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GROUND STATE SOLUTIONS
FOR A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS
WITH SUM OF PERIODIC AND VANISHING POTENTIALS

GUOFENG CHE — HAIBO CHEN

ABSTRACT. In this paper, we consider the following semilinear elliptic sys-
tems:
—Au+ V(z)u = Fy(z,u,v) — T'(z)|ul9"2u  in RV,
—Av+V(2)v = Fy(z,u,v) — T(x)|v|7 20 in RV,
where q € [2,2%), V = Vper + Vioe € L®(RY) is the sum of a periodic po-
tential Vper and a localized potential Vi, and I' € L™ (RN) is periodic and
T'(z) > 0 for almost every x € RY. Under some appropriate assumptions
on F, we investigate the existence and nonexistence of ground state solu-
tions for the above system. Recent results from the literature are improved
and extended.

1. Introduction

In this paper, we consider the existence and nonexistence of ground state
solutions to the following semilinear elliptic systems:

—Au+ V(z)u = F,(z,u,v) — T(z)u[72u  in RY,

1.1
(1) —Av +V(z)v = Fy(z,u,v) — D(2)|v[72v  in RY,

2010 Mathematics Subject Classification. 35B38, 35J20.

Key words and phrases. Semilinear elliptic systems; ground state; periodic potential; lo-
calized potential; variational methods.

This work is partially supported by the National Natural Science Foundation of China
11671403, by the Fundamental Research Funds for the Central Universities of Central South
University 2017zzts058 and by the Mathematics and Interdisciplinary Sciences Project of CSU.

215



216 G. CHE — H. CHEN

where ¢ € [2,2*). We assume that functions I', V and F satisfy the following
hypotheses:
() T € L*°(RY) is periodic and T'(x) > 0 for almost every = € RY.

(V) V = Voer + Vioe € L¥RY), Vyor € L¥(RY) is ZN-periodic, Vipe €
L>(RY) and Vi,e(z) — 0 as |x| — oo.

(F1) F € CYRYN x R?), F,(x,u,v) and F,(x,u,v) are measurable, Z"-
periodic in € RY and continuous in u,v € R for almost every z € RV
and there exist ¢ > 0 and 2 < ¢ < p < 2* such that |F,(z,u,v)| <
c(1+](u,v)|P~1) and |F, (2, u,v)| < e(1+](u,v)[P~1) for all (u,v) € RxR
and z € RY, where |(u,v)| = (u? 4 v?)/2.

(F2) Fu(x,u,v) = o(|(u,v)|) and F,(x,u,v) = o(|(u,v)|) uniformly in 2 € RV
as |(u,v)] = 0.

(F3) F(z,u,v)/|(u,v)]? = oo uniformly in z € RY as |(u,v)| — oo.

(F4) For every fixed v € R, F,(x,u,v)/|ul?"! is strictly increasing in u on
(—00,0) and (0,+00) and for every fixed u € R, F,(z,u,v)/[v]97! is
strictly increasing in v on (—o0,0) and (0, 400).

(F5) F(z,u,v) >0, Fy(z,u,v)u > 0 and F,(z,u,v)v > 0 and F,(z,u,v)u+
Fy(z,u,v)v > qF(x,u,v) for any (z,u,v) € RV x R2,

When © is a bounded domain of RY, the problem

—Au = ANa(z)u + b(x)v) + Fy(z,u,v) in Q,
(1.2) —Av = A(b(z)u + c(z)v) + Fy(z,u,v) in Q,
u(z) =v(z) =0 on 01},

which is related to reaction-diffusion systems that appear in chemical and biolog-
ical phenomena, including the steady and unsteady state situation (see [9], [24]),
has been extensively investigated in recent years. For the results on existence,
multiple solutions and positive solutions to problem (1.2), we refer the readers
to [5], [8], [9], [21], [23], [24], [29] and the references therein. In [21], Qu and
Tang obtained the existence and multiplicity of weak solutions to problem (1.2)
by using Ekeland’s variational principle together with variational methods, some
new existence theorems of weak solutions were obtained in Duan et al. [9].
Recently, the problems in the whole space RY were considered in some works.
For example, see [6], [13]-[15], [17], [27], [28], [30] and the references therein. By
applying the theorems of [2], Zhao et al. [30] considered the periodic asympto-

tically linear elliptic system
(1.3) —Au+V(z)u = Gy(z,u,v) forx € RV,
. —Av+V(z)v = Gy(z,u,v) for z € RV,

where V is periodic and 0 lies in a gap of o(—A+V"), G(z, u,v) is periodic in x and
asymptotically quadratic in (u,v), they obtained infinitely many geometrically
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distinct solutions. Assuming that the potential V is non-periodic and sign-
changing, G(z, z) is non-periodic in  and asymptotically quadratic in z = (u, v),
Zhang et al. [28] obtained the existence and multiplicity of solutions of system
(1.3) via a variational approach. In [27], the authors obtained the existence of
a ground state solution by proving all Cerami sequences for the energy functional
are bounded. Moreover, they assumed that 0 lies in a gap of the spectrum
o(—A+V), Gu(z,u,v) = f(z,v) and G,(x,u,v) = g(x,u) are both superlinear
at 0 and infinity but they have different increasing rates at infinity. Liao et al.
[15] proved system (1.3) has a nontrivial solution under concise super-quadratic
conditions. Furthermore, they assumed that V' and G are periodic in z, G(z; 2)
is super-linear in z = (u,v), and these conditions showed that the existence of
a nontrivial solution depends mainly on the behavior of G(z,u,v) as |u+v| = 0
and |au 4+ bv| — oo for some positive constants a, b.

Recall that in the absence of the localized potential Vi, = 0, the spectrum
o(—A+V)of —A+V = —A+ V,e is purely continuous, bounded from below
and consists of closed disjoint intervals [22]. In [25], Szulkin and Weth considered
the following Schrodinger equation:

(1.4) ~Au+V(x)u= f(z,u) in RY.

When V(z) and f(z,u) are periodic in x and 0 belongs to a spectral gap of
—A+V, they obtained the existence of ground state solutions for problem (1.4).
When 0 is a right boundary point of the essential spectrum of —A + V' and
f(z,u) is superlinear and subcritical, Mederski [18] obtained the existence of
ground state solutions and multiple solutions of system (1.4) with u(z) — 0,
as |x| — oo. Later, Mederski [19] considered the ground state solutions to the
system of coupled Schrédinger equations as follows:

(1.5) Aug + Vi(x)u; = 9y, F(z,u) on RN i=1,... K,

where F and V; are periodic in 2, 0 € o(—A+V;), i =1,..., K. Moreover, they
made use of a new linking-type result involving the Nehari—-Pankov manifold and
assumed that F' satisfies the following conditions:

(1) fi: RV xRE — R is measurable, Z"-periodic in € Z" and continuous
in u € R for almost every z € RY. Moreover, f = (f1,..., fx) = Ou.F,
where F: RN x RX — R is differentiable with respect to the second
variable u € RX and F(z,0) = 0 for almost every z € RV.

(2) There are a > 0 and 2 < p < 2* such that

|f(z,u)] < a(l+ [ulP™Y), for all u € R and a.e. z € RY.
(3) f(x,u) = o(u) uniformly with respect to x as |u| — 0.

In [11], Guo and Mederski considered the existence and nonexistence of
ground state solutions of system (1.5) with K = 1 and V(z) = Vi(z) — u/|z|?,
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where V; € L>®(RY), V; is ZN-periodic in x € RY and 0 € o(—A + V). More-
over, they assumed that f(x,u) satisfies (1)—(3) and the following conditions:

(4) F(x,u)/u* — oo uniformly in z as |u| — oo, where F is the primitive of

f with respect to u, that is, F(z,u) = [ f(z,s)ds.

(5) u+ f(x,u)/|u| is non-decreasing on (—o0,0) and (0, +00).

In photonic crystals, the potential V' is periodic or close-to-periodic. Namely
if the periodic structure has a linear defect, i.e. an additional structure breaking
the periodicity, then the photonic crystal can guide light along the defect. In
this case the potential has the following form:

(16) V(JJ) = Vper + Vioc,

where Ve is periodic in z € RY and Vi is a localized potential that vanishes
at infinity.

Recently, Bieganowski and Mederski [4] considered system (1.4) with f(x,u)
= g(x,u) — I'(z)|u|?"?u sign-changing and V () satisfying (1.6). When f(z,u)
satisfies (1)—(5), they investigated the existence and nonexistence of ground state
solutions of system (1.4) by means of the Nehari techniques.

Inspired by the above facts, more precisely by [4], [25], the aim of this paper
is to study the existence and nonexistence of ground state solutions to problem
(1.1) via variational methods. To the best of our knowledge, there have been
few works concerning this case up to now.

Now, we state our main results.

THEOREM 1.1. Suppose that conditions (T'), (V) and (F1)—(Fs) hold and
info(—A+V)>0. If Viec(z) <0 or Vige(x) =0, then (1.1) possesses a ground
state solution (u,v) € HY(RN) x HY(RYN), i.e. (u,v) is a critical point of J such
that J(u,v) = i/I\l/f J. Moreover, u and v are continuous and there exist o, C > 0

such that
(u(z), v(2))| < Cexp(~alal), for any z € RY.

THEOREM 1.2. Suppose that conditions (T'), (V) and (F1)—(Fs5) hold and
inf o(—=A + Vper) > 0. If Viee(x) > 0 for almost every x € RN, then problem
(1.1) has no ground state solutions.

ProBLEM 1.3. Note that in our paper if I'(z) # 0 and ¢ > 2, then

I(u,v) = /RN F(z,u,v)dz — é/RN I'(z)(|Jul?+ |v|?) dz

is sign-changing. Furthermore, for every fixed v € R,
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is not strictly increasing in u on (—o0,0) and (0, +00) and for every fixed u € R,
Fy(z,u,v) — (1/q) Jon D(z)|v|?dz/|v]77! is not strictly increasing about v on
(—00,0) and (0,400). Then the results of [25] do not apply in our case.

PROBLEM 1.4. Under our assumptions, A is not C'*-manifold, so the classical

minimization on the Nehari manifold does not work.

For Problem 1.3, our approach is presented in the abstract setting in Section 2
and we develop a critical point theory which extends the abstract results from [3]
for definite functionals and enables us to deal with sign-changing functionals.

For Problem 1.4, we intend to adopt the techniques of [4], [25] based on the
observation that A is a topological manifold homeomorphic with the unit sphere
in H'(RY) x H'(R¥Y), where a minimizing sequence can be found. On the other
hand, the abstract results concerning Nehari techniques have been obtained by
Szulkin and Weth [25] for positive nonlinear part I or completely continuous
I’ as well as by Figueiredo and Quoirin in [10] for weak lower semicontinuous
u > J'(u)u. In [4], I and J do not satisfy these conditions anymore.

NotaTION 1.5. Throughout this paper, we shall denote by || ||, the L™-norm
and by C various positive generic constants, which may vary from line to line.
2* = oo for N = 1,2 and 2* = 2N /(N —2) for N > 3, is the critical Sobolev
exponent. Also if we take a subsequence of a sequence {(uy,, v,)} we shall denote
it again as {(un,vn)}.

The paper is organized as follows. In Section 2, some preliminary results
are presented. In Section 3, we give the proofs of main results. The lack of
compactness of (PS) sequences requires decomposition of sequences which is
provided in Lemma 2.3 that is proved in Section 4.

2. Variational setting and preliminaries

In this section we outline the variational framework for problem (1.1) and
give some preliminary lemmas.
Let H*(RY) = {u € L*(RY) : Vu € L*(RY)} with the norm

1/2
follan = ([ (092 12y a)

X = {u € HY(R") : /RN (|Vu]* + V(2)u?) dz < +OO}

Let

with the inner product and norm

(u, v x = / (VuVo+ V(@)w) de,  [ullx = (u,u)L>.
RN
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As usual, for 1 < p < +00, we let

o= ([ |u(x>|pdx)1/p, ue IPRY),

and

lul = esssup fu(@)l, u e L=(RY).
zeRN

Then F = X x X is a Hilbert space with the following inner product:
((w,v), (0, ¥)) = (u, o)x + (v, ¥)x, (w,v),(p,¥) €X x X
and the norm
1, 0)[1* = ((u, 0), (u,0)) = [Jullix + o]k, (u,0) € X x X.

Since info(—A + V) > 0, the norm || - || is equivalent to the classic one on
HY(RY) x HY(RYN).
Similarly, inf o(—A + Vper) > 0 implies that the norm given by

1/2
(/ (IVul? + Vpert' 4 | V|2 + Viyerv?) dx)
RN

is equivalent to the classic one on H'(RY) x HY(RM).

Define a functional J on E by

(21) Tw0) = 3 w02 = I(w,v),
where )
I(u,v) = - F(z,u,v)dr — 6/}1@ L(z)(|ul? + |v|?) de.

It is not difficult to verify that J € C1(E,R) under assumptions (V), (I'), (F1)-
(F5) and

22 o) = [ VaVedit [ Vupds

—/ Fu(:mu,v)apdx—&-/ F(x)|u|q_2ucpdx+/ VoV dx
RN RN

RN
—|—/RN V(z)vy dx — /RN Fy(z,u, v)wdx—i—/RN T(x)|v]f%vy d.
In this case the Nehari manifold is given by
N = {(u,v) € E\{(0,0)} : (J'(u,v), (u,v)) = 0}
= {(u,v) € E\{(0,0)} : [[(u,v)||* = (I'(u,v), (u,v)) }.

LEMMA 2.1. Suppose the following conditions hold:
(J1) There exists p > 0 such that

a= inf J(u,v)>J(0,0)=0.

= n
[l (w,v)ll=p
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(J2) There exists g > 2 such that I(tpun, tyv,)/td — oo for t, — oo and
(Un,vn) = (u,v) # (0,0) as n — oo.

(J3) Fort e (0,00)\ {1} and (u,v) € N, we have
% (I'(u,v), (u,v)) — I(tu, tv) + I(u,v) < 0.

(J4) J is coercive on N.
Then i}\lff J > 0 and there exists a bounded minimizing sequence for J on N, i.e.

there is a sequence {un, vy} C N such that J(un,v,) — ijr\lff J and J' (up,vn) = 0
asn — oo.

REMARK 2.2. Observe that condition (J3) implies that for any (u, v) # (0,0),
there exists t > 0 such that J(tu,tv) < 0. Then it follows from (J;) and (J2) that
J has the mountain pass geometry [1, 26] and we are able to find a Palais—Smale
sequence. While, we do not know whether it is a bounded sequence and contained
in V. In order to get the boundedness we assume the coercivity in (J4), which is,
in applications, a weaker requirement than the classical Ambrosetti-Rabinowitz
condition [25].

REMARK 2.3. (a) In order to get (Js3), it is sufficient to check
(23) (1 - t)(t<1/(uv U)a (u7 ’U)> - <I/(tua t’U), (U, U)>) >0
for any t € (0,00) \ {1} and (u, v) such that (I’(u,v), (u,v)) > 0. In fact, let

(2.4) o(t) = - L 1w 0), (u, 0)) — T(tu, t) + I(u, ),

for t € (0,00) \ {1} and (u,v) € N. Therefore, (I'(u,v), (u,v)) = ||(u,v)]?,
p(1) =0, @' (t) = t{I'(u,v), (u,v)) —{I'(tu, tv), (u,v)) > 0 fort < 1 and ¢'(t) <0
for ¢ > 1. As a result, p(t) < (1) =0, ¢t € (0,00) \ {1}.

(b) Condition (J3) is equivalent to the following conditions: (u,v) € N is the

unique maximum point of J(tu,tv), t € (0,400). Indeed,

2 -1

(2.5) J(tu,tv) = J(u,v) + J(tu, tv) — J(u,v) — (J'(u,v), (u,v))

= J(u,v) + o(t) < J(u,v)

if and only if (t) < 0.

PRrROOF OF LEMMA 2.1. The proof is analogous to the proof of Theorem 2.1
in [4], we omit it here. O

LEMMA 2.4. Suppose that conditions (I'), (V), (F1)—(F5) hold and inf o (—A+
V) > 0. Then (J1)—(J4) hold.
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PrOOF. (J;) For any ¢ > 0, it follows from (F;) and (F2) that there exists
C(g) > 0 such that

|F (2, u,0)] < €l(u, v)[ + C(e)[(u, v)[".

Then, by the Sobolev embedding theorem, we obtain
1
/ Fla,u,v) do — / L @) (ul? + [v]7) de
RN RN 4

< / |F (@, u,v)| dz < Clell(u, v)[I* + C ()| (w, v) 7).
RN

Therefore, there exists p > 0 such that
1 1
/ F(z,u,v)dz _/ =) (Jul? + [o]*) dz < 4 |(u, 0)]”
RN RN G 4
for ||(u,v)|| < p. Hence
1 1
J(u,0) = 2l v)|[* = 5 p* >0 for [|(u, )] = p.

(J2) Tt follows from (F3), (F5) and Fatou’s lemma that

I(tpty, tho, F(x,tyun, thvy, 1
Htnun, tnvn) :/ Fl@, tntn tnvn) 7/ (@) (|un|? + [0n|) da — o0,
tn RN tn q JrN

as n — 0o.
(Js3) Fix (u,v) such that (I'(u,v), (u,v)) > 0, i.e.

/ (Fy(z,u,v)u + Fy(z, u,v)v) de > / L(x)(Ju|? + |v|?) da.
RN RN
Observe that

t<I/(u7 ’U), (u7 U)> - <I,(tu7 tv)v (ua ’U)>
:/ (Fy(z, u,v)tu + Fy(z,u,v)tv) do — / T(x)t(Ju|? + |v]?) dz
RN RN

—/ (Fu(x,tu,tv)u+Fv(x,tu,tv)v)dx+/ ()t ([u]? + [v]7) do
RN RN

:/ (Fyu(z,u,v)tu — Fy(x, tu, to)u) de + (1971 — t)/ [(z)|ul? dz
RN

RN
+ / (Fy(z,u,v)tv — Fy(x, tu, tv)v) de + (t97 — t)/ [(x)|v|? da.
RN RN
Therefore, for t < 1, we derive

/ (Fu(zu,v)tu — Fy(z, tu, tv)u) de + (197 — ) / I(x)|u|? dx
RN RN

+ / (Fy(z,u,v)tv — Fy(x, tu, tv)v) de + (97 — 1) / [(x)|v]? dx
RN R

N

> / (t1 Fy (2, u, v)u — Fy(x, tu, tv)u) do
RN
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+/ (tT 1 Fy (2, u,v)v — Fy(x, tu, to)v) do
RN

F,
:tq-l/ (Fu(%w)u_w> i
RN B

ta

F,(z, tu,t
Hq-l/ Fy(a,u, o)y — L@ IUN 0
—1
]RN tq

by (F4). Analogously, we get t(I'(u,v), (u,v)) — (I’ (tu, tv), (u,v)) <0, for t > 1.
Therefore, it follows from Remark 2.2 that (J3) holds.

(J4) Let (un,vn) C N be a sequence such that ||(u,, v, )| = oo as n — oo.
If g =2, then ' = 0. Let (wn, $n) = (tn, vn)/||(tn,v,)| and (wn, sn) — (0,0) in
LP(RN) x LP(RY). Then it follows from (2.5) that

t2
I (U, vp) = J(twn, tsp) = 5 +o0(1) for any ¢t >0,

then J(wp,$n) — 00, as n — oo. If (wy,s,) is bounded away from (0,0) in
LP(RYN) x LP(RY), then it follows from Fatou’s lemma and Lion’s lemma that

S (un,vn)
1t va) [
} F(Z‘ un($+yn) Un(x'i'yn))

) . |( n( +yn),vn(x+yn))|2 |(wn(l‘+yn)a5n($+yn))|2d.’1}—>—OO

for some sequence (y,) C RY such that (wn,(z+yn), sn(z+yn)) = (w,s) # (0,0)
for some (w, s) € HY(RN) x HY(RN) and (wp (2 +yn), sp(x+yn)) — (w(), s(x))
for almost every x € RY. Then we get a contradiction with J(uy, v ) /|| (tn, va) ||
> 0. If ¢ > 2, then it follows from (Fj5) that

J(Umvn): (umvn) < (umvn)’(uﬂvvn»

1 1
(2 - > [l (wns vn) ”2
q

1
—|—/ [q (2, U, V) 4 Fyp (2, U, vy )0) — F (2, up,vy) | do

1
> (5= 2 ) lwmon)lP = o,
as ||(un, vy)|| = 0o, which implies that J is coercive on N. O

LEMMA 2.5. Suppose that (V) and (F1)—(F4) hold. Let (un,vy) be a bounded
Palais—Smale sequence for J. Then passing to a subsequence of (un,v,), there
exist | > 0 and sequences (y¥) C ZN, (W, wh) € H*RN)x HYRN), k=1,...,1,
such that:

(a) (un,vn) — (ug,vo) and J'(ug,v9) = 0;

(b) |yk| — oo and |y~ —yﬁ/| — 00, as n — oo for k # k';
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(c) (wi,wh) # (0,0) and J . (wF,wE) =0 for each k # k', where
1

JIper(u, v) = J(u,v) — 3 /]RN Vloc(:ﬂ)(u2 + vz) dx;

(d) (un,vn) = (uo,v0) = 3 (Wi(- — yi),wb(- —yp)) — 0, as n — o0,
k=1
in HY(RYN) x HY(RV);
l

(€) J(un,vn) = J(ug,v0) + 3 Jper(wh,wh).
k=1

Since the proof of Lemma 2.5 is technical, we postpone it to Section 4.

3. Proofs of main results

Proor or THEOREM 1.1. It follows from Lemma 2.1 that there exists a
bounded sequence (u,,v,) CN for J. Let c= inf J(u,v) and

(u,v)e
Cper = Inf {Jper(u,v) s (u,v) € HY(RY) x HY(RY)\ {(0,0)}, Jéer(u,v) = 0}.

If Vioe = 0, we have J = Jper. Thus, it follows from Lemma 2.5 that there
exists an integer [ > 0 and sequences (y¥) C ZV, (wf,wk) € HY(RYN) x HY(RY),
k = 1,...,1, such that (u,,v,) — (uo,v0), J'(up,v0) = 0, (Wk,wk) # (0,0),
J (W, wk) =0 for each 1 < k <1 and

per
1
Tyer(ttns 0) = Tper (10, 00) + 3 Tper (W), 1 0.

k=1

Therefore
1
C = Cper = Jper(an UO) + Z Jper(wfy ng) > Jper(UOa UO) + lcper-
k=1

If (ug,v0) # (0,0), then | = 0 and Jper(uo,v0) = cper and (ug, vg) is a ground
state solution. If (up,vo) = (0,0), we have cper > lcper. Since cper > 0, then
I =1 and (wi,wl) is a ground state solution.

Suppose that Vi,c(z) < 0 for almost every z € RY. Again, it follows from
Lemma 2.5 that there is (Uper; Vper) 7 (0,0) such that Ji, (uper; vper) = 0 and
Jper (Uper; Uper) = Cper- Let ¢ > 0 be such that (tuper, tvper) € N. Since V(z) <
Vper(z), we have

Cper = Jper(upera Uper) > Jper(tuper; tvper) > J(tupem tvper) >c>0.

It follows from Lemma 2.5 that there exists (ug,vo) such that J'(ug,vo) = 0.
Furthermore,
1

J (Un, vn) = J(ug, vo) + Z Jper (W, wh), n— .
k=1
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Hence
l

¢ = J(ug,v9) + Z Jper (W, wE) > T (g, vo) + leper-
k=1

Since cper > ¢, we obtain that | = 0 and (ug,vo) is a ground state solution. It
follows from Theorem 2 in [20] that there exist A,C' > 0 such that

|(u(x), v(2))] < Cexp(~Alz]), «eRYN. O
PROOF OF THEOREM 1.2. Let
Nper = {(u,0) € E\{0,0} : (J}or(u,0), (u,0)) = 0},

where

Iper(u, v) = J(u,v) — /

Vloc(av)u2 dx — / Vloc(x)v2 dx.
RN

RN
Argue by contradiction, suppose that there exists a ground state solution (ug, vo)
in N of J. Let tper > 0 be such that (tperto, tperto) € Nper- Since Vipe(z) > 0
for almost every x € RY, then we get
/ Vloc(z)ug dx +/ Vloc(z)vg dx > 0.
RN RN
Then

(31) Cper = ( l)relg\/' Jpcr(ua 'U) < Jpcr (tpcran tpcrUO)
u,v per

< J(tperum tperUO) < J(u07 UO) =C.

On the other hand, let (u,v) € Nper and we denote (uy,vy) = (u(- —y),v(- —y))
for y € ZN. For each y € ZV, let t, be a number such that (t,u,,t,v,) € N.
Now observe that

Tper (U, V) = Jper(ty, vy) > Jper(tyty, tyvy)

= Ittt tyo) = [ Viee@) by, o= [ Vieew)ltyo, ) da
RN RN

>c— / Vloc(w)(tg,/uy)2 dr — / MOC(m)(tyvy)2 dx.
RN RN

Next, we will prove that

(3.2) / Viee () (tyuy)? di + / Viee()(t0,)? dz — 0.
RN RN

In fact
/RN Vioe (%) (tyuy)? do = tf]/ Vioe(z + y)ui dz

]RN
and

/ Vloc(ﬂr:)(tyvy)2 der = t; / Vioc(z + y)v?, dx.
RN RN ’
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It follows from condition (V) that

/RN Vioe(z + y)uz dx — 0, as|y] = oo,
and

/N Vioc(z + y)uf/ drx — 0, as|y| — oo.
Since Jper is coerciveRon Nper, we have

Iper (tyly, tyVy) = Jper(tyt; ty0) < Cpers

which implies that (t,) is bounded. Then

(3.3) / Vioe (2)(tyuy)* dv = tf,/ Vioo(w + y)uy dz — 0, as |y| — oo,
RN RN
and
(3.4) / Vioe (@) (tyv,)? do = ti/ Vioc(z + y)vg dx — 0,as |y| — oo.
RN RN

Then it follows from (3.3) and (3.4) that (3.2) holds. Therefore

Iper (U, v) > cf/

Vioc(x)(tyuy)2 dxf/ Vloc(sr)(tyvy)2 de — ¢, as|y| — oo.
RN

]RN
Taking infimum over all (u,v) € Nper, we have cper > ¢, which is a contradiction
with (3.1). O

4. Decomposition of bounded Palais—Smale sequences

In this section we obtain a decomposition result of bounded Palais—Smale
sequences in the spirit of [4], [7], [11], [16], which is a key step in the proofs of
Theorems 1.1 and 1.2 and generalizes Theorem 5.1 in [12].

ProOOF OF LEMMA 2.5. Let G(z,u,v) = F(z,u,v) — I'(z)|ul|? — I'(x)|v|9,
then it follows from (I"), (F) and (F3) that for any € > 0, there exists C(¢) > 0
such that

(4.1) G (2, u,v)] < el(u,v)[ + C(e)(w, 0)|P + Cf(u, v)]7.

Step 1. We may find a subsequence of (uy,v,) such that (u,,v,) = (ug,vo),
where (ug,vp) is a critical point of J. Indeed, since (un,v,) is a bounded
Palais—Smale sequence, then there exists (ug,v9) € H'(RM) x HY(RY) such
that (un,vn) = (ug,vo) and (up(z),v,(x)) — (ug(x),ve(xz)) for almost every
r € RN, Let p,v € C(RY), then

(42) <J/(un,vn), (507 7/}» - <Jl(u05 ’Uo), (907 Z/J»

= V(un —up)Veo dr + / V() (un — ug)p dz
RN RN

+ V(vn, — v9) V) dx —|—/ V(z)(vy — vo)p da
R

RN N
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|
—

(Gu(xa Un,, vn) - Gu(x; Uo, ,UO))QD dx

N

(Gv(xa Un,’l)n) - Gv(x; uo, 'Uo))'l,[]dx

N

= V(up —ug)Vedx + / V(z)(up — up)p dx

supp ¢ supp ¢

+

T~

V(v — o)V dz + / V(z)(vn — o)t dx

supp ¢ supp ¢

(Gu(xa Un,, vn) - Gu(x; Uo, ,UO))SD dx

P

upp ¢

_/ (Gv(maun;vn) —Gv($,U0,’UQ>)’(/JdZL‘.
supp ¥

Since (un, vn) = (ug, vo), we have

(4.3) / V(ty — ug)Vedx + / V(vp, —v9)Vbder — 0, asn — oo.
supp ¢ supp ¢

It follows from the Vitali convergence theorem that

(4.4) / V(z)(up — ug)p dr + / V(z)(vn, —vo)pdx, asn — oo.
supp ¢ supp ¥

On the other hand, from (4.1) and the Holder inequality, we obtain

/ Gy, Uy, vp) o de
supp ¢
< C(|l(uns va)ll2llx&ll2 + Nl (s va) 15~ HIxEllp + [ (wn, va) 13 IxEI4)

for a measurable set E C supp ¢. Therefore
(4.5) / (G, tn,vy) — Gy(x,ug,v0))pdx — 0, asn — oo,

supp ¢
and
(4.4) / (Gy(z,up, vn) — Gy(x,u0,v9))0dz — 0, asn — oo.

supp ¥
Thus, it follows from (4.3)—(4.6) that (4.2) holds. Then

(I (un; vn), (@,9)) = (J' (uo, o), (¢,)), as n — oo

Since (un,v,) is a Palais-Smale sequence, we have (J'(ug,vo), (¢,%)) = 0 for
any 1 € C5°(RY), that is, J'(ug,vo) = 0.

Step 2. Let (ul,v}) = (u, — ug,v, —vg). Suppose that

(4.7) sup / |(uh, v2)|>de — 0, asn — oo.
z€RN JB(z,1)



228 G. CuE — H. CHEN
Then (un, vn) — (uo,v9) and (a)—(e) hold for I = 0. In fact

(T (ty Vi), (ul 0h)) = / |Vu711|2dx+/ VugVul, dx
RN

RN

—|—/ V(x)|ui|2dm+/ V(x)uou;dm—i—/ Vol |? dz
RN RN RN

+ Vo Vo) do + / V(x)|vk|? do + / V(x)vov), da
RN RN

RN
— G o, Uy, vy )l da — Go(,Up, vp)v) da.
RN RN
Hence
(g, 0 I* = (T (i, v0), (s v3)) = | VuoVuy, de
RN
- / V(2)uoul, de — Vuo Vo do — V(z)vov) d
RN RN RN

+ G (2, Up, U )up, d + Go (2, Up, vp)v) da.
RN

On the other hand, since (J'(ug,vp), (ul,vl)) = 0, we have
oty v ) 1* = (" (i 0, (g v )

+ (G, U, vp) — G, ul, vl ) ul da

» 'y Yn
RN

/ (Go(x,up,vn) — Gy (x,u}l,vi))v}ldl’.
RN

It follows from Lions’ lemma [16], [26] and (4.7) that vl — 0 in L"(R") and
vl = 0in L"(RY), r € (2,2%). Since (u},v}) is bounded, we obtain

n’vn

TL?
n?

T (s v ), (g, v D < (T (s o) [t o)l =0, 25 o0

Furthermore, from (4.1) and the Hélder inequality, we derive

Gu(@, tn, vn)up, dz| < e/ (un, vn)2]|up |2

L
+ O (s va) 5™ g llp + Cll (s va) 13 g, llg-
Therefore,

G, Uy, vp)ul dz — 0, asn — oo,
RN
since p, ¢ € (2,2%). In a similar way, we obtain

G, ug,vo)ul de — 0, asn — oo,
RN

Go(,Up,vp)vl dz — 0, asn — oo,
RN

Go(z,ug,v0)v) dr — 0, asn — oo.
RN
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Thus, (ul,vl) — (0,0), as n — oo, that is, (un,v,) — (uo,vo), as n — oco.

Step 3. Suppose that there exists a sequence (z,) C Z" such that

|(ug, vl)[* dz > 0.

lim inf s Up,

n—oo /B(zn,1+\/ﬁ)

Then there exists (w1, ws) such that

(1) [zn| = oo,
(2) (un(- 4+ 2n),vn(- 4+ 25)) = (w1,ws) # (0,0),
(3) J/ (wl,wg) =0.

per
Indeed, conditions (1) and (2) are standard, so let us concentrate on (3). Let
(L, 22) = (un(+ + 2n),vn(+ + 2,)), then similarly as in Step 1, we have

n? n

(Jper (s 7). (0,9)) = (per(wh,w0?), (9,9)) = 0, asn — oo,

for each ¢,¢ € C5°(RY). Next, we will prove that (.J).(z}, z2), (¢, 1)) = 0, as
n — 0o. Observe that

<J/(unvvn)a(50( T Zn)a d)( - Zn))>

= Vun (- + 2n)Vpdr + V(z+ zn)un(- + 2zn)pdx

RN ]RN

+ Vo (4 2n) V0 da:—l—/ V(z + zn)on (- + 2n)0 dx
RN RN

- Gu(un(' +Zn)avn(' +Z’ﬂ))(pdm
RN

— Gy(un (- + 2zn),vn(+ + 2))0 da.
RN

Furthermore, there exists M > 0 such that
T (i vn), (2(+ = 20), (- = 20) DI < 1T (un, va) N (0 = 20), (- = 20))
< M| (un, va) (0 (- = 20), (- = 20)) 1 @y <@y = 0,

as n — oco. Hence
(4.8)  of1) :/ Vup (- + zn)Veodz der/ Vx4 zp)un (- + 2n)p dx
RN RN
+/ V(- +zn)V1/)d:cd:c+/ V(z+ zn)on (- + 2n)¢ da
]RN RN

- Gu(un (- + 2n),vn(+ + 20))pdr
]RN

- Gv(un(‘ +Zn);vn(' +Zn))’(/1d$,
RN
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as n — oo. It follows from Vipe(z + 2z,) — 0 as |z,| — oo for almost every
x € RY, then we have

(4.9) /RN(V(JS +20) = Vier (@ + 20))a ot

+ / (V(z + 2n) — Vper(z + 2)) 229 dz — 0,
RN

as |z,| — oo.
Tt follows from (4.8) and (4.9) that

(T on(2h 22, (0, 0)) = / ValVids + / Voer(2)zh i + / Va2V de
RN RN

+/ Vper(x)xiwdx— Gu. (m,xn,mn wdm—/ Gy :mmn,:vn)wdx
]RN

RN

= Vm,llVgodx—i—/ V(m)x}lapdac—&—/ V2V d
RN

+/ x)x wdx—/ Gulz,xl, 22 <pdx—/ Go(z,xh, 22)y dx
RN

—/ Vloc(x)xigodx—/ Vioe(z)z29p dx — 0,
RN

RN
as n — oQ.

Step 4. Suppose that m > 1, (y*) C ZN, (wF,wk) € HY(RY) x HY(RY) for
1 < k < m such that

|y5|—>oo, |y§—yﬁl|—>oo asn — oo, fork#k,
(un (- +45),vn(- +95)) = (WF,wh) #(0,0), for each 1 < k < m,

T (Wl wh) =0, foreach 1<k <m.

per

Then: (i) If

sup/ (u —ug — w —y n — Vo — w —y )
o f (oo et -t R

as n — 0o, then

m
H( fuonwl -k, v02w5(~y§)>H%0, as n — 00;
k=1

(ii) If there exists (z,) C ZY such that

m m 2
liminf/ ‘(unuo w’f(-—yﬁ),vn—vof wg(yk))
0 JB(zn,1+VN) Z‘: kz::l "

then there exists (w]"* wi ) € HY(RN) x H'(RYN) such that

(a) |zn| = o0, \Zn—yn\ — 00, for 1 <k <m;

2
dx — 0,

dx > 0,
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(€) Jher (! wyr™h) =0.
Suppose that
2

E TS W G R s ) R
as n — o0.
Let
m
gn*un*UO*Zwl *y" and nnzvn*UO*Zwéc('fny)'

k=1

Then it follows from Lions’ lemma that &, — 0in L"(RY) and 5, — 0 in L"(RY)
for r € (2,2%). By a direct computation, we have

(J (tnsvn), (Enymn)) = / VENVE, do + . V&, Vug dx

RN

+/ v(Zw’f(~ —yﬁ))vgn dx+/ V(z)&de+ | V(2)&uodr
RN RN RN
/ (Z wi(- — yn )fn dr + / V. Vn, dx + / Vi, Vg dx
RN RN

m

—|—/ (Zw2 —yn))Vnndm+/ Vix nndx—|— V(a:)nnvodx
RN

oo Et

— Gy, Uy, vp)Ep do — Gy (T, U,y Uy )1y, dx.
RN RN
Therefore

s 1)1 = (7 (s 00), (s 1)) — / VenVug da
RN

/ (Zw ~un )vgndaz /R V(@)atoda
/ (Zwl —yk )fn dx —/ YV, Vg dz
_/RN (Z% —yn))vﬁndﬂf—/ V(x)nnvo dx

k=1

vt

+ G, U, vp)€, do + Gy (T, Up, Uy )7y dx.
RN RN
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Since (J'(uo, o), (€n,Mn)) = 0, we obtain

||(€n»7ln)||2 = <J,(Unavn)7 (§nsn))

— Gz, up,v9)&p do — Gy (x, ug, vo)np dz
RN RN

—Z V(- —yn>>vgndx—z / e (2) W (- — )€
—Z/ Vioe()(W5(- — ) fnd:c—z V(W — )V da

N z)(wh (- —yh T — Wk (. — oF .
;/RN Voer(@) (w3 (+ = yn))nn d ];/RN Vioe () (wh (- — yF))nn d

+ Gy, Uy, vp)En do + Gy (T, Up, Uy )7y, dex.
RN RN

On the other hand, since JI')Cr(o.)1 ,wh) = 0, we obtain

(4.10) ”(Emnn)Hz = (J (tns Vn); (Ens 1))

—Z Gz, wf, w5)&n(- +yp) da
]RN
_Z Gy, Wi, ws)na (- +yy) do
B Viee ke, _ 7’3 nd
Z/ e (2) (W (- — yl)én da
_ . Vioc (- —uh nd
;/ e (@) (@R (- — y5))pn dao

+ [ (Gl tn,v0) = Gula,ua, )6 da
RN
+/ (Go(x, up, vn) — Gy, ug, vo)) Ny, da.
RN
Observe that

||<J/(un7vn)7 (fnunn»” < HJ/(unavn)HH(gnﬂ?n)H — O, as n — oQ.

Moreover, it follows from ||&,||» — 0 and ||n,||, — 0, r € (2,2%), that

Gu(xy Uo, UO)gn
RN

Se/ (10, v0) [£n] d
RN

+006) [ uom)P e da+C [ Juo, o)™l do
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Analogously, we can prove that all the integrals in (4.10) tend to 0. Therefore,
[(&ns )|l = 0, n — co. That is

m
H(un—uo—Zaul —yb), —vo—Zw§(~—ny)>H—>0, as m — 00.
k=1

Suppose that

lim inf dx > 0,

n= JB(2n,1+VN) ‘ (

m m 2
0= -4k, va =D (- o) )
k=1 k=1
for some (z,) C Z~. Then (a) and (b) hold similarly as in Step 3. To prove (c),
let (zp,,27) = (un(- + zn),vn(- + 2n)),
(Jper (@, 27)5 (9, 0)) = (Jper (W, w?), (0,4)) =0, as n — o0,

for each ¢,¢p € C§°(RY), and (J) (= %,xi),(g@,w» — 0, as n — oo, which
completes the proof of (c).

Step 5. Conclusion. It follows from Step 1 that (up,vn,) — (ug,v9) and
J'(ug,v9) = 0, which complete the proof of (1). If (4.7) in Step 2 holds, then
(tn,vn) — (up,vp) and Lemma 2.5 holds for I = 0. Moreover, one has

n—roo

liminf/ |(ul, v2) > de >0
B(yn,1)

for some (y,) C RY. For each (y,) C RY, there exists (z,) C RY such that

B(yn,1) C B(z,,1+ VN).

Therefore
lim inf |(up, vl)|? d > lim inf |(u},vh)|* dz > 0.
"7 JB(2n,14+VN) "0 J B(yn,1)

Then it follows from Step 3 that there exists (wy, ws) such that (1)—(3) hold. Let
Yt = 2, and (wi,wl) = (w1,ws). If (i) in Step 4 holds with m = 1, then (2)—(4)
hold. Otherwise (ii) holds and we put 32 = z,, and (w?,w3) = (w1,w2). Then we
iterate the Step 4. To complete the proof of (2)—(4), it is sufficient to prove that
this procedure will finish after a finite number of steps. Indeed, observe that

m

ity 00) 2 = 1|, w0) |2 = 3 1ok, )2

k=1

) (GRS SRR B wEE)

for each m > 1. Since (wf,wk) are critical points of Jper, then there exists n > 0

2
>0

such that ||(w§,wk)|| > 1 > 0, then after a finite number of steps, say [ steps,
condition (i) from Step 4 will hold.
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Step 6. We will show that (5) holds:

l

J(tn, vn) = J(ug,vo) + ZJper(w’f7w§).
k=1

Observe that
1 1
J (U, V) :f/ |Vu0|2dm+*/ |V (tp, — uo)|? dz
2 ]RN 2 ]RN

1
+ VuoV (un, — ug) dx + 3 V(z)ug dz

RN RN
1

+ 7/ V() (upn — ug)? dx + / V(z)uo(un — ug) dx
2 RN RN

1 1
Jr*/ Vol dz 4 = / |V (v, — vo)|? dz
2 Jan 2

+ VooV (v, —vg) dx + = / V(x vodac
RN RN

+% V(z)(vn — vp)? /RNV Uy, — Vo) dx

RN

— G(z,up,vy) dx.
RN

Hence

I (U, v3) = J (g, v0) + Jper (U, — ug, vy — Vo) + VuoV (uy — ug) dz
RN

1
+ = / Vioe () (up, — u0)2 dx + V(z)uo(un — up) dz
2 RN RN

1
+ VooV (v, — vg) dx + = / Vioe () (vy, — v9)? dx
RN 2 Jr~

+ / V(z)vo(vn — vo) dz + G(z, up — ug, vy, — Vo) dx
RN RN

+ G(x,ug,vo) dx, — G(z, up, vy) dz.
RN RN

Therefore, it is sufficient to prove that

(4.11) / [G(z,un — ug, vy — vo) + G(z, ug, vo) — G(x, Up,vy,)] dz — 0,
RN

as n — 00, and

!
(4.12) Iper (Un — g, Vp, — V) —> Z Jper(Wh, wh).
k=1

Let us consider the function L: RV x [0,1] — R given by

L(z,t) = G(x, up — tug, v, — tvg).
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Then
LoL
G(x,up — ug, v —v0) — G(x,Up,v,) = L(x,1) — L(z,0) = a(z, s)ds.
0
Furthermore,
(4.13) / [G(x, up — ug, vy, —v0) + G(x,ug,v0) — G(x, Up, vy)] da
RN

1
:/ [/ Z—L(x,s) ds—i—G(m,uo,vo)] dz
RN 0 S

tor
= 8—(1‘,8) dsdx + G(z,up,vo) dx
RN Jo 0US RN
1
:/ / [—Gu (2, up — sug, vy, — SUg)ug
0o JrN
— Gy(z,un — Sug, vy — SV9)vo| dx ds
+ G(z,ug, vo) dz.
]RN
Let E C RY be a measurable set, then it follows from the Hélder inequality that
/ |G (2, 1y — Sug,v, — SU0)ug| da < 5/ [(wr, — sug, vn, — sv9)]||ug| d
E E
+ C(E)/ |(tn — sug, vn — sv0) [P~ Huo| do
E
+ C/ |(tn — SUQ, vy — s00)|7 |u| da
E

<e||(un — suo, vy, — sv0)XEll2||uoXEl2
+ C (&)l (un — suo,vn — svo)xel5 luoxellp
+ C|l(un — sug, vy — sv0)x a8 uoxellq-

Therefore, Gy (x, u, — sug, v, — Svg)ug is uniformly integrable and by the Vitali
convergence theorem, we derive

1
/ —Gy (T, uy — sug, vy — SU)ug dx ds
0o JrN

1
— / =Gy (T, ug — sug, v — SUg)ug dx ds
0o JRN

as n — 0o. Analogously
1
/ —Gy(,un — sug, vy — SVg)vg dx ds
0 JRN

1
— / —Gy(x,ug — sug, vo — svo)vg dx ds
o JrN
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as n — oo. Furthermore,

(4.14) / / (x, un — Sug, vy, — SVO)Ug
RN

— Gy(x, Uy — Sug, v, — SVo)vo| dx ds

(2, upn, — Sug, v, — SVY)Ug
RN

n — SUg, Vp, — SVo) Vo] ds dx

(z,u
/ / G(z,upn — sug, v, — svg)] ds dx
RN Jo

_/ (G(x,0,0) — G(x, ug, vo)) da
RN

= / —G(z,up,v9) du.
RN

Then it follows from (4.13) and (4.14) that (4.11) holds. Next, we prove that
(4.12) holds. Observe that

1

Iper (Un, — g, Uy, — Vo) = 3 /}RN |V (t, — ug)|? da + /RN Voer () (up, — uo)? da

1
+ f/ IV (v, — vo)|* dz + / Vier(2) (v, — v0)? dz
2 RN RN

— G(x, up — ug, vy — o) da.
RN

Now we show that

!
/ G(a:,un—uo,vn—vo)dx%Z/ G(x,wh,wh)de, asn — oo.
RN N

m

Put a®, = up, —up— > wi(- —y¥) and b7, = v, —vo — > wa(- —y¥). Observe
k=1 k=1
that in (4.11) we have proved that

/]RN [G(z,al, b)) + G(x,up,v0) — G(x, Up,vy)] dz — 0, asn — oo.
Taking (a, by) instead of (uy, v, ) and (wi,w}) instead of (ug, vg), then we obtain
(4.15) /RN [G(x,a},b}) + G(x,wi,ws) — G(z,af,b)] dr — 0, asn — oco.
Now taking (a?,b7) instead of (u,,v,) and (wi,w3) instead of (ug, vo), we obtain
(4.16) /RN [G(x,ay,b5) + G(x,w},wi) — G(z,a, b)) dx — 0, asn — oo.
Then it follows from (4.15) and (4.16) that

/ [G(z,al,by) + G(x,w%,w%) + G(x,wiw%) — G(x,ay,by)] de — 0,
RN
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as n — oo. Repeating this reasoning, putting (a (- +yL),b" (- +v)) instead
of (un,v,) and (W, wh) instead of (ug,vo), we obtain

/ [G(z,a, b)) + Gz, wh,wh) — G(z,al |, b} )] dx — 0, asn — oc.
RN
Using, already proved convergence, we get, respectively,
/ [G(x,al", b) + G(x,wh, wh) — Gz, al |, b )] dx — 0,
RN
[ G ap ) + Glawh ) + Gt~ ) = Glaa b)) do >0,
I
[, |caip + 3 ot of) - Gloag )| do o
RY k=1
as n — oo. Observe that (a}’,b]") — (0,0), as n — oo, then
/ G(z,ap,b')dx — 0, asn — 0.
RN
Therefore

G(z,up — ug, vy — vo) dx — ZG(m,w’f,wé) dr, asn — oco.

RN k=1

Observe that
/]RN (un—uo—Zwl —yn)
2
+V(x <un—u0—2w1 —yn> dx—|—/RN (Un—vo—ZwQ —yn)
2
+V(zx ( 71}072&]2 yn) dz — 0,

as n — 0o, which is equivalent to
1
L ¥ a3 [V~ ds
RN RN
-2 V(u, — — dz
/]RN Z UO ( yn)

+2Z/ Veb (- — )Vt (- — ) da

kK

+/RNVIOC(3:)<< —uo—Zw1 —yn)>2dfﬂ

2

2
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2
+/ Vper(m>( (un_uo_zwl _yn )) dx
RN
o[ P+ Y [ 9 - R
R k=17RY
!
—2/ ZV(Un —vo)Vwh (- —yF) da
RY k=1

+2Z VWEC ) Vel (- ) da
k#k'

+/RNVIOC(3:)< <vn—y0_zw2 s >>2dx
+/RNVper(l’)( (vnv()ZwQ yn)>2d:c%0,

as n — 0o. Note that

2
/Vloc( <un uo—Zwl —yn> dr — 0, asn — oo,
RN

2
/RNVIOC <nvOZW2 yn> dr — 0, asn — oo.

On the other hand

Voc n - - —Yn d
‘/R{Nl(x(u Ug Zwl y)x

< [Vioelloo

2

n_u0_§ Wl _yn

2

Furthermore,

=7 Zv ) Vit (- — gh)do - -2 Zml — )P da,
]RN ]RN

as n — 00. Since

l
/RNZV )Vl (- =) de = [ 3 V(- o) ol )Tk d

RY k=1

and u, (- + y¥) — wl. Analogously

—2 V(v 0)V — d —2 V — d
/RNZ V(- — o) dr /RND A =y Pdeyn — oo,
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Hence

l
/ Vi~ )t =3 [ V(- )P e
RN N

/ Vet (- — yE )Vl (- — o) da
k#k!

+/RNVper( )( (un—uo_zwl — b )>2dx
+/RN |V(vn—vo)\2dx—Z/N Vb (- — )P da

23" [ VR~V - ) da
k#k!

+/Rvaer()< (vnv02w2 yn>>2dx%0,

as n — 0o. Observe that

Vit =)Vl (- b do = [ VbVl gk al ) de o,
RN RN

V(- —yE )Yk (- —yF)de = [ VwhVWE (- 4k -y )de — 0,
RN RN

as n — o0, since |y¥ — y*'| — oo for k # k. Then

l
/ |v<un—uo>|2dx—2/ VWb (- — )P de
RN — RN
2
+/ Vper( (un_u() _Zwl _yn > dx
RN
+/ |v<vnfvo>|2da:—2/ Vah(- — yh)P de
RN — RN
2
+/ Vpcr( ( 77}072("]2 yn) dCB—)O,
RN

as n — 00, which is equivalent to

!
[ 9 =) =3 [ 90k = b det [ V) — o) d
RN RN RN
l
=23 [ Vi) — wo) - — o)
k=1
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2
er - d n 2d
/ , (Zw1 y) “/RN'V(“ vo)[? dax
_Z/ |VW§(' —y2)|2daﬁ+/ Vper(x)(vn_UO)Qdaj
RN RN
—22 [, Voo el = o)
2
—|—/]RNVPer (ng —yn> dz — 0,

as n — 0o. In a similar way, we obtain

2 Z/ Vier (2) (un, — uo)wh (- —y¥)doe = —2 /]RN Vier () (wy, — ug)? dx + o(1),

2 Z: /RN Voer(2) (Vg — vo)wh (- — yk) da = —2/ Voer () (v — v0)? dz + o).

RN

Then

l
/ |V<unfuo>|2dx—z/ Yk (- — yh)P de
RN o1 RN
2
_/ Vper () (un — o) d:c+/ Voer (2 (Zwl —yn> dx
]RN
l
+/ |V<vn—vo>|2dm—z/ Vah(- —yh)P de
RN o RN

l

2
_ / Vper(l')(’l)n - '1}0)2 dx +/ per (ZWS - yn ) dr — 07
RN

as n — 0o, and

l
[ V=P de =37 [ Vet( — b do
RY k=1"RY
l
- [ Ve@ i — o)z 4 3 [ Vot (- o) e
RY k=1"RY
l
[ V= w)Pde =3 [ Vb - b de
RN o RN
l
= [ V@) =00 e+ 3 [ Vial)@h(- — ) da
RN = RN
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k/
+22/ pcr wl( 7yn)w1( 7yn)d$
kK

+2Z/ Voer (2)5 (- — g (- — o) d 0,

k#k’

as n — 0o. Note that

[ Vesldb - = b (-~ ) dz >0,
RN

[ Vo) (- = b = o) ao 0,
RN

as n — 0o0. Therefore

l
Jper(un — Up, Un — UO E Jper wlywz)
k=1

l
:Jper<un_u07vn_ ZJper wl _ny )7w§(' _ny ))_>O7
k=1

as n — 0o. Then

l

Jper(un — Uo, Un — UO) — Z Jper(wlf7w§)’
k=1

which completes the proof of (4.12). O
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