b

a

G(r, Q̇ε)r
n−1 dr

∣∣∣∣
ε=0

(2.11)

=

∫ b

a

∫
Sn−1

2F ′
(
r,
n− 1

r2
+ |Q̇θ|2

)〈
Q̇θ, (Ḟ− Ḟt)Qθ

〉
rn−1 dHn−1dr

=

∫ b

a

〈∫
Sn−1

−2
d

dr

[
rn−1F ′

(
r,
n− 1

r2
+ |Q̇θ|2

)
Q̇θ ⊗Qθ

]
dHn−1,

F− Ft
〉
dr.

Since this holds for all F ∈ C∞0 ((a, b),Mn×n) the skew-symmetric part of the

matrix represented by the spherical integral must be zero. �

Remark 2.3. In view of Lemma 2.2 a sufficient condition for a twist path

Q = Q(r) to be an extremiser of the energy functional G is for it to satisfy the

stronger condition

(2.12)
d

dr

{
rn−1F ′

(
r,
n− 1

r2
+ |Q̇θ|2

)[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
= 0,

for a < r < b, θ ∈ Sn−1. In general, however, this is not a two way implication.

As part of the analysis below we exploit some consequences of this stronger

equation, particularly, in virtue of the relation it bears to the original system

(1.3) as well as the nature of the geodesics on SO(n).

Now we do not intend to solve (2.12) directly but instead show that under

sufficient regularity, if Q = Q(r) solves (2.12) for all θ ∈ Sn−1, then it must have

the form Q(r) = exp(G (r)H) for suitable G = G (r) ∈ C 1([a, b]) and constant

n× n skew-symmetric H; thus relating to the formulation of Q as given in parts

(a) and (b) in Theorem 1.1. We first establish the following lemma that provides

a connection between geodesics on Sn−1 and geodesics on SO(n). This lemma will

also enforce restrictions on the matrix R associated with the boundary map ϕ.

For notational convenience let us also write Jn for the n × n skew-symmetric

matrix Jn = diag(J, . . . , J) when n is even and Jn = diag(J, . . . , J, 0) when n is

odd. Here of course J = J2 = R(π/2) (see (2.15) below).

Lemma 2.4. Let 0 < ` < ∞ and K ∈ C 2((0, `),SO(n)) ∩ C ([0, `],SO(n))

satisfy K(0) = In and K(`) = R. Then the following are equivalent:

(a) The curve s 7→ K(s)θ with 0 ≤ s ≤ ` is a geodesic on Sn−1 for every

θ ∈ Sn−1.

(b) Depending on n being even or odd one of (i) or (ii) described below holds:

(i) (n even) R = GRdiag(R[η], . . . ,R[η])Gt
R for some GR in O(n) and

η ∈ R and that there exists m ∈ Z and P in the centraliser of DR



Geodesics on SO(n) and a Class of Spherically Symmetric Maps 647

in O(n) such that, with H (s;m; `) := (2πm+ η)s/`, K admits the

factorisation

K(s;m) = exp(H (s;m; `)H) H = GRPJnPtGt
R, 0 ≤ s ≤ `,(2.13)

= GRP diag(R[H ](s;m; `), . . . ,R[H ](s;m; `))PtGt
R,

(ii) (n odd) R = In and K(s) ≡ In.

Proof. It is well known that on a round sphere geodesics γ : [0, `] → Sn−1

are great circles and satisfy the geodesic equation γ̈ + |γ̇|2γ = 0. Hence, if

s 7→ K(s)θ is a geodesic for all θ then K satisfies the equation[
K̈ + |K̇θ|2K

]
θ = 0(2.14)

for all θ ∈ Sn−1. We claim that if K satisfies (2.14) then |K̇θ|2 is constant in θ

and s. Indeed, differentiating with respect to s yields

d

ds
|K̇θ|2 = 2〈K̈θ, K̇θ〉 = −2|K̇θ|2〈Kθ, K̇θ〉 = −2|K̇θ|2〈K̇tKθ, θ〉 = 0,

where we have used the fact that K̇tK is skew-symmetric. It therefore follows

that |K̇θ|2 = ψ(θ) for some ψ ∈ C (Sn−1,R). By rearranging (2.14) we obtain

KtK̈θ = −ψ(θ)θ. For fixed s this implies that −ψ(θ) is an eigenvalue of the

matrix KtK̈. However, since KtK̈ has at most n eigenvalues it follows, by the

continuity of ψ, that ψ must be constant say ψ(θ) = |K̇θ|2 = t2.

We now conclude that if K(s)θ is a geodesic for all θ then K must satisfy the

linear ODE: K̈ + t2K = 0. To solve this we make the ansatz K(s) = exp(sA)K0

for some skew-symmetric matrix A and some K0 ∈ SO(n). By differentiating K

it is seen that A satisfies [A2 + t2In]K = 0. This implies that A2 = −t2In. Using

spectral theorem we may write A in block diagonal form, that is,

(2.15) A =

P diag(t1J, . . . , tkJ)Pt if n = 2k,

P diag(t1J, . . . , tkJ, 0)Pt if n = 2k + 1,
J =

[
0 −1

1 0

]
,

for some P ∈ O(n) and (tj)
k
j=1 ⊂ R. By writing A in block diagonal form as

above we see that for n = 2k, we have

A2 = −P diag(t21I2, . . . , t
2
kI2) Pt = −t2In ⇒ |t1| = . . . = |tk| = |t|.

Similarly for n = 2k + 1, we have

A2 = −P diag(t21I2, . . . , t
2
kI2, 0) Pt = −t2In ⇒ |t1| = . . . = |tk| = |t| = 0.

We now chose A and K0 so that K(0) = In and K(`) = R. First, if A is chosen,

then K(0) = In implies K0 = exp(−0 ·A) = In and hence K(s) = exp(sA). We

now choose A such that K(`) = exp(`A) = R. This is done by writing exp(`A)

in block diagonal form and comparing with R (cf. [26, Theorem 2.1]). �
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Referring to the discussion in the previous lemma, for a Q ∈ C 1([a, b],SO(n)),

the integral

I(Q, θ) =

∫ b

a

|Q̇θ| dr,(2.16)

represents the length of the spherical curve γ(r) = Q(r)θ. In the next lemma

we show that for a given Q satisfying (2.12) for every θ, if the value of this

integral is also independent of θ then Q has a factorisation similar to that given

in Lemma 2.4.

Lemma 2.5. Let R be as given in Lemma 2.4 and for each m ∈ Z let G =

G ( · ,m) ∈ C 2([a, b]) be a solution to the boundary value problem

(2.17)


d

dr

[
F ′
(
r,
n− 1

r2
+ Ġ 2

)
rn−1Ġ

]
= 0 in (a, b),

G (a) = 0,

G (b) = 2πm+ η.

Let Q ∈ C 2((a, b),SO(n)) ∩ C 1([a, b],SO(n)) satisfy Q(a) = In and Q(b) = R.

Then the following are equivalent:

(a) Q is a solution to (2.12) for every θ ∈ Sn−1 and the integral in (2.16) is

independent of θ.

(b) Depending on n being even or odd, one of (i) or (ii) below holds.

(i) (n even) There exists m ∈ Z and P is in the centraliser of DR in

O(n) such that Q = Q(r;m) admits the factorisation

Q(r;m) = exp(G (r;m)H) H = GRPJnPtGt
R, a ≤ r ≤ b,(2.18)

= GRP diag(R[G ](r;m), . . . ,R[G ](r;m))PtGt
R.

(ii) (n odd) R = In and Q(r) ≡ In.

Proof. We start by verifying that functions of the form (2.18) are solutions

to (2.12) (the odd case is trivial). If Q is given by (2.18) then we have

Q̇θ ⊗Qθ = Ġ HQθ ⊗Qθ,

Q̈θ ⊗Qθ = G̈ HQθ ⊗Qθ − Ġ 2Qθ ⊗Qθ,

where in concluding the second identity we have used

(2.19) H2 = GRPJ2
nPtGt

R = −GRPInPtGt
R = −In.



Geodesics on SO(n) and a Class of Spherically Symmetric Maps 649

Therefore by substitution and straightforward differentiation starting from (2.12)

we have

(2.20)
d

dr

{
rn−1F ′

(
r,
n− 1

r2
+ |Q̇θ|2

)[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
=

{
d

dr

[
F ′
(
r,
n− 1

r2
+ Ġ 2

)
rn−1

]
Ġ + F ′

(
r,
n− 1

r2
+ Ġ 2

)
rn−1G̈

}
× (HQθ ⊗Qθ −Qθ ⊗HQθ) = 0,

as a result of G being a solution to (2.17).

Now to prove the reverse implication, first note that if I(Q, θ) = 0 then we

have |Q̇θ| = 0 and hence Q ≡ In. We can therefore assume for the rest of the

proof that I(Q, θ) > 0.

Next, observe that if Q is a solution to (2.12) then multiplying (2.12) by Qθ

and using the observation [Qθ ⊗ Q̈θ]Qθ = −|Q̇θ|2Qθ it follows that Q satisfies

(2.21)
d

dr

[
rn−1F ′

(
r,
n− 1

r2
+ |Q̇θ|2

)
Q̇θ

]
+ rn−1F ′

(
r,
n− 1

r2
+ |Q̇θ|2

)
|Q̇θ|2Qθ = 0.

Now the quantity p(r, θ) = F ′(r, (n−1)r−2 + |Q̇θ|2)rn−1|Q̇θ| is constant in r. To

see this we differentiate with respect to r and use the fact that Q solves (2.21)

to find

d

dr
p(r, θ) =

d

dr

[
F ′
(
r,
n− 1

r2
+ |Q̇θ|2

)
rn−1

]
|Q̇θ|

+

[
F ′
(
r,
n− 1

r2
+ |Q̇θ|2

)
rn−1

]
〈Q̈θ, Q̇θ〉
|Q̇θ|

=
d

dr

[
F ′
(
r,
n− 1

r2
+ |Q̇θ|2

)
rn−1

]
|Q̇θ|

− d

dr

[
F ′
(
r,
n− 1

r2
+ |Q̇θ|2

)
rn−1

]
〈Q̇θ, Q̇θ〉
|Q̇θ|

−
[
F ′
(
r,
n− 1

r2
+ |Q̇θ|2

)
rn−1

]
〈Q̇θ,Qθ〉|Q̇θ|2

|Q̇θ|
= 0,

where in the last line we have used the fact that QtQ̇ is skew-symmetric. Note

that this argument shows that p(r, θ), as a function of r, is a positive constant

on any interval on which |Q̇θ| is non-zero and so a basic continuity argument

implies that either |Q̇θ| ≡ 0 on [a, b] or |Q̇θ| > 0 on [a, b]. It follows that for each

θ the function

(2.22) F (r, θ) :=

∫ r

a

|Q̇(τ)θ| dτ, a ≤ r ≤ b,
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is a solution to (2.17) with F (b, θ) = I(Q, θ) > 0. We now claim that F =

F (r, θ) is independent of θ. Indeed solutions to (2.10) are extremals of the

energy functional

G 7→
∫ b

a

F

(
r,
n− 1

r2
+ Ġ 2

)
rn−1 dr.

It is straightforward to verify that this functional is strictly convex (due to the

assumptions on F : F ′ > 0 and F being convex in t). Therefore, using standard

convexity arguments, solutions to (2.10) are the unique minimisers of the energy

functional with respect to their own boundary conditions. This implies that as

F (r, θ) is a solution to (2.10) for all θ and as the boundary conditions of F are

independent of θ it follows from uniqueness that the function F (r, θ) must be

independent of θ.

Next, since F ′ > 0 we have that non-trivial solutions to (2.17) are strictly

monotone and hence invertible. Thus we can make use of the change of variables

r 7→ s(r) with s(r) = F (r). Let K(s) = Q(r(s)) where r = r(s) denotes the

inverse of s = s(r) for a ≤ r ≤ b. Then K ∈ C 2((0, `)),SO(n))∩C ([0, `)],SO(n)),

where ` = F (b). Upon writing Q(r) = K(s(r)), using the chain rule and utilising

(2.21), we have

(2.23)
d

ds

[
rn−1F ′

(
r,
n− 1

r2
+ ṡ2|K̇θ|2

)
ṡK̇θ

]
+ rn−1F ′

(
r,
n− 1

r2
+ ṡ2|K̇θ|2

)
|K̇θ|2ṡKθ = 0.

Since |Q̇θ|2 = Ḟ 2 we have that |K̇θ|2 = |Q̇θ|2/Ḟ 2 = 1. Hence, since F satisfies

(2.17), we have that

rn−1F ′
(
r,
n− 1

r2
+ ṡ2|K̇θ|2

)
ṡ = rn−1F ′

(
r,
n− 1

r2
+ Ḟ 2

)
Ḟ = c,(2.24)

for some constant c ∈ R. Therefore, equation (2.23) reduces to

c

(
d

ds
K̇θ + |K̇θ|2K

)
θ = 0.(2.25)

This is precisely the geodesic equation on spheres (2.14) from the proof of Lemma

2.4. In odd dimensions there are no K that solve this with |K̇θ|2 = 1 and so there

are no solutions if I(Q, θ) 6= 0. On the other hand if n is even by Lemma 2.4 we

must have F (b) = |2πm+ η| for some m ∈ Z and K is given by

K(s) = GRP diag(R[H ](s;m), . . . ,R[H ](s;m))PtGt
R

where H (s;m) = ±s depending on 2πm + η being positive or negative. (Note

that when 2πm + η ≥ 0 then F is a solution to (2.17) and when 2πm + η < 0

then −F is a solution to (2.17).) It now follows that when n is even

Q(r) = K(F (r)) = GRP diag(R[G ](r), . . . ,R[G ](r))PtGt
R.
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This therefore completes the proof of the lemma. �

Proof of Theorem 1.1. We start by proving the existence of solutions

to (2.17). The equation (2.17) is the Euler–Lagrange equation associated with

the energy G 7→ F[exp(G (r)H)]. Due to the assumptions on the integrand F

this energy is sequentially lower semi-continuous and coercive. One can then

prove existence of solutions to (2.17) for each m ∈ Z using the direct method

and regularity is obtained by standard methods (cf. [5]).

We now justify that the spherical twist u(x) = Q(r)θ with Q = Q(r) defined

by Lemma 2.5, satisfies the Euler–Lagrange equation (1.3). First, for Q of the

form (2.18), we have Q̇(r) = Ġ (r)HQ where H is the skew-symmetric matrix

H = GRPJnPtGt
R satisfying (2.19), hence

|Q̇θ|2 =
〈
Ġ (r)HQθ, Ġ (r)HQθ

〉
= Ġ (r)2〈θ, θ〉 = Ġ (r)2.

Anticipating (2.1), we can easily calculate that ∇|Q̇θ|2 = 2Ġ (r)G̈ (r)θ thus

∇u∇(|∇u|2) = 2

(
Ġ (r)G̈ (r)− n− 1

r3

)
Ġ (r)HQ(r)θ.

We can now verify, using Proposition 2.1, that the spherical twist with twist

path as defined in part (a) of the theorem is a solution to (1.3). Indeed referring

to (1.3) we can write

L [u] = div [F ′(r, |∇u|2)∇u] + F ′(r, |∇u|2)|∇u|2u(2.26)

= 2F ′′(r, |∇u|2)

(
Ġ G̈ − n− 1

r3

)
Q̇θ + ∂rF

′(r, |∇u|2)Q̇θ

+ F ′(r, |∇u|2)× 1

r2

(
(n− 1)(rQ̇−Q) + r2Q̈

)
θ

+ F ′(r, |∇u|2)

(
Ġ 2 +

n− 1

r2

)
Qθ

=

{
2F ′′(r, |∇u|2)

(
Ġ G̈ − n− 1

r3

)
Ġ

+ ∂rF
′(r, |∇u|2)Ġ + F ′(r, |∇u|2)

(
n− 1

r
Ġ + G̈

)}
HQθ = 0.

Note that the term in the curly brackets in the last equation in (2.26) is zero as

a consequence of G satisfying the first equation in (2.17) from Lemma 2.5. This

finishes part (a).

Now for part (b) we note that for u = x/|x| referring to the key identities in

Proposition 2.1 with Q ≡ In we can write

L [u] = div [F ′(r, |∇u|2)∇u] + F ′(r, |∇u|2)|∇u|2u(2.27)

= ∇u∇F ′(r, |∇u|2) + F ′(r, |∇u|2)[∆u+ |∇u|2u] = 0
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as a result of ∆u+ |∇u|2u = 0 and F ′(r, |∇u|2) being solely a function of r and

therefore its gradient being a (scalar function) multiple of θ = x|x|−1. �

2.1. Weighted p-harmonic maps for a continuous h. In this section

we take a closer look at the integrand F (r, ζ2) = h(r)ζp for some weight h ∈
C 1([a, b]) satisfying the strict inequality h > 0 on [a, b] and consider the resulting

weighted p-energy (with p > 1) given by the integral

Ehp [u;Xn] :=

∫
Xn

h(|x|)|∇u|p dx =

∫ b

a

∫
Sn−1

h(r)|∇u|prn−1 dr dHn−1.(2.28)

Recall that extremisers of Ehp hereafter called weighted p-harmonic maps satisfy

the associated Euler–Lagrange system (1.5). It is the aim here to characterise the

spherical twists u granting solutions to this system. Indeed using the discussion

and arguments in the previous section it is plain that here we have the following

conclusion serving as the counterpart of Theorem 1.1 in the introduction.

Theorem 2.6. Let h ∈ C 1([a, b]) satisfy h > 0 on [a, b] and suppose R

is as in Lemma 2.4. Then the spherical twist u = Q(r)θ is a solution to the

system (1.3)–(1.5) provided that depending on n being even or odd, the twist

path Q = Q(r) has the explicit form.

(a) (n even) For any m ∈ Z and P is in the centraliser of DR in O(n), we

have

(2.29) Q(r;m) = GRP diag(R[G ](r), . . . ,R[G ](r))PtGt
R,

where G = G (r;m) ∈ C 2([a, b],R) is a solution to the boundary value

problem

(2.30)



G̈

[
(p− 1)Ġ 2 +

n− 1

r2

]
+
n− 1

r
Ġ

[
Ġ 2 +

n+ 1− p
r2

]
+
ḣ

h
Ġ

[
Ġ 2 +

n− 1

r2

]
= 0,

G (a) = 0,

G (b) = 2πm+ η.

(b) (n odd) R = In and Q(r) ≡ In.

Note that again in the n odd case there is spherical twist solution to the

system (1.3)–(1.5) only when R = In in which case umust be the radial projection

x/|x|. We next specialise to the case p = 2 and explicitly compute spherical twists

that are weighted 2-harmonic maps for a given weight function h as above. First
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the ODE in Theorem 2.6 in this case reduces to
G̈ +

n− 1

r
Ġ +

ḣ

h
Ġ = 0 in (a, b),

G (a) = 0,

G (b) = 2πm+ η.

Interestingly the explicit solution G = G (r;m) with a ≤ r ≤ b can then be seen

to be given by the formulation

(2.31) G (r) =
2πm+ η

β(b)
β(r),

where β is the function given by the integral

(2.32) β(r) =

∫ r

a

s1−n

h(s)
ds.

As a result in the n even case the required weighted 2-harmonic maps u = Q(r)θ

are obtained via (2.29) by substituting for G from (2.31). Note that the Eh2 -

energy of these extremising maps takes the explicit form

Eh2 [Q(r)θ;Xn] =

∫ b

a

∫
Sn−1

rn−1h(r)|∇[Q(r)θ]|2 dr dHn−1(θ)

=

∫ b

a

nωnr
n−1h(r)

[
n− 1

r2
+

(
(2πm+ η)r1−n

β(b)h(r)

)2]
dr,

where ωn = |Bn1 |. By inspection this energy is seen to diverge quadratically as

|m| ↗ ∞. Note also that the condition h > 0 here ensures the coercivity of

the energy and the ellipticity of the resulting Euler–Lagrange system whilst for

the sole purpose of (2.31)–(2.32) all that is required of h is for s1−n/h(s) to be

L1-integrable on (a, b).

2.2. Weighted harmonic maps with discontinuous h. As a variation

of the above theme in this subsection we consider the weighted Dirichlet energy

where the weight function h has jump discontinuities. For the ease of exposition

and clarity here we assume that there are only finitely many such jumps within

the interval (a, b) but a similar analysis can also be carried out for infinitely

many jumps. To start let us consider first the case of a single jump discontinuity

at a point c ∈ (a, b):

Eh2 [u;Xn] =

∫
Xn

h(|x|)|∇u|2 dx, where h(r) =

h1 if r ∈ [a, c],

h2 if r ∈ (c, b],
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and h1, h2 ∈ R are fixed (non-zero) constants. (4) If we restrict to spherical

twists then we can write Eh2 [Qθ;Xn] = ωnGh2 [Q] where

Gh2 [Q] := h1

∫ c

a

[
n
n− 1

r2
+ |Q̇|2

]
rn−1 dr + h2

∫ b

c

[
n
n− 1

r2
+ |Q̇|2

]
rn−1 dr.

Similarly to Lemma 2.2 we can compute that the Euler–Lagrange equation as-

sociated with Gh2 is the system
d

dr
[rn−1Q̇Qt] = 0

¯
on (a, c) ∪ (c, b),

Q(a) = In, Q(b) = R,

h1∂−Q(c)Q(c)t − h2∂+Q(c)Q(c)t = 0
¯
,

where ∂−, ∂+ denote the left and right derivative, respectively. We point out that

the W 1,2 integrability of the twist path Q = Q(r) implies that Q is continuous

on the interval [a, b]. Integrating the ODE on (a, c) ∪ (c, b) we observe that for

suitable n× n skew-symmetric A1,A2 and orthogonal Q1,Q2:

(2.33) Q(r) =

exp(A1/r
n−2)×Q1 for a ≤ r ≤ c,

exp(A2/r
n−2)×Q2 for c ≤ r ≤ b.

Now Q(a) = In gives Q1 = exp(−A1/a
n−2) and the continuity of Q at r = c

gives Q2 = exp((c2−n − a2−n)A1 − c2−nA2). Next computing the left and right

derivatives at c results in h1A1 = h2A2. Finally to choose A1 so that Q(b) = R

we write A1 in block diagonal form, that is,

A1 =

PAdiag(s1J, . . . , skJ)PtA if n = 2k,

PAdiag(s1J, . . . , skJ, 0)PtA if n = 2k + 1.

for suitable PA ∈ SO(n) and (si)
k
i=1 ⊂ R. Next upon writing R = GRDRGt

R,

with R given by (2.7) or (2.8), it follows that the scalars si must be given by

si =
(2πmi + ηi)/h1

(c2−n − a2−n)/h1 + (b2−n − c2−n)/h2
, 1 ≤ i ≤ k,(2.34)

for suitable (mi)
k
i=1 ⊂ Z and PA = GRP for some P in the centraliser of DR.

Finally in a fashion similar to what was done in Section 2 (cf. [26]) it can be

shown that for n even and with si = sj for all i, j the spherical twist associated

with the twist path (2.33) is a solution to the system of Euler–Lagrange equations

associated with Eh2 .

By iterating the above argument and invoking the matrix exponential map

one can prove the following extension. Note that despite the discontinuity and

(4) For technical reasons we additionally require (c2−n−a2−n)/h1 +(b2−n−c2−n)/h2 6= 0

(see (2.34)). Note also that ruling out the case where either of h1, h2 is zero is due to the basic

fact that here there would be an uncountable family of curves Q = Q(r) in the corresponding

sub-interval serving trivially as solutions.



Geodesics on SO(n) and a Class of Spherically Symmetric Maps 655

sign condition on the weight function h these solutions agree with those given

by the integral representation (2.31)–(2.32) in Theorem 2.6.

Theorem 2.7. Let n = 2k and R be as in Lemma 2.4. Furthermore, assume

the finite sequence (hi : 1 ≤ i ≤ l) ⊂ R satisfies hi 6= 0, (ci : 1 ≤ i ≤ l) ⊂ R
satisfies a = c0 < c1 < . . . < cl = b and that the weighted sum in the formulation

of ζ in (2.37) is non-zero. Let h be the discontinuous piecewise constant weight

function

h(r) =

l∑
i=1

hiχ[ci−1,ci)(r), a ≤ r ≤ b,

where χ[ci−1,ci) is the characteristic function of the interval [ci−1, ci). For fixed

m ∈ Z and P in the centraliser of DR consider the twist path Q = Q(r;m) given

by the factorisation

(2.35) Q(r;m) = GRP diag(R[G ](r), . . . ,R[G ](r))PtGt
R

where G = G (r;m) with a ≤ r ≤ b is the continuous function given piecewisely,

for 1 ≤ j ≤ l, by

G (r) =

[ j−1∑
i=1

(
c2−ni − c2−ni−1

hi

)
+
r2−n − c2−nj−1

hj

]
ζ for r ∈ [cj−1, cj ](2.36)

and ζ is the quantity given by

ζ =
2πm+ η

l∑
i=1

h−1
i (c2−ni − c2−ni−1 )

.(2.37)

Then the spherical twist u = Q(r;m)θ is a solution to the Euler–Lagrange system

associated with the energy Eh2 , that is, u is a weighted 2-harmonic map.

3. Spherical whirls as extremisers of the weighted Dirichlet energy

The aim of this section is to consider and examine a second class of maps with

less symmetry as solutions to the system of Euler–Lagrange equations associated

with the weighted Dirichlet energy. These can be regarded as a generalisation of

spherical twists where the twist path depends on the spatial variable in a more

complex way whilst its range is confined to a fixed maximal torus. Indeed instead

of a usual twist path Q = Q(r) we consider an SO(n)-valued map Q = Q(ρ)

depending on the 2-plane radial variables ρ = (ρ1, . . . , ρN ) (see below) and we

solely restrict to the energy functional Eh2 for some fixed C 1 function h satisfying

h > 0 on [a, b].

Let us proceed by formally introducing the spherical whirls. Towards this

end we first define the 2-plane radial variables ρ = (ρ1, . . . , ρN ) as functions of

the spatial variable x = (x1, . . . , xn) on Xn given, depending on n being even or

odd, by
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(a) (n even) set n = 2k and put

(3.1) ρj =
√
x2

2j−1 + x2
2j for 1 ≤ j ≤ k.

(b) (n odd) set n = 2k + 1 and put

(3.2) ρj :=


√
x2

2j−1 + x2
2j for 1 ≤ j ≤ k,

x2k+1 for j = k + 1.

In order to ease notation we also introduce N = N(n) by writing N = k when

n = 2k and N = k + 1 when n = 2k + 1. Then ρ = (ρ1, . . . , ρN ) is seen to lie in

AN where the open domain AN ⊂ RN is given by

AN =

{ρ ∈ RN+ : a < |ρ| < b} for n = 2k,

{ρ ∈ RN−1
+ × R : a < |ρ| < b} for n = 2k + 1.

We will write (∂AN )a = {ρ ∈ ∂AN : |ρ| = a}, (∂AN )b = {ρ ∈ ∂AN : |ρ| = b}
and ΓN = ∂AN \ {ρ ∈ ∂AN : |ρ| = a or |ρ| = b} to denote the three segments of

the boundary of AN . Now we have

(3.3) u : x 7→ Q(ρ)θ = Q(ρ1, . . . , ρN )x|x|−1, x ∈ Xn,

where θ = x|x|−1, ρ = ρ(x) = (ρ1, . . . , ρN ) is the vector of 2-plane variables as

above and Q ∈ C (AN ,SO(n)). We further assume that Q takes values on some

fixed maximal torus of SO(n), specifically, we consider SO(n)-valued maps Q of

the form (5)

(3.4) Q(ρ1, . . . , ρN ) =

diag(R[f1], . . . ,R[fk]) for n = 2k,

diag(R[f1], . . . ,R[fk], 1) for n = 2k + 1,

where, for 1 ≤ l ≤ k, fl ∈ C (AN ,R) satisfies fl ≡ 0 on (∂AN )a and fl ≡ 2πm+η

on (∂AN )b. This ensures that u = ϕ on ∂Xn. We start by calculating some of

the quantities associated with spherical whirls to facilitate future derivations.

Lemma 3.1 (Key identities). Let u = Q(ρ1, . . . , ρN )θ be a spherical whirl on

Xn with Q ∈ C (AN ,SO(n)) ∩ C 2(AN ,SO(n)). Then we have the following:

(a) ∇u =
1

r
(Q−Qθ ⊗ θ) +

N∑
l=1

Q,lθ ⊗∇ρl,

(b) |∇u|2 =
n− 1

r2
+

N∑
l=1

|Q,lθ|2,

(5) In weakening the radial symmetry of twists we demand that spherical whirls should

instead commute with only a subgroup of SO(n) — here, the described maximal torus of block

diagonal 2 × 2 planar rotations. By maximality reasons this then implies that any spherical

whirl itself should take values on the same maximal torus. See [7], [18], [19].
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(c) ∆u =

N∑
l=1

[
Q,llθ +

2

r
Q,l∇ρl +

(
∆ρl −

2ρl
r2

)
Q,lθ

]
− n− 1

r2
Qθ.

Here Q,l and Q,ll denote the first and second order derivatives of Q with respect

to ρl respectively and ∇ρl is the gradient of ρl with respect to the spatial variables

x = (x1, . . . , xn).

Proof. A straightforward differentiation using the described representation

of u as in (3.3) and with r =
√
x2

1 + . . .+ x2
n =

√
ρ2

1 + . . .+ ρ2
N gives

∇u = Q∇θ +

N∑
l=1

Q,lθ ⊗∇ρl =
1

r
(Q−Qθ ⊗ θ) +

N∑
l=1

Q,lθ ⊗∇ρl,

where in deducing the second identity we have made use of the formulation

∇θ = r−1(In − θ ⊗ θ). With the aid of this we can now calculate the Hilbert–

Schmidt norm of the gradient ∇u as

|∇u|2 = tr [∇u∇ut](3.5)

= tr

{
1

r2
(In −Qθ ⊗Qθ) +

1

r

N∑
l=1

(Q−Qθ ⊗ θ)(∇ρl ⊗Q,lθ)

+

N∑
l=1

Q,lθ ⊗Q,lθ

}

=
n− 1

r2
+

1

r

N∑
l=1

{〈Q∇ρl,Q,lθ〉 − 〈Qθ,Q,lθ〉〈θ,∇ρl〉+ r|Q,lθ|2}

=
n− 1

r2
+

1

r

N∑
l=1

{〈Q∇ρl,Q,lθ〉+ r|Q,lθ|2},

where in the second to last line we have used the fact that the product Qt
,lQ is

skew-symmetric. We now focus on the term 〈Q∇ρl,Q,lθ〉. First, recalling that

Q is of the form (3.4), a straight forward differentiation gives

QtQ,l =

diag(∂lf1J, . . . , ∂lfkJ) if n = 2k,

diag(∂lf1J, . . . , ∂lfkJ, 0) if n = 2k + 1,

where J is

QtQ,lθ = QtQ,lx|x|−1 =

|x|−1(∂lf1Jy1, . . . , ∂lfkJyk) if n = 2k,

|x|−1(∂lf1Jy1, . . . , ∂lfkJyk, 0) if n = 2k + 1.

Next differentiating ρj using (3.2) and (3.1) we have ∇ρj = ρ−1
j (0, . . . , yj , . . . , 0)

for 1 ≤ j ≤ N . Hence by substitution (note that in the writing of the second

equality below we are excluding the case j = N with n odd in which the required
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identity is trivially true) we have

〈Q∇ρj ,Q,lθ〉 = 〈∇ρj ,QtQ,lθ〉 = |x|−1 ∂lfj
ρj
〈yj , Jyj〉 = 0, 1 ≤ j, l ≤ N,

in virtue of J is skew-symmetric. It is now evident, by (3.5), that

|∇u|2 =
n− 1

r2
+

N∑
l=1

|Q,lθ|2.(3.6)

Finally we obtain ∆u by taking the divergence of ∇u and making note of the

identities ∇ρl · ∇ρj = δlj , ∇ρj · θ = ρj/r, ∆ρj = 1/ρj except for n odd and

j = N where ∆ρN = 0 and [∇ρ]tρ = xt. This therefore completes the proof. �

Using the above description of |∇u|2 we can proceed by writing the weighted

Dirichlet energy Eh2 of a spherical whirl u = Q(ρ)θ as

Eh2 [u;Xn] =

∫
Xn

h(r)|∇[Q(ρ)θ]|2

=

∫
Xn

h(r)

[
n− 1

r2
+

N∑
l=1

|Q,lθ|2
]
dx

=

∫
Xn

h(r)

[
n− 1

r2
+

1

r2

k∑
l=1

|∇fl|2ρ2
l

]
dx,

or after a basic changing of variables as

(3.7) Eh2 [u;Xn] =

∫
Xn

h(r)
n− 1

r2
dx+ (2π)k

k∑
l=1

∫
AN

h(r)

r2
|∇fl|2ρ2

l

k∏
j=1

ρj dρ.

Prompted by the variational role of the integrals in the second term on the right

in (3.7) we define, for 1 ≤ l ≤ k, the energy functionals

Hl[f ;AN ] = (2π)k
∫
AN

h(r)

r2
|∇f |2ρ2

l

k∏
j=1

ρj dρ.

Here the admissible functions f are assumed to lie in the space

B(AN ) :=
⋃
m∈Z

Bm(AN )

where for each m ∈ Z we have

Bm(AN ) =
{
f ∈W 1,2(AN ) : f |(∂AN )a ≡ 0, f |(∂AN )b ≡ 2mπ + η

}
.

Referring to (3.7) it is easily seen that we can rewrite this as

(3.8) Eh2 [u;Xn] =

∫ b

a

n(n− 1)ωnh(r)rn−3 dr +

k∑
l=1

Hl[f ;AN ].

Now, since for a spherical whirl the energy Eh2 is a finite sum of the energies

Hl (1 ≤ l ≤ k) where each Hl depends only on f = fl, we proceed by extremising
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each Hl separately. Indeed the Euler–Lagrange equations associated with Hl over

Bm(AN ) is seen to be

(3.9)



div

(
h(r)

ρ2
l

r2

k∏
j=1

ρj∇f
)

= 0 in AN ,

f ≡ 0 on (∂AN )a,

f ≡ 2mπ + η on (∂AN )b,

ρ2
l

k∏
j=1

ρj∂νf = 0, on ΓN .

Note that ∂ν is the partial derivative in the outward pointing normal direction.

The following proposition leads to the conclusion formulated in Theorem 1.2.

Proposition 3.2. For each fixed m ∈ Z the Euler–Lagrange equation (3.9)

admits a unique solution f = f(ρ;m) in B(AN ) given explicitly by

f(ρ;m) =
2πm+ η

β(b)
β


√√√√ N∑

l=1

ρ2
l

 , ρ = (ρ1, . . . , ρN ) ∈ AN ,

where β = β(t) is the function defined on [a, b] via the weight h through the

integral

β(t) :=

∫ t

a

s1−n

h(s)
ds.

Proof. We first verify that f satisfies (3.9). Indeed f is easily seen to satisfy

the boundary conditions. To ease notation we write c = (2mπ + η)/β(b) for the

rest of this proof. Now basic differentiation yields

∂f

∂ρi
= β̇


√√√√ N∑

l=1

ρ2
l

 cρi√
N∑
l=1

ρ2
l

=
cρi

h(r)rn
.

We approach the cases of odd and even n separately. First, if n = 2k, we have

div

(
h(r)

ρ2
l

r2
∇f

k∏
j=1

ρj

)
=

k∑
i=1

∂

∂ρi
c

(
h(r) ρ2

l

ρi
h(r)rn+2

k∏
j=1

ρj

)
(3.10)

=

k∑
i=1

c

{
2ρlδ

l
i

ρi
r2+n

k∏
j=1

ρj + ρ2
l

ρi
rn+2

k∏
j=1,j 6=i

ρj

− ρ2
l ρ

2
i (2 + n)r−n−4

k∏
j=1

ρj + ρ2
l

1

rn+2

k∏
j=1

ρj

}

=
c

rn+2
ρl

k∏
j=1

ρj(2ρl + kρl − (2 + 2k)ρl + kρl) = 0.
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On the other hand if n = 2k + 1 the calculations are the similar but we must

observe the subtle difference of ρk+1 = x2k+1 and so we have

div

(
h(r)

ρ2
l

r2
∇f

k∏
j=1

ρj

)
= c

k∑
i=1

∂

∂ρi

(
h(r)ρ2

l

ρi
h(r)rn+2

k∏
j=1

ρj

)
(3.11)

+ c
∂

∂ρk+1

(
h(r)ρ2

l

ρk+1

h(r)rn+2

k∏
j=1

ρj

)

=
c

rn+2
ρl

k∏
j=1

ρj

(
2ρl + kρl −

2 + n

r2
ρl

k∑
i=1

ρ2
i + kρl

)

+ c

( k∏
j=1

ρj

)
ρl

(
− 2 + n

r4+n
ρ2
k+1ρl +

ρl
r2+n

)

=
cρl
rn+2

k∏
j=1

ρj(2ρl + kρl − (2k + 3)ρl + (k + 1)ρl) = 0.

Finally to justify uniqueness suppose f1, f2 are two solutions to (3.9) and put

g = f1 − f2. Then g solves (3.9) with zero boundary conditions. Using the

divergence theorem and the asserted boundary conditions we then have∫
AN

1

r2
|∇g|2ρ2

l

k∏
j=1

ρj dρ =

∫
∂AN

1

r2
g
∂g

∂ν
ρ2
l

k∏
j=1

ρj dHn−1 = 0.(3.12)

Since ρ1, . . . , ρk > 0 in AN it then follows that |∇g|2 = 0 in AN and so we must

have g ≡ 0 in AN due to the boundary conditions. We can therefore conclude

that f1 = f2 and so uniqueness follows. �

We note from the explicit description of the solution f = f(ρ;m) in the above

proposition that f is indeed a function of the radial variable r. In conclusion the

associated spherical whirl has the form u = Q(r)θ where Q ∈ C 2([a, b],SO(n)).

Maps of this form are the spherical twists that were introduced and thoroughly

discussed in Section 2. The proof of Theorem 1.2 now follows from the results

in Section 2 for spherical twists. It is remarkable to note that, despite structural

differences, the spherical whirl solutions to the system (1.3) in this case coincide

exactly with the spherical twist solutions as given in Theorem 1.1.
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