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ABSTRACT. We consider the following singularly perturbed problem:
—eNAnu+ V(@) |ulN 2w = f(u), u(x)>0 inRY,

where N > 2 and A yu is the N-Laplacian operator. In this paper, we con-
struct a solution u. which concentrates around any given isolated positive
local minimum component of V, as € — 0, in the Trudinger—Moser type of
subcritical or critical case. In the subcritical case, we only impose on f the
Berestycki and Lions conditions. In the critical case, a global condition on
the nonlinearity f is imposed. However, any monotonicity of f(t)/t™¥ 1 or
Ambrosetti-Rabinowitz type conditions are not required.
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1. Introduction

In this paper, we are concerned with the concentration phenomena of positive
solutions to the following singularly perturbed elliptic problem:

(1.1) —eNANv+ V(@) N 20 = fv), ©>0, veWHY(RY),

where Anxv = div(|Vu|N=2Vv) and N > 2. For ¢ > 0 sufficiently small, these
solutions are referred to as “semi-classical states”. In the sequel, we assume that
the potential V satisfies the following conditions:

(V1) V€ O(RY,R) and 0 < V = irﬂl@fN V(x);
fe1S]
(V2) there is a bounded domain O such that
m = inf V(z) < min V(z).

z€0 2€d0
In 2008, J. Byeon, L. Jeanjean and K. Tanaka in [11] considered the above
problem (1.1) in the cases: N = 2 and subcritical growth. Precisely, in addition
to the hypotheses on V, (V1) and (V2), they assumed that f € C(RT,RY)
satisfies
(F1) Tim £()/¥1 =0
(F2) for any o > 0, there exists C,, > 0 such that |f(t)| < Cy exp(atN/(N-1)
for t > 0;

(F3) there exists 7' > 0 such that T¥m < NF(T), where F(s) := [ f(t)dt.
They proved that problem (1.1), with N = 2, possesses a positive solution which
concentrates around a local minimum of the V. These hypotheses, (F1)-(F3), are
called Berestycki—Lions conditions, which were firstly proposed in the classical
paper [6] to guarantee the existence of ground states to problem (1.1) with N = 2.
Moreover, (F1)—(F3) are almost optimal (see [11]).

To state our results, we start with Lemma 1.1 due to J.M. do O [21] (see
also [15] for N = 2) and Lemma 1.2 due to S. Adachi and K. Tanaka [2].

LEMMA 1.1. If N > 2, a >0 and u € WHN(RY), then

/ (exp (a\u|N/(N_1)) — Sy_2(a,u)) dz < oo,
RN

where
N-2

k
@ EN/(N—
Sn-a(on) = 3 o [N/,
k=0
Moreover, if o < ay, then for any positive constant M, there exists C' =
C(a, N, M) such that

/N (exp (oz|u|N/(N71)) — Sy_a(o,u))de < C,
R

for any uw € WHN(RN) with ||Vu||xy <1 and |jul|y < M.
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LEMMA 1.2. If N > 2 and a € (0,an), there exists Co, > 0 such that

VuN/ v (u)deCQuN,
|| ”N RN N ||VU||N || HN
for any u € WHN(RN)\ {0}, where U (t) = exp (alt|N/N=D) — Sy _o(a,t).

Motivated by the above papers, the purpose of this work is to extend results
obtained in [11] to higher dimension N > 3 and a nonlinearity involving critical
growth. First, we start establishing the subcritical case, because in the proof of
the critical case we will use some arguments made for the subcritical case.

THEOREM 1.3. Suppose that (V1)—(V2) and (F1)-(F3) hold. Then, for suf-
ficiently small € > 0, (1.1) admits a positive solution v, which satisfies
(a) there exists a mazimum point . of v. such that lirr%) dist(z., M) =0 and
e—

for any such xz., we(x) = ve(ex + xc) converges (up to a subsequence)
uniformly to a least energy solution of

(1.2) ~Anu+muN Tt = fu), uw>0, weWHYRY),
(b) ve(x) < Cexp(—clz — zc|/e) for some ¢,C > 0.

Naturally, since we are interested in the critical growth case, we need to
assume some additional hypotheses on f € C(R™,R), namely

0 for all a > ay,
(F4) lm f(s)exp(—asV/N-1D) = or all & > ay

s—+o00 400 for all a < ay,
where ay = ijlv/g[_l) and wy_1 is the volume of the unit sphere
in RN,
(F5) lim tf(t)exp (—antV/V=1) > ;.
|t|—=+oo

The main result of this paper reads as

THEOREM 1.4. Suppose that (V1)—(V2), (F1) and (F4)—(F5) hold with

e (N —2)!
50>E'W

Then, for ¢ > 0 sufficiently small, (1.1) admits a positive solution v., which

satisfies
(a) there exists a mazimum point . of v. such that lirr%) dist(z., M) =0 and
E—

for any such z., we(x) = ve(ex + xc) converges (up to a subsequence)
uniformly to a least energy solution of

(1.3) —Ayu+mulN = f(u), u>0, ue WHY(RY);

(b) ve(x) < Cexp(—clz — zc|/e) for some ¢,C > 0.
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REMARK 1.5. Without loss of generality, in the present paper we can assume
that Vo = 1. The assumptions (F1)-(F3) are called the Berestycki-Lions type
conditions, which we believe to be almost optimal.

This paper is also motivated by some works addressing the so-called singu-
larly perturbed problem, when ¢ = 0, of the type

(1.4) —ePApu + V(2)|w|P%0 = f(v), ©v>0, veWHP(RY),

where N > 3, 1 < p < N, and A, is the well-known p-Laplacian operator.
When p = 2, many authors have studied problem (1.4) investigating, not only
the existence question, but also the behavior of some families of solutions, e.g.
solutions which develop a spike shape around some point in RY as ¢ — 0. In
the pioneering work [26] (see also [31] for higher dimensions), by a reduction
method, A. Floer and A. Weinstein studied the single peak solutions around any
given non-degenerate critical point of V for N = 1 and f(s) = s3. In [33], Paul
Rabinowitz used the variational approach to consider the existence of positive
solutions to (1.4) without the uniqueness and non-degeneracy condition, but im-
posing a global condition on V' and by considering a subcritical growth condition
on the nonlinearity. Indeed this family of the solutions has a concentration phe-
nomenon, which was proved in [38]. Still in the subcritical case, in [17], using
a penalization approach, M. del Pino and P. Felmer obtained a single-peak so-
lution around some minimal point of V', assuming only a local condition on the
potential. See also related papers [18]—[20] and [3] for 1 < p < N. In the works
above, more restrictions on f are imposed, such as the monotonicity:

(H) f(t)/tN~1 is nondecreasing in (0, c0),
and the Ambrosetti—-Rabinowitz condition:

(AR) there exists pr > N such that 0 < pF(z,u) < uf(x,u), for all u > 0,
z € RV,
Recently, some efforts have been made to weaken or eliminate assumptions (AR)
or (H). In this direction, J. Byeon and L. Jeanjean [9] developed a new variational
approach and established the concentration phenomenon around any isolated
component of the local minimal points of V. For the related results, when p = 2,
we also refer to [12], [13], [8], [16] and [28] for 1 < p < N.

With the penalized argument, J.M. do O [22] considered the concentration
phenomenon of (1.4) with 1 < p < N in the critical case and constructed a sin-
gle peak solution around the local minimal point of V. Here, we also would like
to mention [25]. For p = N, C. Alves and G. Figueiredo [4], under conditions
(H) and (AR), considered the N-Laplacian problem (1.4) with a Trudinger—
Moser type critical growth and proved the existence and concentration of solu-
tions. In [41], by a truncation argument, J. Zhang and J. do O considered the
semiclassical states of (1.4) for N = 2 and extended the result in [11] to the
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Trudinger—Moser critical case without restrictions of the type (AR) and mono-
tonicity condition on f. To conclude this section, we would like to point out
some additional difficulties of the case N > 2 in contrast with the case N = 2.
First, in the present paper, Proposition 2.7 (see Section 2) plays a crucial role.
When N > 2, the underlying space W1V (R¥) is not a Hilbert space any more,
which causes that it is more complicated to prove the following splitting property
in Proposition 2.7:

Do(us) > To(ul) +To(u?) +0(1) ase— 0.

Second, to get the concentration, we need refined C'®-estimates for N-Laplace
equations instead of W?2P-estimates for Laplace equations. Therefore, the meth-
ods in [11], [41] cannot be used directly and some more tricks are given.

The paper is organized as follows. Section 2 is dedicated to the proof of
Theorem 1.3. In Section 3, we use a truncation approach to prove Theorem 1.4.

Notations.

1/s
o [julls:= </ |u|8dyc> for s € [N, 00).
RN

1/s
Ls(B) = (/ u|5dx) for s € [N,00), B C RV.
B

[l

1/N
lull = (Jull ¥ + [IVul|§) " for u e WHN(RY).
WLEN(RYN) stands for the subspace of W1V (RY) formed by the radially

symmetric functions.

C, ¢ denote positive constants, which may change from line to line.

2. Proof of Theorem 1.3

In this section, to prove our result, we will use the framework made in [11],
when p = 2, combined with some arguments made in [28], for polynomial sub-
critical situation. Since we are concerned with positive solutions to (1.1), from
now on, we can assume that f(¢t) = 0 for ¢ < 0. By denoting u(x) = v(ez) and
Ve(z) = V(ex), (1.1) is equivalent to

(2.1) —Anu+ Ve(x)u/N?u = f(u), u>0 inRY.

To study (1.1), it suffices to study (2.1). Let W be the completion of C§°(RY)
with respect to the norm

1/N
ull. = (/ (V™ + vg|u|N>dx) .
]RN

For any set B C RY and € > 0, we define B. = {x € RY : ez € B}. Now, we
modify the nonlinearity f as in [17], [28]. By (F1) there exists a > 0 such that
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ft) <tVN=1/2for t € (0,a). For x € RN t € R, let

9(x,t) = xo (@) f(t) + (1 = xo(2)) (1),
where xo(z) =1if x € O, xo(z) =0if ¢ O and
F(t) ift <a,
min {f(t), % tN—l} if t > a.

It is easy to check that g(x,t) = f(¢) for z € RV, t € [0,a] and g(z,t) < f(t) for
any = € RY, ¢ > 0. Now, we consider the modified problem

flt) =

(2.2) ~Anu+ Vo(x)|[ulN 2 = g(ex,u), uw>0, ueW.,

where g(cz,t) = xo.(2)f(t) + (1 — xo.(x))f(t). Obviously, if u. is a solution
to (2.2) satisfying u.(z) < a for x € RV \ O, then u. is a solution to the original
problem (2.1).

For u € W¢, let

1
P.(u) = —/ (VN + Velul™) da —/ G(ex,u) dz,
N RN RN
where G(z,t) = f(f g(z,s)ds. Fixing an arbitrary p > 0, we define

0 ifx € O,

Xe(T) =
: el ifx e RN\ O,

and
2

Qe(u) = (/RN el da — 1)+.

This type of penalization was firstly introduced in [14] (see also [9]), which will
act as a penalization to force the concentration phenomena to occur inside O.
Finally, let I'.: H. — R be given by

Fe(u) = Pe(u) + Qe (u).
Obviously, I'. € Cl(H.). In the following, to find solutions to (2.2) which
concentrate around O as € — 0, we shall search critical points of I'. such that
Q- is zero.
First, we study the properties of ground state solutions to the limit problem
(1.2). We define an energy functional for the limiting problem (1.2) by
1
Ly (u) = 7/ (IVulY +m[u|V) dz f/ F(u)dz, we W N(RY).
N Jrw R

N
By combining some arguments made in [23] with those used in [27], we can prove
that, with the same assumptions on f as in Theorem 1.3, there exists a positive
radially symmetric ground state solution U to (1.2). Moreover, the least energy
E,, gives a mountain pass level. Let S, be the set of positive ground state
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solutions U to (1.2) satistying U(0) = max U(z). Then S, # ¢ and we have
fasS

the following result.

PROPOSITION 2.1. Under the same assumptions as in Theorem 1.3, we have
(a) for any U € Sp, U € CL*RN) N L®(RY) (« € (0,1)) is radially

loc
symmetric and OU/Or < 0, r = |x|;
(b) Sy, is compact in WHN (RY);
(¢) 0 <inf{||U|loc : U € Sy} < sup{||U]|oc : U € S} < 00
(d) there exist C,c > 0, independent of U € S,,, such that |D*U(z)| <

Cexp(—clz|), z € RN for|a| =0,1.

To prove Proposition 2.1, we recall some results involving regularity of solu-
tions to (1.2), as well as, the following C'*“-estimates for N-Laplace equations
instead of W2P-estimates for uniform elliptic equations.

LEMMA 2.2 ([34]). Assume Q is a smooth bounded domain in RN and u €
WEN(Q) is a weak solution to —Anu = f, where f € L1(Q2) for some q¢ > 1,
then for any ' € ), there exists a constant C depending only on ,Q q and N
such that

[ull oo @y < CUIfllLa) + lully @)-

LEMMA 2.3 ([36]). Let Q be a smooth bounded domain in RN and u €
WEN(Q) be a weak solution to —Anu = f. If ||u] () < a and || || () < b,
then u € CH*(Q) for some a € (0,1). Moreover, for any ) € Q, there exists
a constant C' depending only on Q,, a,b, a such that

ullcre@y < C.
Similarly to [11], by Lemma 1.2 we can get

LEMMA 2.4. Assume that (F1)—(F2) hold, then for any bounded sequence
{un}n in WEN(RN) with
lim sup / |un | dx = 0,
B(y,1)

n—oo yERN

it holds that
lim F(uy)dz =0.

n—oo RN
Now, we will adopt some ideas from [11] and [41] to prove Proposition 2.1.

We will give only the sketch of the proof.

PROOF OF PROPOSITION 2.1.
STEP 1. We show that for any U € S,,, U € L®(RN) N CLY(RYN) for some
a € (0,1). For any r > 0, U is a weak solution to the following problem:

(2.3) ~Anu+muNt = f(u) in B, u-UecW"N(B,),
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where B,.(0) := {z € RY : |z| < r}. By Lemma 1.1, it follows that f(U) €
LN (RY), which implies from Lemma 2.2 that for each open Q € B, with 9Q €
cH,

(2.4) Ul e () < C(”f(U)HLN(BT) + ||U||LN(B7~))7

where C' depends only on Q,r. Meanwhile, by Lemma 2.3, we get that U €
Ch(Q) for some o € (0,1) and there exists ¢ (depending only on ||U| p (s, ),
Q,r, ) such that

(2.5) [Ullcreqo) < e

Now, to prove that U vanishes at infinity, it suffices to prove that for any § > 0,
there exists R > 0 such that U(z) < 4, for all |z| > R. If not, there exists {z;} C
RY with |z;] — oo as j — oo and liminf U(z;) > 0. Let vj(z) = U(z + z;) and
j—o0
assume that v; — v weakly in WHN(RY), we claim that v # 0. In fact, noting
that v; is a weak solution to (2.3), it follows from (2.4) and (2.5) that, up to
a subsequence, v; — v uniformly in €. Hence,
v(0) = liminf v;(0) = liminf U(x;) > 0,

J—00 J—00

which implies that v # 0. On the other hand, for any fixed R > 0 and j large
enough, we have

/ UNdasZ/ UNdsc+/ UV dz
RN Br(0) Br(z;)

:/ UNder/ oV dx + 0j(1),
Br(0) Br(0)

where 0;(1) — 0 as j — oo. Since R is arbitrary, we get that v = 0, which is
a contradiction. Thus, U(x) — 0 as |z| — oo, which implies that U € L>(RY).

STEP 2. We use a result of [10] to prove that any U € S, is radially
symmetric. Let

1
T(u) = N/RN ViV e, Gl = [ P - ol e,
we consider the constraint minimization problem
(2.6) To = inf {T'(u) : G(u) =0, u € WHN(RY)\ {0}}.

Arguing as in [23] together with [27], it follows that T = E,, > 0 and it is
achieved. On the other hand, for any minimizer u of (2.6), as we can see in [7],
there exists 8 > 0 such that u is a weak solution to the following problem:

(2.7) —Anu+ 0mluN 2w = 0f(u), ueWHN(RY).
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Similarly to Step 1, for any solution u to (2.7), u € CLY(RN) N L®(RN) and
u(xz) — 0 as |z| — oco. By a classical comparison argument, u decays exponen-
tially at infinity, which implies from the Pohozaev—Pucci and Serrin [32] (see also
[27]) that u satisfies G(u) = 0. By (F1),

F(t) — % [t|N <0 for small enough [¢| > 0.

Therefore, it follows from [10, Proposition 4] that U is radially symmetric and
nonincreasing with respect to r = |z|.

STEP 3. We show the compactness of S,,. First, by Lemma 2.4, similarly to
[11], we know that S,, is bounded in W1 (R¥M). Recalling that OU/dr < 0, by
the radial lemma [7],

(2.8) lim U(x) =0 uniformly for U € S,,.

|z|—o00
Second, assume that {U;} C S,,, with U; — U weakly in W1V (RY) and almost

everywhere in RY. By (F2), without loss of generality, we can assume that
limsup [|[VUj||y < 1. By Lemma 1.1, || f(Uj)|| 1~ ®~) is uniformly bounded for

J]—00

J, which implies from Lemmas 2.2-2.3 that ||Uj||c1.e(p,) < C, where C' does not
depend on j. Due to E,, > 0, it is easy to prove that liminf |Uj||cc > 0 since
j—oo

lirrtl)f(t)/tN*1 = 0. Noting that U;(0) = ||Uj||oc, we know that U # 0. On the
s—

other hand, by Lemmas 1.1 and 2.8, it follows from the compactness lemma of
Strauss [35] (see also [7]) that

/ F(U;) FU) asj— oo,
RN RN
which implies that G(U) > 0 since G(U;) = 0. Due to
IVUIIN < liminf VU = NEp,
j—o0
as we can see in [6] (see also [5]), G(U) =0 and ||U||¥ = NE,,. Thus, U; — U
strongly in W1V (RY) and S, is compact in W1V (RY).

STEP 4. We give the decay estimate of S;,, at infinity. Similarly to Step 3, by
(2.8) and Lemma 2.2, 0 < inf{||U]|co : U € Sp} < sup{||U]|ec : U € S} < 0.
By a classical comparison principle, there exist ¢, C' > 0 such that

U(z) + |VU(z)| < Cexp(—clz|), = eRY,
for any U € S,,,. The proof is completed. O

Now, we are ready to prove Theorem 1.3. Without loss of generality, we may
assume that 0 € M. For any set B C RY and 6 > 0, we define B® = {x € RV :
dist(x, B) < ¢}. Let E,, = L, (U) for U € S,,, and 100 = dist(M, O°). We fix
B € (0,6) and a cut-off ¢ € C§°(RY) such that 0 < ¢ < 1, p(z) =1 for |z| < 3
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and ¢(x) = 0 for |z| > 28. Let p.(y) = ¢(ey), y € RV, and for each z € M”
and U € S,,, we define

Uz (y) = %(y— i)U(y— ”3)

As in [9], we can find, for sufficiently small £ > 0, a solution near the set
X, ={U*(y):x e M°, U €8S,}.

By Proposition 2.1, similarly to [11], we can construct a family of good mountain
pass paths at the level E,,.

PROPOSITION 2.5. There exists T > 0 such that, for any § > 0, there exists
a path ~° € C([0, T], WHN(RN)) with the following properties:
(a) ¥°(0) =0, L (+*(T)) < ~1 and e Lin(Y°(8)) = Enm;
€10,
(b) there exists Ty € (0,Ty) such that v°(Ty) € Sy, Lin(v?(T0)) = Ey and

Lin(7° (1)) < Em for [7°(t) =2°(To)|| > 6;
(c) there exist C,c > 0 such that for any t € [0,T],

DY (v° (1) (x)| < Cexp(—clz]), z€RN, o] =0,1.
We note that 0 € M and define
V() (y) = 0¥’ () (y),
then T', ('yg(t)) =P, ('yg(t)) for t € [0,T]. Now, we define a min-max value C:

C. = inf r ,
Juf e Le(v(s))

where ®. = {y € C([0,1],W.) : v(0) = 0, v(1) = ~%(T)}. By Proposition 2.5,
V(T -) € ®. and T.(72(T)) < 0 for small enough ¢ > 0. Let

(2.9) D := max T.(72(Ts)).
s€[0,1]

Obviously, C. < DJ. Then similarly to [11], we have
PROPOSITION 2.6. lim C. = lim D% = E,,,.
e—0 e—0
Set I'? :={u e W, : T.(u) < a} and for a set A C W, and o > 0, let
A% = {u € We i inf ||lu— vl < a}.
vEA
PROPOSITION 2.7. Let {€;}2, be such that lim €; =0 and {ue,} C X2 such
11— 00
that
lim T, (ue,) < B and  lim T (uc,) = 0.
i—00 1—00

Then, for sufficiently small d > 0, there exists, up to a subsequence, {y;}52,; C
RN, x € M, U € S, such that

lim |e;y; —2[=0 and lim [jue, — e, (- —v)U(- — i)
71— 00 1—> 00

¢ =0.
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d

2, there

PRrROOF. For convenience, we write € for €;. By the definition of X
exist {U.} C Sy, and {x.} € M” with

e -2)a(- )

Since S,, and M# are compact, there exist Z € S, © € M? such that U, — Z
in WHM(RY) and 2. — x. Thus, for small enough ¢ > 0,

us—%(-_x;>2(._x;>

Moreover, by (F2) we may assume that sup ||Vu||n < 1.

<d.

(2.10) < 2d.

€

STEP 1. We claim that

lim inf sup / luc|N dx = 0,
B(y,1)

e—0 yEA.
where A, = B(z./e,38/¢)\ B(z /e, §/2¢). If the claim is true, by Lions’ lemma,
ue — 0 strongly in LY(B.) for any ¢ > N,

where B, = B(z./e,28/¢) \ B(x./e,B/c). Assume by contradiction that there
exists r > 0 such that

lim inf sup / luc|N dx = 2r > 0,
=70 yeA. JB(y.)

then there exists y. € A, such that for small enough ¢ > 0, fB(y 1) |uE|N dx > r.
Note that y. € A. and there exists o € M* C O such that ey. — zo. Let
Us(y) = us(y + ys)a then
(2.11)  — Anve + Vely + ye)|ve| N 20, — g(ey + eye, v.)

= 72NQ;/2(U€)XE(ZJ + ys)lve|N72vs + he,

where h. — 0 strongly in Ww—LN (RY) as ¢ — 0, and for ¢ small enough,
(2.12) / lve|N dy >,
B(0,1)

and up to a subsequence, v. — v weakly in WLV (RY), almost everywhere in RY.
Recalling that the embedding W1V (RY) — LY (B(0,1)) is compact, it follows
from (2.12) that v # 0. Now, we claim that v satisfies

(2.13) —Anv+ V(o) vV v = f(v) in RV,

In fact, for any ¢ € C§°(RY), we use (v. — v)p as a test function in (2.11). By
the definition of y and g, we know that for £ small enough,

Xg(y—i—ye)wg\N*QUg(ve —v)p=0 for all y € RY,
9(ey + eye,ve) (ve — V) = f(ve)(ve —v)  for all y € RY.
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By the local compactness of the embedding W1 (RY) «— LI(RY) for any ¢ > N,
as e — 0,

[ Vot wdlod™ Zopdy > [ Vi)l ug dy
RN RN
By Lemma 1.1 and (F1), ||f(v:)|lx < 00, as £ = 0,
[ stev+evv = vpdy = [ 1w~ vgdy 0.

RN RN

So similarly to [4, Lemma 3], as € — 0,
/ |V N 72V Vo dy —>/ (V| N 2VoVp dy.
RN RN

By (F1)—(F2), Lemma 1.1 and the compactness lemma of Strauss [35], as € — 0,

/g(8y+€y57ve)<ﬁdy—>/ fv)pdy.
RN RN

Hence, v is a nontrivial solution to (2.13). Then, for a sufficiently large R > 0,

1 N
.. N 2 N _ Y )
Bt [ T2 5 [ 9 = 5 Tt

Obviously, Ly (44)(v) > Ev(g,). Then, since x¢ € O, we have V(zo) > m and

N
liminf/ |Vu |V > = E,, >0,
=0 JBw..R) 2

which is a contradiction with (2.10) if d is small enough.

STEP 2. Let ul(y) = ¢e(y — z:/e)uc(y), u? = ue — ul. We claim that, for
small enough d > 0, T'(u2) > 0 and

To(us) > To(ul) +To(u?) +0(1) ase— 0.

Obviously, Q- (u:) = Q:(u?) and Q.(ul) = 0 for small enough ¢ > 0. For any
y € RN ul(y)u2(y) > 0, then

ue (@)Y = (lub(y)? + [u2()]? + 20l ()2 (y))
> (Jul(y)? + a2 ()2 > b ()N + [ )Y,

which implies that

/ vs|us|Ndyz/ vs|u;|Ndy+/ Volu2™ dy.
RN RN RN

Meanwhile, it is easy to verify that

/RN IVullN dy = /RN w?( : f)IVUEINdy+0(1),

N
[weray= | (1—%('—””5)) VuelN dy + o(1),
]RN RN 5

and



SINGULARLY PERTURBED N-LAPLACIAN PROBLEMS 565

where o(1) — 0 as € — 0. Obviously, for any y € RV,
Vue () > @2y — x2/2)[Vue ()|* + (1 = p:(y — x-/¢))* [Vue(y)|*.
It follows that
/ VeV > / Vul Y +/ Va2 + o1).
RN RN RN
Thus, we get
(2.14) Le(ue) >To(ul) + De(u?) +o(1)

- / (Gley,ue) — Gley,ul) — Gley.u2) dy.

=

By (F1)—(F2), there exists a € (0, ) such that, for any p > 0 with pC, €
(0,1/(2N)) and fixed ¢ > N, there exists C' > 0 such that

(2.15) F(t)] < pUn() +Cltl", teR,

where ¥ and C, are given in Lemma 1.2. By Lemma 1.2,

limsup/ Uy (us) = ¢ < 0.
RN

e—0

Then, by u. — 0 strongly in L9(B) which has been proved in Step 1, we have

1imsup/ (G(ey,ua) — G(ay,u;) — G(ey, ug)) dy
B,

e—0
= lim sup / (F(ue) — F(ul) — F(u2)) dy
e—0 B,
< limsup/ (PPN (ue) + Cluc|?) dy < cp.
e—0 B.

Since p is arbitrary, [, (F(ue) — F(ul) — F(u2))dy = o(1) as ¢ — 0. By (2.15),
Lemma 1.2 and Sobolev’s inequality, there exists C' > 0 (independent of €) such
that

—
m
S
N
\%
~
e
\_l);
\4

1
> Il = [ i) dy - Cl
RN
1
> o 21 - Clale.

It follows from g > N that T'c(u2) > ||u2||Y /(6N) > 0 for d > 0 small. Therefore,
the claim is true.

STEP 3. Let we(y) := ul(y+m./¢) = ¢ (y)ue(y+z/€). Up to asubsequence,
we — w weakly in WY (RY), w. — w almost everywhere in RY. Now, we claim
that

we — w  strongly in LI(RY),
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where ¢ is given in (2.15). Assume by contradiction that there exists r > 0 such
that

liminf sup / |we —w|?dy = 2r > 0.
B(z,1)

e—0 2ERN
Then, there exists z. € RY such that
lim inf |we —w|? > 7.
e—0 B(Zg7l)

Obviously, {z.} is unbounded. Without loss of generality, lir% |ze| = co. Then,
e—

lim inf lwe|9dy >,
e—0 B(Za,l)

lim inf / Pe(y)ue (y + xa)
e—0 B(zs,l) £

Similarly to [11], |z¢|] < B/2¢ for € small enough. Assume that ez, — 2y €
B(0,3/2) and W, = w.(y + z.) — w weakly in WY (RY), almost everywhere in
RY. Then w # 0 and as in Step 1, @ satisfies

—Anw(y) + V(z + z0)[a(y)[" a(y) = f(@(y)) n RV

i.e.
q

dy > .

Similarly to Step 1, we get a contradiction for d > 0 small enough. Thus, w, — w
strongly in L(RY).

STEP 4. By Step 3,

lim G(ex,ul) dr = lim G(ex + xe, we) dx

e—0 RN e—0 RN
= lim F(we)dx = / F(w)dz.
e—0 Oc—zc /e RN

Then, similarly to [9, Proposition 4], there exist U € S,, and y. € RY such that
lim |ey. — 2| =0 and lim |lue — pe(- —y)U(- —ye)|le = 0. O
e—0 e—0

By Proposition 2.7, there exists dy > 0 small enough such that for any
d € (0,do) there exist pg > 0, wg > 0 and 4 > 0 such that, for € € (0,¢4),
(2.16) T (u)] > wq for u € TPmtran (Xxdo\ X3,
Similarly to [11], by Proposition 2.5, we have

PROPOSITION 2.8. There exists My > 0 such that for any § > 0, there exist
as >0 and g5 < 1 such that for e € (0,e5) and t € [0,T],

FE('yg(t)) > FE,, —as 1mplies ’yg(t) IS X5M05.

By (2.16) and Proposition 2.8, with a deformation argument, similarly to
[11], there exist d > 0 and ¢ > 0 such that I'. admits a Palais—-Smale sequence

1
in T2 n X2, where D? is given in (2.9). Precisely,
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ProPOSITION 2.9. For sufficiently small € > 0, there exists a sequence
s
{une}22, C r2:n X2 such that [T (unc)| — 0 as n — oo.

In the following, by Proposition 2.9, we show the existence of a critical point
of T',.

PROPOSITION 2.10. For sufficiently smalle,d > 0, T'c has a nontrivial critical
1
point ue € Xg N I‘EDE.

PrROOF. Let ¢ > 0 be fixed, small enough. By Proposition 2.9, there exists a
sequence {u, 22, C XN F?z such that [T (un)| — 0 as n — co. Since X2
is bounded, we can assume that u, . — u. weakly in W, as n — oo. Similarly
to [14, Proposition 3],

R—oopn>1

lim sup/ (VuneN + Velup |V) dz = 0,
|z|>R

which immediately implies that w,. — wu. strongly in L"(RY) (r > N) as
n — oo. Moreover, by (F1)-(F2) and Lemma 1.1, sup || f(un.c)||n < co. Then,
for any ¢ € C5°(RY),

/ g(ey, Un.e)(Une —ue)pdy =0 asn — oo.
RN

Then, similarly to [28, Proposition 5.3], u, . — ue strongly in W, as n — oo.
5

Thus, I'.(u.) = 0 in W, and u. € XgﬁFEDE. Obviously, 0 € X2 for small enough

d > 0. Thus u. # 0. O

Let us continue with the proof of Theorem 1.3. By Proposition 2.10, there

5

exist d > 0 and g > 0 such that I'. has a nontrivial critical point u. € X g ﬂFEDE
for € € (0,e). Since f(t) =0 for ¢ <0, we see that u. > 0.

STEP 1. We prove that there exists C' > 0 such that
(2.17) lte|loo < C uniformly for e € (0,¢eq).

If (2.17) is true, then it follows from the Harnark inequality (see [37]) that us > 0
in RY. Thus, from (V1) and (F1), it is easy to see that i(nf : llte]loo > 0.
€€(0,e0

Now, we use the Moser iteration argument (see [30]) to prove (2.17). For any
L >0 and 8 > 1, define

. N(B-1
Ue,r, = min{ue, L} and v, = ucu, éﬂ ),

then v, € W,.. By I'.(u.) = 0 and (F1)—(F2), for any o € (0, ay), there exists
C > 0 such that u. satisfies

(2.18) —Apnue < C\I/N(ug)uév_l, u. >0, xeRY,
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where Uy is defined in Lemma 1.2. Using v, as a test function in (2.18), we get

/ Vue MV 4 N - 1) / Ve [NV
RN RN

<C \I/N(us)uévui\jgg_l).
RN

Set w1, = uaug_Ll. We have Vw, 1, = Vuau?zl + (8- I)VUE,LVugzl. Then

/ V|V < BN / Wy (e )l
RN RN

where C > 0 is independent of €, L, 8. Take some fixed t > N, then by (F2) and
Lemma 1.1, we can choose « in ¥y small enough such that
sup ||\I/N(U5)||Lt/(t—N)(]RN) < o0.
e€(0,e0)
So, [[Vwe,rl|n < CB|lwe,r]l¢- Choosing some fixed s > ¢, by the Gagliardo—

Nirenberg inequality (see [29, Proposiotion 8.12]), we have
s < C(I[Vwe,L

v+ llwe,Llle) < CBllwe 1

[we, I3

where C' depends only on s,t, N. Let L — oo, we get that

(2.19) el pos vy < CHPBYP |lue| pos ),

where C depends only on s,t, N. Let k = s/t > 1, § = k™, then by (2.19),
(2.20) ||u5||Lmn+1(RN) < CR77LH7LK7H||Us||LW"(]RN)'

By iterating (2.20), we can get that for any n > 1,

. n .
—q Pp—

K > ik
||“6||Lt~"+1(RN) <@ g lluellLe @y,

1=

which implies that [[uc|loc < Clluc|Lty), where C' does not depend on €. Re-
calling that u. € X2, we know that sup ||u.||; < co. Therefore, the claim (2.17)
is concluded.

STEP 2. There exist C,c > 0 (independent of ¢) and y. € RY such that
(2.21) 0 < w.(y) < Cexp(—cly|]) foryeRY, c€(0,e),

where we(y) = u.(y+y.). By Proposition 2.7 and (2.17), for small enough d > 0
there exist {y.} C RN, 2 € M, U € S,, such that

lim ley. —2| =0 and lim |luc —U(- —ye)|le =0.
e—0 e—0

Then, for any o > 0, there exists R > 0 (independent of €) such that

sup / wi.v <o.
e€(0,e0) JRN\B(0,R)

Moreover, since I'.(u.) = 0 and {u.} is bounded in L*(RY) uniformly for
e € (0,gp), there exists C' > 0 (independent of ¢) such that —Ayw. < CwX~!
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in RY. Then by [37, Theorem 1.3], there exists C > 0 (independent of €) such

that sup w. < CH“’€||LN(B(y,2)) for any y € RY. Then, 0 < w.(y) < Col/N for
B(y.1)
e € (0,e0), ly] > R+ 2. Thus, (2.21) follows from the maximum principle.

STEP 3. Similarly to [40], by (2.21) it is easy to show that Q.(u.) = 0 for
small e > 0. Thus, u, is a critical point of P. and a solution to (2.2). Moreover,
by (2.21), uc(z) — 0 as e — 0 uniformly for € RY \ O, which implies that u.
is a solution to the original problem (2.1) for small enough ¢ > 0. By Lemma 2.3
and Step 1, u. € C’IIO’E‘(RN) for some a € (0,1). Let z. € RV be such that
|lwe|lso = we(2:), then by Step 1 and (2.21), {z.} € R¥ is bounded. Up to a
subsequence, we can assume that z. — 29 as € — 0. Let . = y. + 2., then
maxue = uc (). Let z. = ey. + €z., then maxv. = v.(z.) and limz. =
RN RN e—0
lim ey, = @ € M. Finally, it is easy to check that v.(e - +z.) = U(- + 2¢)

e—0

strongly in W, as € — 0. This completes the proof.

3. Proof of Theorem 1.4

In this section, assume that f satisfies (F1) and (F4)—(F5), we consider the
semiclassical states of (1.1) in the critical case. We use a truncation argument
to prove Theorem 1.4. Similar arguments can also be found in [41].

3.1. The limit problem. We study the existence and properties of ground
state solutions to the limiting problem (1.2) in the critical case. It was shown
in [39] that (1.2) possesses a ground state solution by means of the following

constraint minimization problem:

(2.1) A=inf{T(u): Gu) =0, u e WHNRN)\ {0}},
where
T(w) :% [ IVl ds and Glu) - /RN (F(u) - |uN> da.

If problem (2.1) admits a minimizer u, then there exists § > 0 such that u( - / ¥/0)
is indeed the ground state solution to (1.2). Following [5], [39], to prove the
existence of the minimizer to (1.2), it is enough to prove that A < 1/N. For this
goal, let

c:= max L, (tu),

inf
uweW N (RN)\{0} =20
then it can be seen from [39] that A < c. It follows from Lemma 3.2 (see below)
that A < 1/N, then from [39] one has the following

LEMMA 3.1. Assume (F1), (F4) and (Fs) hold with
e (N —2)!

m.

(2.2) Bo >
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Then (1.2) admits a positive ground state solution. Moreover, the least energy
E,, is obtained by a mountain pass value.

LEMMA 3.2. There ezists w € WHN(RN)\ {0} such that max L, (tw) <1/N

where

1
L (u) = ¥ /RN(|Vu|N +m|u|N)dz — - F(u) dz.

PROOF. Let us first remark a few facts: by (2.2) we can choose r > 0 such

that
Ne(N—2)! rNm/NN—1

(2.3) Bo >

b

wy_1rN

and considering the Moser sequence of functions

(log )0V if o] < L,
n

~ oy LN ) log(r/|x])
I Gogn

0 if |x| > r,

it = < |z <,
n

where wy_1 is the volume of the unit sphere in RY, it is readily seen that

- _ 1 (N =1)!
_ N _ N
IVW,|ln =1 and ||w,|ly = Togn (NN Y+ on(1)>.
Let
dn ()

|||@n|HN = HV@nH% +menH% =1+ logn m,

where

(N —1)!

N N 4 0,(1) and o0,(1) — 0, asn — +oo.

Set wy, := Wy / ||| Wy |||, then for n large enough,

- —-1/(N-1 dn(r) r
(2.4) wh/ N 1)($)ZWN_/1( )<1ogn—N_1m¢ , |9:|§E

dn(r) =

Following the argument of Adimurthi [1] (see also [24]), we have

CLAIM. There exists n € N such that max L, (tw,) <1/N.
Indeed, assume by contradiction that

1
max L, (tw,) > —, meN.

>0 - N’
As a consequence of (F5), for any € > 0 there exists R. > 0 such that
(2.5) sf(s) > (Bo —e) exp(ans™N=D) forall s > R,

which implies that there exist C7,Cy > 0 such that
(2.6) F(s) > CysN T —Cy, 52>0,
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which yields L., (tw,) — —o0, as t — oco. Thus there exists ¢, > 0 such that

1
(2.7) (tnwn) = max L, (twn)
which in turn gives
L i / F(thywy) < o
AT - nWn) = ’
N~ N RN N

thus ¢, > 1.

Next we show that actually lim ¢, = 1. Observe that
n—oo

(2.8) tﬁf = f(tpwp)tyw, dz,
RN

and
t, (logn)N-D/N

@l Wy,

for n large enough. Then for n large enough, by (2.4) and (2.5), we have

tnN > (Bo — 5)/ exp(aN(tnwn)N/(N_l)) dx
By/n

thWy = — 400, asn — 00, T € By,

> WN -1 TN(BO _ E) eth/<N71)[10g n—dyp(r)m/(N-1)]—Nlogn
- N )
which implies that {¢,} is bounded and also limsupt¢, < 1. Thus, Claim is
n—oo
proved.
Noting that w,, — 0 almost everywhere in RY, by the Lebesgue dominated

convergence theorem, as n — oo one has

/ fltpwp)tyw, dz — 0
{trwn,<R:}

and
/ exp (an (tpwn) N/ NV dz — %TN.
{tnwn<Re}

Then from (2.8) and (2.5) it follows that

th = f(tpwp)tpw, de
B,
Z(BO - 5) / €xp (O‘N(tnwn)N/(Nil)) dx + / f(tnwn)tnwn dx
B, {tnwn<RE}

70%—ey/ exp ( (bnwn) N/ VD) da
{tnwn,<Rc}

=(Bo 6){/}3 exp (an (tpwy )Y/ V1) d — %rl\[+on(l) )

r

Let us estimate the term

/ exp (an (tnwy )N/ N1 da.
B,
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On one hand, it follows from (2.4) that

/ exp(aN(tnwn)N/(N_l))dac
B

r/n

> w]]\lvfl PN Nty NV log n—dy, (r)m/(N=1)]=Nlogn_

Noting also that ¢,, > 1, we have

lim inf/ exp(aN(tnwn)N/(Nfl)) dx > wN-1 PN = (N=2)/ N1 rNm
B

n—oo
r/n

On the other hand, using the change of variable s = re~ll@nlll(log )t/ t

/ exp (ay (tpwy )Y/ V1) dz
Br\Br/n

= wy—1r™ || @ || (logn)' /¥

(log n) N =D/N/|lj@, ||
/ NN NI @ [ (tog m) N ] gy
0

(log n) N=D/N /||, | N
> wy_1rN ||| @ || (logn) /N / o~ NIl (log )
0

1/N

bt

_wN—l N _ _,—Nlogn
=N T (1 e )

Then

lim inf exp (aN(tn’lUn)N/(N_l)) dz > N r (e_(N_Z)thm/NN?1 + 1)a

n—oo Jp N
which implies

_ N WN-1 N, —(N=2)lrNm/NN-1
= > ) .
1 ngrfoot” > (Bo —¢) N e

Since ¢ is arbitrary, we have

Ne@®=-2)rNm/NN—1

Bo <

)

wN_er

which contradicts (2.3) and the proof is complete.

With the same assumptions on f as in Theorem 1.4, G.Q. Zhang and J. Sun

(see [39]) proved that there exists a radially symmetric positive ground state so-

lution U to (1.2) (see also [5] for N = 2) and the least energy F,, is corresponding

to a mountain path value. Moreover,

1 N 1
N Jox VU Y dx m(U) m < N

(2.9) /RN <F(U)—xUN> dr = 0.



SINGULARLY PERTURBED N-LAPLACIAN PROBLEMS 573

Let Sy, be the set of positive ground state solutions U to (1.2) with U(0) =

max U(z). Then S,, # ¢. Similarly to Proposition 2.1, we have the following
xTE

result.

PRrROPOSITION 3.3. Under the assumptions of Theorem 1.4,

(a) for any U € S, U € CLYRN) N L®RY) (a € (0,1)) is radially
symmetric and OU/Or < 0, r = |x|;

(b) S, is compact in WHN (RN);

(¢) 0 <inf{||U||oc : U € Sy} < sup{||U]|oo : U € Sin} < 00

(d) there exist C,c > 0, independent of U € Sy, such that |D*U(z)| <
Cexp(—clz|), z € RN for|a| =0,1.

To prove Proposition 3.3, we need the following convergence result, which is
proved in [39] by a similar argument as in the case N = 2 in [5)].

LEMMA 3.4 ([39]). Assume that f satisfies the same assumptions as in The-

orem 1.4 and let {v,} be a sequence in WY (RN) such that

sup [V, [N =p <1 and sup|v,||N < oo.
n n

Then, if v, — v weakly in era’(IiV(RN) as n — 0o, we have

lim F(vn):/RN F(v).

n— oo RN

PROOF OF PROPOSITION 3.3. Obviously, (a) can be proved similarly to
Proposition 2.1. Now, we show the compactness of S,,. First, we prove that
S is bounded in era’év (RM) similarly to [11]. Tt suffices to prove that {||U]|y :
U € S5} is bounded. Otherwise, there exists {U;} C Sy, such that \; =
|Ujlly — o0 as j — oo. Let Uj(z) = U;(A;z), then U satisfies |U;|lxy = 1,
IVU,|IN = NE,, <1 and
(2.10) —ALN AU; +mU; = f(U;) in RV,

J
Assume that ﬁj — Up weakly in W2V (RN) and strongly in LNT1(RY), as we
can see from [11], Uy = 0. By (F1)—(F2), for any § > 0 and o > ay, there exists
C > 0 such that |tf(t)| < §Un(t) + C|t|V+! for t € R, where Uy is defined in
Lemma 1.1. Noting that ||V5']H% = NE,, <1, by Lemma 1.1, we can choose a
close to ay such that sup; [pn ||\IIN((7J)H < 00. Then for some ¢ > 0,

/IR2 U;£(U;)

that is, [on U; f(U;) = 0 as j — oo. Thus, by (2.10) ||U;|xy — 0 as j — oo,
which is a contradiction. Therefore, the claim is proved and S,, is bounded in

lim sup < cd,

Jj—o0
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erz;év(]RN). Second, assume {u,} C Sy, and u, — u weakly in era’éV(RN), then

by Lemma 3.4,
R2 R2

Due to E,, > 0, u # 0. As we can see from Proposition 2.1, up to a subsequence,
U — u strongly in W2V (RV) and S, is compact in WL (RV).

In the following, we give the L*°-estimate of S,,. By (F1) and E,, > 0,
inf{||ulloc : w € Sy} > 0 is obvious. Noting that S, is compact, to prove
sup{||uf|eo : u € Si} < o0, it suffices to prove that for any {u,} C Sy, with

U — u strongly in era’év (RM), we have sup ||u, |l < 0o. First, we claim that
n

(2.11) sup/RN If (un)|N < .

n

By (a), (b), (F1) and the radial lemma in [7], there exists R > 0 such that
|f (un ()| < |un(z)|N 1 for |z| > R and any n. Then, by the Sobolev embedding
theorem, we get

(2.12) sup/| ‘>R|f(un)|N < 0.

n

Let a > ay be fixed, by (F1)-(F2), there exists C' > 0 such that 0 < f¥(¢) <
CU N (N*/Nt) for t > 0, where Uy is defined in Lemma 1.1. Now, we prove
that
(2.13) lim (O (NN y,) — U (N Ny)) do = 0,
which immediately implies by Lemma 1.1 that
sup/ |f (un)|N dz < co.

|z|<R

Thus, by (2.12), the claim (2.11) holds.
Now, we prove (2.13). Since u,, — u strongly in L?(B(0, R)) for any ¢ > 1,
it is easy to show that (2.13) is equivalent to

(2.14) lim (exp(NauN/(N_l)) — exp (NozuN/(Nfl))) dx = 0.

n

Due to u € L>®(RY) and u,, — u strongly in WrZéV (RY), there exists ¢ > 0 such

that

/ |exp(Nozu,]y/(N71))—eXp(NozuN/(Nfl))|dx

lz|<R

§c/ (exp(Na|unN/(N_1)—uN/(N_1)|)—1) dx
lz|<R

< C/ N/ N 1) N/ON=D) e (Nl (V=1 —  N/(N=D)y g,
2| <R
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Noting that there exists C' > 0 such that |a™N/(V=1) — pN/(N=1)| < pN/(N=1) 4
Cla — b|N/N=1) for any a,b > 0 we get

(2.15) /||<R|eXP(NO‘U7]Y/(N1))eXP(NOéUN/(Nl))|dx

< c/ [ul/N=1) N/ IN=D| exp (CNafu, — u|N/ VD) de
lz|<R

1/(N+1)
< c(/ N/ (N=1) _ N/(N=1) | N+1 dm)
|z|<R

N/(N+1)
X (/ exp (C(N + 1)auy, u|N/(N1))dx>
|z|<R

Since ||V(u, — u)||xy — 0 as n — oo, it follows from Lemma 1.1 that

sup/ exp(C(N + Dalu, — u/NV=Y)dz < .
|z|<R

n

Thus, (2.14) follows from (2.15) and u, — w strongly in L?(B(0, R)) for ¢ > 1.
Second, for any r > 0, similarly to Step 1 in Proposition 2.1, by Lemma 2.2,
there exists C'= C(r) (independent of n) such that sup,, |ty 1= B0, < C. It
follows from the radial lemma [7] that sup,, ||ty ||cc < 0.

Finally, by a classical comparison principle, there exist ¢, C' > 0 such that

U(z) + |[VU(z)| < Cexp(—c|z]), zeRYN,
for any U € S,,. O

3.2. The truncated problem. Since we are concerned with positive so-
lutions to (1.1), from now on, we can assume that f(t) = 0 for t < 0. By
Proposition 3.3, there exists £ > 0 such that

(2.16) sup ||U]leo < K-
U€ESm
For any k > tgg}é]f(t), define fi(t) = min{f(t),k}, for t € R. Consider the
truncated problem
(2.17) —Anu+ Vo(@)|ulN2u = fr(u), uwe W,
whose corresponding limiting problem is
(2.18) ~Axu+muN 2= fi(u), ue WHY(RY).
Define
LF (u) = i/ (IVulN +m|u™) de —/ Fi(u)dz, ueW-NRY),
N Jgn RN

where Fy(s) = fos fr(t) dt. Similarly to [41], fi satisfies (F1)—(F3) in Theorem

1.3 for any k > m[gxxl f(t). Then it follows from [23] that, for any k > In[gx] (1),
te|0,k te |0,k

(2.18) admits one positive ground state solution. Denote by E¥ the least energy
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of (2.18) and by S¥ the set of positive ground state solutions U to (2.18) with
U(0) = max U(z). Then E* > E,, and S¥ # @. By Proposition 2.1, Sk, C
EdS

WEHN(RY) is compact in WHY(RYN). Due to S,, C Sk, thus E¥ < E,, and
Ek = E,, for k> max f(t).
¢

0,k

LEMMA 3.5. For k > rn[(z)mx] f(t), we have Sk = S,,.
te|0,x

PrOOF. Noting that S, C S for k > rr?ax] f(t), it suffices to prove Sk C
tel0,k
S for k> max_ f(t). Let
¢

[0,K]
Gutw = [ | (ka) - |uN) dr,

then it is easy to show that
(2.19) EF =inf{T(u) : Gr(u) =0, u € W-N(RM)\ {0}}.

", uk is a minimizer of (2.19). By the definition of f; and
EF = E,,, uy satisfies T(ug) = E,,, and G(uy,) > 0, where

Glu) = /RN (F(u) - |uN> da.

Meanwhile, it is easy to show that

(2.20) B =inf{T(u) : Gu) =0, u € WHN(RY)\ {0}}.

For any u, € SF

Now, we claim that G(uy) = 0. Otherwise, if G(ug) > 0, there exists 0 €
(0,1) such that G(fux) = 0. However, T(0u,) = ONE,, < E,,, which is a
contradiction. Thus, G(ux) = 0, which implies that uy is a minimizer of (2.20).
Therefore, uy, is a ground state solution to (1.3), i.e., ug € Sp,. O

PROOF OF THEOREM 1.4. By Lemma 3.5 we fix k > max, f(t) with S¥ =
te|0,x

Sm. We consider the following truncated problem:
(2.21) —eNAnv + V(@) N %0 = fr(v), v>0, zeRY.

Since fi satisfies (F1)—(F3), it follows from Theorem 1.3 that for sufficiently
small € > 0, there exists a positive solution v. to (2.21), such that there exist
U € S, and a maximum point z. € RY of v, such that gl_I}(l) dist(ze, M) = 0
and v.(c - +x.) = U(- + 20) as € — 0 in WHN(RY) for some zy € RY. Let
we(+) =ve(e + +x.), then w, satisfies

—Anw, + V;(:E—F ?)wé\]_l = fr(we), w.€ We.

Since 0 < fr(t) < kfor all t € R, we get that sup ||w.|| < (B(0,2)) < 00 by Lemma
€
2.2. Tt follows from Lemma 2.3 that w.(-) — U(- + 2¢) uniformly in B;1(0). By
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Proposition 3.3, ||ve|lco = we(0) < & holds uniformly for sufficiently small € > 0.
Then, fi(ve(z)) = f(ve(x)), x € RY, for sufficiently small € > 0. O
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