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SINGULARLY PERTURBED N-LAPLACIAN PROBLEMS

WITH A NONLINEARITY

IN THE CRITICAL GROWTH RANGE
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Abstract. We consider the following singularly perturbed problem:

−εN∆Nu + V (x)|u|N−2u = f(u), u(x) > 0 in RN ,

where N ≥ 2 and ∆Nu is the N -Laplacian operator. In this paper, we con-

struct a solution uε which concentrates around any given isolated positive

local minimum component of V , as ε→ 0, in the Trudinger–Moser type of
subcritical or critical case. In the subcritical case, we only impose on f the

Berestycki and Lions conditions. In the critical case, a global condition on

the nonlinearity f is imposed. However, any monotonicity of f(t)/tN−1 or
Ambrosetti–Rabinowitz type conditions are not required.
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1. Introduction

In this paper, we are concerned with the concentration phenomena of positive

solutions to the following singularly perturbed elliptic problem:

(1.1) −εN∆Nv + V (x)|v|N−2v = f(v), v > 0, v ∈W 1,N (RN ),

where ∆Nv = div(|∇v|N−2∇v) and N ≥ 2. For ε > 0 sufficiently small, these

solutions are referred to as “semi-classical states”. In the sequel, we assume that

the potential V satisfies the following conditions:

(V1) V ∈ C(RN ,R) and 0 < V0 = inf
x∈RN

V (x);

(V2) there is a bounded domain O such that

m ≡ inf
x∈O

V (x) < min
x∈∂O

V (x).

In 2008, J. Byeon, L. Jeanjean and K. Tanaka in [11] considered the above

problem (1.1) in the cases: N = 2 and subcritical growth. Precisely, in addition

to the hypotheses on V , (V1) and (V2), they assumed that f ∈ C(R+,R+)

satisfies

(F1) lim
t→0

f(t)/tN−1 = 0;

(F2) for any α > 0, there exists Cα > 0 such that |f(t)| ≤ Cα exp(αtN/(N−1))

for t ≥ 0;

(F3) there exists T > 0 such that TNm < NF (T ), where F (s) :=
∫ s

0
f(t) dt.

They proved that problem (1.1), with N = 2, possesses a positive solution which

concentrates around a local minimum of the V . These hypotheses, (F1)–(F3), are

called Berestycki–Lions conditions, which were firstly proposed in the classical

paper [6] to guarantee the existence of ground states to problem (1.1) withN = 2.

Moreover, (F1)–(F3) are almost optimal (see [11]).

To state our results, we start with Lemma 1.1 due to J.M. do Ó [21] (see

also [15] for N = 2) and Lemma 1.2 due to S. Adachi and K. Tanaka [2].

Lemma 1.1. If N ≥ 2, α > 0 and u ∈W 1,N (RN ), then∫
RN

(
exp

(
α|u|N/(N−1)

)
− SN−2(α, u)

)
dx <∞,

where

SN−2(α, u) =

N−2∑
k=0

αk

k!
|u|kN/(N−1).

Moreover, if α < αN , then for any positive constant M , there exists C =

C(α,N,M) such that∫
RN

(
exp

(
α|u|N/(N−1)

)
− SN−2(α, u)

)
dx ≤ C,

for any u ∈W 1,N (RN ) with ‖∇u‖N ≤ 1 and ‖u‖N ≤M .
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Lemma 1.2. If N ≥ 2 and α ∈ (0, αN ), there exists Cα > 0 such that

‖∇u‖NN
∫
RN

ΨN

(
u

‖∇u‖N

)
dx ≤ Cα‖u‖NN ,

for any u ∈W 1,N (RN ) \ {0}, where ΨN (t) = exp(α|t|N/(N−1))− SN−2(α, t).

Motivated by the above papers, the purpose of this work is to extend results

obtained in [11] to higher dimension N ≥ 3 and a nonlinearity involving critical

growth. First, we start establishing the subcritical case, because in the proof of

the critical case we will use some arguments made for the subcritical case.

Theorem 1.3. Suppose that (V1)–(V2) and (F1)–(F3) hold. Then, for suf-

ficiently small ε > 0, (1.1) admits a positive solution vε, which satisfies

(a) there exists a maximum point xε of vε such that lim
ε→0

dist(xε,M) = 0 and

for any such xε, wε(x) ≡ vε(εx + xε) converges (up to a subsequence)

uniformly to a least energy solution of

(1.2) −∆Nu+muN−1 = f(u), u > 0, u ∈W 1,N (RN );

(b) vε(x) ≤ C exp(−c|x− xε|/ε) for some c, C > 0.

Naturally, since we are interested in the critical growth case, we need to

assume some additional hypotheses on f ∈ C(R+,R), namely

(F4) lim
s→+∞

f(s) exp(−αsN/(N−1)) =

0 for all α > αN ,

+∞ for all α < αN ,

where αN = Nω
1/(N−1)
N−1 and ωN−1 is the volume of the unit sphere

in RN ,

(F5) lim
|t|→+∞

tf(t) exp (−αN tN/(N−1)) ≥ β0.

The main result of this paper reads as

Theorem 1.4. Suppose that (V1)–(V2), (F1) and (F4)–(F5) hold with

β0 >
e

wN−1
· (N − 2)!

NN−2
m.

Then, for ε > 0 sufficiently small, (1.1) admits a positive solution vε, which

satisfies

(a) there exists a maximum point xε of vε such that lim
ε→0

dist(xε,M) = 0 and

for any such xε, wε(x) ≡ vε(εx + xε) converges (up to a subsequence)

uniformly to a least energy solution of

(1.3) −∆Nu+muN−1 = f(u), u > 0, u ∈W 1,N (RN );

(b) vε(x) ≤ C exp(−c|x− xε|/ε) for some c, C > 0.
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Remark 1.5. Without loss of generality, in the present paper we can assume

that V0 = 1. The assumptions (F1)–(F3) are called the Berestycki–Lions type

conditions, which we believe to be almost optimal.

This paper is also motivated by some works addressing the so-called singu-

larly perturbed problem, when t = 0, of the type

(1.4) −εp∆pv + V (x)|v|p−2v = f(v), v > 0, v ∈W 1,p(RN ),

where N ≥ 3, 1 < p ≤ N , and ∆p is the well-known p-Laplacian operator.

When p = 2, many authors have studied problem (1.4) investigating, not only

the existence question, but also the behavior of some families of solutions, e.g.

solutions which develop a spike shape around some point in RN as ε → 0. In

the pioneering work [26] (see also [31] for higher dimensions), by a reduction

method, A. Floer and A. Weinstein studied the single peak solutions around any

given non-degenerate critical point of V for N = 1 and f(s) = s3. In [33], Paul

Rabinowitz used the variational approach to consider the existence of positive

solutions to (1.4) without the uniqueness and non-degeneracy condition, but im-

posing a global condition on V and by considering a subcritical growth condition

on the nonlinearity. Indeed this family of the solutions has a concentration phe-

nomenon, which was proved in [38]. Still in the subcritical case, in [17], using

a penalization approach, M. del Pino and P. Felmer obtained a single-peak so-

lution around some minimal point of V , assuming only a local condition on the

potential. See also related papers [18]–[20] and [3] for 1 < p < N . In the works

above, more restrictions on f are imposed, such as the monotonicity:

(H) f(t)/tN−1 is nondecreasing in (0,∞),

and the Ambrosetti–Rabinowitz condition:

(AR) there exists µ > N such that 0 ≤ µF (x, u) ≤ uf(x, u), for all u > 0,

x ∈ RN .

Recently, some efforts have been made to weaken or eliminate assumptions (AR)

or (H). In this direction, J. Byeon and L. Jeanjean [9] developed a new variational

approach and established the concentration phenomenon around any isolated

component of the local minimal points of V . For the related results, when p = 2,

we also refer to [12], [13], [8], [16] and [28] for 1 < p < N .

With the penalized argument, J.M. do Ó [22] considered the concentration

phenomenon of (1.4) with 1 < p < N in the critical case and constructed a sin-

gle peak solution around the local minimal point of V . Here, we also would like

to mention [25]. For p = N , C. Alves and G. Figueiredo [4], under conditions

(H) and (AR), considered the N -Laplacian problem (1.4) with a Trudinger–

Moser type critical growth and proved the existence and concentration of solu-

tions. In [41], by a truncation argument, J. Zhang and J. do Ó considered the

semiclassical states of (1.4) for N = 2 and extended the result in [11] to the
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Trudinger–Moser critical case without restrictions of the type (AR) and mono-

tonicity condition on f . To conclude this section, we would like to point out

some additional difficulties of the case N > 2 in contrast with the case N = 2.

First, in the present paper, Proposition 2.7 (see Section 2) plays a crucial role.

When N > 2, the underlying space W 1,N (RN ) is not a Hilbert space any more,

which causes that it is more complicated to prove the following splitting property

in Proposition 2.7:

Γε(uε) ≥ Γε(u
1
ε) + Γε(u

2
ε) + o(1) as ε→ 0.

Second, to get the concentration, we need refined C1,α-estimates for N -Laplace

equations instead of W 2,p-estimates for Laplace equations. Therefore, the meth-

ods in [11], [41] cannot be used directly and some more tricks are given.

The paper is organized as follows. Section 2 is dedicated to the proof of

Theorem 1.3. In Section 3, we use a truncation approach to prove Theorem 1.4.

Notations.

• ‖u‖s :=

(∫
RN
|u|s dx

)1/s

for s ∈ [N,∞).

• ‖u‖Ls(B) :=

(∫
B

|u|s dx
)1/s

for s ∈ [N,∞), B ⊂ RN .

• ‖u‖ :=
(
‖u‖NN + ‖∇u‖NN

)1/N
for u ∈W 1,N (RN ).

• W 1,N
r (RN ) stands for the subspace of W 1,N (RN ) formed by the radially

symmetric functions.

• C, c denote positive constants, which may change from line to line.

2. Proof of Theorem 1.3

In this section, to prove our result, we will use the framework made in [11],

when p = 2, combined with some arguments made in [28], for polynomial sub-

critical situation. Since we are concerned with positive solutions to (1.1), from

now on, we can assume that f(t) = 0 for t < 0. By denoting u(x) = v(εx) and

Vε(x) = V (εx), (1.1) is equivalent to

(2.1) −∆Nu+ Vε(x)|u|N−2u = f(u), u > 0 in RN .

To study (1.1), it suffices to study (2.1). Let Wε be the completion of C∞0 (RN )

with respect to the norm

‖u‖ε =

(∫
RN

(|∇u|N + Vε|u|N ) dx

)1/N

.

For any set B ⊂ RN and ε > 0, we define Bε ≡ {x ∈ RN : εx ∈ B}. Now, we

modify the nonlinearity f as in [17], [28]. By (F1) there exists a > 0 such that
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f(t) ≤ tN−1/2 for t ∈ (0, a). For x ∈ RN , t ∈ R, let

g(x, t) = χO(x)f(t) + (1− χO(x))f̃(t),

where χO(x) = 1 if x ∈ O, χO(x) = 0 if x 6∈ O and

f̃(t) =


f(t) if t ≤ a,

min

{
f(t),

1

2
tN−1

}
if t > a.

It is easy to check that g(x, t) = f(t) for x ∈ RN , t ∈ [0, a] and g(x, t) ≤ f(t) for

any x ∈ RN , t ≥ 0. Now, we consider the modified problem

(2.2) −∆Nu+ Vε(x)|u|N−2u = g(εx, u), u > 0, u ∈Wε,

where g(εx, t) = χOε(x)f(t) + (1 − χOε(x))f̃(t). Obviously, if uε is a solution

to (2.2) satisfying uε(x) ≤ a for x ∈ RN \Oε, then uε is a solution to the original

problem (2.1).

For u ∈Wε, let

Pε(u) =
1

N

∫
RN

(|∇u|N + Vε|u|N ) dx−
∫
RN

G(εx, u) dx,

where G(x, t) =
∫ t

0
g(x, s) ds. Fixing an arbitrary µ > 0, we define

χε(x) =

0 if x ∈ Oε,
ε−µ if x ∈ RN \Oε,

and

Qε(u) =

(∫
RN

χε|u|N dx− 1

)2

+

.

This type of penalization was firstly introduced in [14] (see also [9]), which will

act as a penalization to force the concentration phenomena to occur inside O.

Finally, let Γε : Hε → R be given by

Γε(u) = Pε(u) +Qε(u).

Obviously, Γε ∈ C1(Hε). In the following, to find solutions to (2.2) which

concentrate around O as ε → 0, we shall search critical points of Γε such that

Qε is zero.

First, we study the properties of ground state solutions to the limit problem

(1.2). We define an energy functional for the limiting problem (1.2) by

Lm(u) =
1

N

∫
RN

(
|∇u|N +m |u|N

)
dx−

∫
RN

F (u) dx, u ∈W 1,N (RN ).

By combining some arguments made in [23] with those used in [27], we can prove

that, with the same assumptions on f as in Theorem 1.3, there exists a positive

radially symmetric ground state solution U to (1.2). Moreover, the least energy

Em gives a mountain pass level. Let Sm be the set of positive ground state
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solutions U to (1.2) satisfying U(0) = max
x∈RN

U(x). Then Sm 6= φ and we have

the following result.

Proposition 2.1. Under the same assumptions as in Theorem 1.3, we have

(a) for any U ∈ Sm, U ∈ C1,α
loc (RN ) ∩ L∞(RN ) (α ∈ (0, 1)) is radially

symmetric and ∂U/∂r ≤ 0, r = |x|;
(b) Sm is compact in W 1,N (RN );

(c) 0 < inf {‖U‖∞ : U ∈ Sm} ≤ sup{‖U‖∞ : U ∈ Sm} <∞;

(d) there exist C, c > 0, independent of U ∈ Sm, such that |DαU(x)| ≤
C exp(−c|x|), x ∈ RN for |α| = 0, 1.

To prove Proposition 2.1, we recall some results involving regularity of solu-

tions to (1.2), as well as, the following C1,α-estimates for N -Laplace equations

instead of W 2,p-estimates for uniform elliptic equations.

Lemma 2.2 ([34]). Assume Ω is a smooth bounded domain in RN and u ∈
W 1,N (Ω) is a weak solution to −∆Nu = f , where f ∈ Lq(Ω) for some q > 1,

then for any Ω′ b Ω, there exists a constant C depending only on Ω,Ω′, q and N

such that

‖u‖L∞(Ω′) ≤ C(‖f‖Lq(Ω) + ‖u‖LN (Ω)).

Lemma 2.3 ([36]). Let Ω be a smooth bounded domain in RN and u ∈
W 1,N (Ω) be a weak solution to −∆Nu = f . If ‖u‖L∞(Ω) ≤ a and ‖f‖L∞(Ω) ≤ b,
then u ∈ C1,α(Ω) for some α ∈ (0, 1). Moreover, for any Ω′ b Ω, there exists

a constant C depending only on Ω,Ω′, a, b, α such that

‖u‖C1,α(Ω′) ≤ C.

Similarly to [11], by Lemma 1.2 we can get

Lemma 2.4. Assume that (F1)–(F2) hold, then for any bounded sequence

{un}n in W 1,N (RN ) with

lim
n→∞

sup
y∈RN

∫
B(y,1)

|un|N dx = 0,

it holds that

lim
n→∞

∫
RN

F (un) dx = 0.

Now, we will adopt some ideas from [11] and [41] to prove Proposition 2.1.

We will give only the sketch of the proof.

Proof of Proposition 2.1.

Step 1. We show that for any U ∈ Sm, U ∈ L∞(RN ) ∩ C1,α
loc (RN ) for some

α ∈ (0, 1). For any r > 0, U is a weak solution to the following problem:

(2.3) −∆Nu+muN−1 = f(u) in Br, u− U ∈W 1,N (Br),
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where Br(0) := {x ∈ RN : |x| < r}. By Lemma 1.1, it follows that f(U) ∈
LN (RN ), which implies from Lemma 2.2 that for each open Ω b Br with ∂Ω ∈
C1,

(2.4) ‖U‖L∞(Ω) ≤ C
(
‖f(U)‖LN (Br) + ‖U‖LN (Br)

)
,

where C depends only on Ω, r. Meanwhile, by Lemma 2.3, we get that U ∈
C1,α(Ω) for some α ∈ (0, 1) and there exists c (depending only on ‖U‖L∞(Br),

Ω, r, α) such that

(2.5) ‖U‖C1,α(Ω) ≤ c.

Now, to prove that U vanishes at infinity, it suffices to prove that for any δ > 0,

there exists R > 0 such that U(x) ≤ δ, for all |x| ≥ R. If not, there exists {xj} ⊂
RN with |xj | → ∞ as j →∞ and lim inf

j→∞
U(xj) > 0. Let vj(x) = U(x+ xj) and

assume that vj → v weakly in W 1,N (RN ), we claim that v 6≡ 0. In fact, noting

that vj is a weak solution to (2.3), it follows from (2.4) and (2.5) that, up to

a subsequence, vj → v uniformly in Ω. Hence,

v(0) = lim inf
j→∞

vj(0) = lim inf
j→∞

U(xj) > 0,

which implies that v 6≡ 0. On the other hand, for any fixed R > 0 and j large

enough, we have∫
RN

UN dx ≥
∫
BR(0)

UN dx+

∫
BR(xj)

UN dx

=

∫
BR(0)

UN dx+

∫
BR(0)

vN dx+ oj(1),

where oj(1) → 0 as j → ∞. Since R is arbitrary, we get that v ≡ 0, which is

a contradiction. Thus, U(x)→ 0 as |x| → ∞, which implies that U ∈ L∞(RN ).

Step 2. We use a result of [10] to prove that any U ∈ Sm is radially

symmetric. Let

T (u) =
1

N

∫
RN
|∇u|N dx, G(u) =

∫
RN
F (u)− m

N
|u|N dx,

we consider the constraint minimization problem

(2.6) T0 := inf
{
T (u) : G(u) = 0, u ∈W 1,N (RN ) \ {0}

}
.

Arguing as in [23] together with [27], it follows that T0 = Em > 0 and it is

achieved. On the other hand, for any minimizer u of (2.6), as we can see in [7],

there exists θ > 0 such that u is a weak solution to the following problem:

(2.7) −∆Nu+ θm|u|N−2u = θf(u), u ∈W 1,N (RN ).
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Similarly to Step 1, for any solution u to (2.7), u ∈ C1,α
loc (RN ) ∩ L∞(RN ) and

u(x) → 0 as |x| → ∞. By a classical comparison argument, u decays exponen-

tially at infinity, which implies from the Pohozaev–Pucci and Serrin [32] (see also

[27]) that u satisfies G(u) = 0. By (F1),

F (t)− m

N
|t|N < 0 for small enough |t| > 0.

Therefore, it follows from [10, Proposition 4] that U is radially symmetric and

nonincreasing with respect to r = |x|.

Step 3. We show the compactness of Sm. First, by Lemma 2.4, similarly to

[11], we know that Sm is bounded in W 1,N (RN ). Recalling that ∂U/∂r ≤ 0, by

the radial lemma [7],

(2.8) lim
|x|→∞

U(x) = 0 uniformly for U ∈ Sm.

Second, assume that {Uj} ⊂ Sm with Uj → U weakly in W 1,N (RN ) and almost

everywhere in RN . By (F2), without loss of generality, we can assume that

lim sup
j→∞

‖∇Uj‖N ≤ 1. By Lemma 1.1, ‖f(Uj)‖LN (RN ) is uniformly bounded for

j, which implies from Lemmas 2.2–2.3 that ‖Uj‖C1,α(Br) ≤ C, where C does not

depend on j. Due to Em > 0, it is easy to prove that lim inf
j→∞

‖Uj‖∞ > 0 since

lim
s→0

f(t)/tN−1 = 0. Noting that Uj(0) = ‖Uj‖∞, we know that U 6≡ 0. On the

other hand, by Lemmas 1.1 and 2.8, it follows from the compactness lemma of

Strauss [35] (see also [7]) that∫
RN

F (Uj)→
∫
RN

F (U) as j →∞,

which implies that G(U) ≥ 0 since G(Uj) = 0. Due to

‖∇U‖NN ≤ lim inf
j→∞

‖∇Uj‖NN = NEm,

as we can see in [6] (see also [5]), G(U) = 0 and ‖U‖NN = NEm. Thus, Uj → U

strongly in W 1,N (RN ) and Sm is compact in W 1,N (RN ).

Step 4. We give the decay estimate of Sm at infinity. Similarly to Step 3, by

(2.8) and Lemma 2.2, 0 < inf {‖U‖∞ : U ∈ Sm} ≤ sup{‖U‖∞ : U ∈ Sm} < ∞.

By a classical comparison principle, there exist c, C > 0 such that

U(x) + |∇U(x)| ≤ C exp(−c|x|), x ∈ RN ,

for any U ∈ Sm. The proof is completed. �

Now, we are ready to prove Theorem 1.3. Without loss of generality, we may

assume that 0 ∈ M. For any set B ⊂ RN and δ > 0, we define Bδ ≡ {x ∈ RN :

dist(x,B) ≤ δ}. Let Em = Lm(U) for U ∈ Sm and 10δ = dist(M, Oc). We fix

β ∈ (0, δ) and a cut-off ϕ ∈ C∞0 (RN ) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x| ≤ β
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and ϕ(x) = 0 for |x| ≥ 2β. Let ϕε(y) = ϕ(εy), y ∈ RN , and for each x ∈ Mβ

and U ∈ Sm, we define

Uxε (y) = ϕε

(
y − x

ε

)
U

(
y − x

ε

)
.

As in [9], we can find, for sufficiently small ε > 0, a solution near the set

Xε = {Uxε (y) : x ∈Mβ , U ∈ Sm}.

By Proposition 2.1, similarly to [11], we can construct a family of good mountain

pass paths at the level Em.

Proposition 2.5. There exists T > 0 such that, for any δ > 0, there exists

a path γδ ∈ C([0, T ],W 1,N (RN )) with the following properties:

(a) γδ(0) = 0, Lm(γδ(T )) < −1 and max
t∈[0,T ]

Lm(γδ(t)) = Em;

(b) there exists T0 ∈ (0, T0) such that γδ(T0) ∈ Sm, Lm(γδ(T0)) = Em and

Lm(γδ(t)) < Em for ‖γδ(t)− γδ(T0)‖ ≥ δ;
(c) there exist C, c > 0 such that for any t ∈ [0, T ],

|Dα
x (γδ(t))(x)| ≤ C exp(−c|x|), x ∈ RN , |α| = 0, 1.

We note that 0 ∈M and define

γδε(t)(y) = ϕε(y)γδ(t)(y),

then Γε(γ
δ
ε(t)) = Pε(γ

δ
ε(t)) for t ∈ [0, T ]. Now, we define a min-max value Cε:

Cε = inf
γ∈Φε

max
s∈[0,1]

Γε(γ(s)),

where Φε = {γ ∈ C([0, 1],Wε) : γ(0) = 0, γ(1) = γδε(T )}. By Proposition 2.5,

γδε(T · ) ∈ Φε and Γε(γ
δ
ε(T )) < 0 for small enough ε > 0. Let

(2.9) Dδ
ε := max

s∈[0,1]
Γε(γ

δ
ε(Ts)).

Obviously, Cε ≤ Dδ
ε . Then similarly to [11], we have

Proposition 2.6. lim
ε→0

Cε = lim
ε→0

Dδ
ε = Em.

Set Γαε := {u ∈Wε : Γε(u) ≤ α} and for a set A ⊂Wε and α > 0, let

Aα :=
{
u ∈Wε : inf

v∈A
‖u− v‖ε ≤ α

}
.

Proposition 2.7. Let {εi}∞i=1 be such that lim
i→∞

εi = 0 and {uεi} ⊂ Xd
εi such

that

lim
i→∞

Γεi(uεi) ≤ Em and lim
i→∞

Γ
′

εi(uεi) = 0.

Then, for sufficiently small d > 0, there exists, up to a subsequence, {yi}∞i=1 ⊂
RN , x ∈M, U ∈ Sm, such that

lim
i→∞

|εiyi − x| = 0 and lim
i→∞

‖uεi − ϕεi( · − yi)U( · − yi)‖εi = 0.



Singularly Perturbed N-Laplacian Problems 563

Proof. For convenience, we write ε for εi. By the definition of Xd
ε , there

exist {Uε} ⊂ Sm and {xε} ⊂ Mβ with∥∥∥∥uε − ϕε( · −xεε
)
Uε

(
· −xε

ε

)∥∥∥∥
ε

≤ d.

Since Sm and Mβ are compact, there exist Z ∈ Sm, x ∈Mβ such that Uε → Z

in W 1,N (RN ) and xε → x. Thus, for small enough ε > 0,

(2.10)

∥∥∥∥uε − ϕε( · −xεε
)
Z

(
· −xε

ε

)∥∥∥∥
ε

≤ 2d.

Moreover, by (F2) we may assume that sup ‖∇uε‖N ≤ 1.

Step 1. We claim that

lim inf
ε→0

sup
y∈Aε

∫
B(y,1)

|uε|N dx = 0,

where Aε = B(xε/ε, 3β/ε)\B(xε/ε, β/2ε). If the claim is true, by Lions’ lemma,

uε → 0 strongly in Lq(Bε) for any q > N,

where Bε = B(xε/ε, 2β/ε) \ B(xε/ε, β/ε). Assume by contradiction that there

exists r > 0 such that

lim inf
ε→0

sup
y∈Aε

∫
B(y,1)

|uε|N dx = 2r > 0,

then there exists yε ∈ Aε such that for small enough ε > 0,
∫
B(yε,1)

|uε|N dx ≥ r.
Note that yε ∈ Aε and there exists x0 ∈ M4β ⊂ O such that εyε → x0. Let

vε(y) = uε(y + yε), then

(2.11) −∆Nvε + Vε(y + yε)|vε|N−2vε − g(εy + εyε, vε)

= −2NQ1/2
ε (uε)χε(y + yε)|vε|N−2vε + hε,

where hε → 0 strongly in W−1,N ′(RN ) as ε→ 0, and for ε small enough,

(2.12)

∫
B(0,1)

|vε|N dy ≥ r,

and up to a subsequence, vε → v weakly in W 1,N (RN ), almost everywhere in RN .

Recalling that the embedding W 1,N (RN ) ↪→ LN (B(0, 1)) is compact, it follows

from (2.12) that v 6≡ 0. Now, we claim that v satisfies

(2.13) −∆Nv + V (x0)|v|N−2v = f(v) in RN .

In fact, for any ϕ ∈ C∞0 (RN ), we use (vε − v)ϕ as a test function in (2.11). By

the definition of χ and g, we know that for ε small enough,

χε(y + yε)|vε|N−2vε(vε − v)ϕ = 0 for all y ∈ RN ,

g(εy + εyε, vε)(vε − v)ϕ = f(vε)(vε − v)ϕ for all y ∈ RN .



564 J. Zhang— J.M. do Ó — O.H. Miyagaki

By the local compactness of the embeddingW 1,N (RN ) ↪→ Lq(RN ) for any q ≥ N ,

as ε→ 0, ∫
RN

Vε(y + yε)|vε|N−2vεϕdy →
∫
RN

V (x0)|v|N−2vϕ dy.

By Lemma 1.1 and (F1), ‖f(vε)‖N <∞, as ε→ 0,∫
RN

g(εy + εyε, vε)(vε − v)ϕdy =

∫
RN

f(vε)(vε − v)ϕdy → 0.

So similarly to [4, Lemma 3], as ε→ 0,∫
RN
|∇vε|N−2∇vε∇ϕdy →

∫
RN
|∇v|N−2∇v∇ϕdy.

By (F1)–(F2), Lemma 1.1 and the compactness lemma of Strauss [35], as ε→ 0,∫
RN

g(εy + εyε, vε)ϕdy →
∫
RN

f(v)ϕdy.

Hence, v is a nontrivial solution to (2.13). Then, for a sufficiently large R > 0,

lim inf
ε→0

∫
B(yε,R)

|∇uε|N ≥
1

2

∫
RN
|∇v|N =

N

2
LV (x0)(v).

Obviously, LV (x0)(v) ≥ EV (x0). Then, since x0 ∈ O, we have V (x0) ≥ m and

lim inf
ε→0

∫
B(yε,R)

|∇uε|N ≥
N

2
Em > 0,

which is a contradiction with (2.10) if d is small enough.

Step 2. Let u1
ε(y) = ϕε(y − xε/ε)uε(y), u2

ε = uε − u1
ε. We claim that, for

small enough d > 0, Γε(u
2
ε) ≥ 0 and

Γε(uε) ≥ Γε(u
1
ε) + Γε(u

2
ε) + o(1) as ε→ 0.

Obviously, Qε(uε) = Qε(u
2
ε) and Qε(u

1
ε) = 0 for small enough ε > 0. For any

y ∈ RN , u1
ε(y)u2

ε(y) ≥ 0, then

|uε(y)|N =
(
|u1
ε(y)|2 + |u2

ε(y)|2 + 2u1
ε(y)u2

ε(y)
)N/2

≥ (|u1
ε(y)|2 + |u2

ε(y)|2)N/2 ≥ |u1
ε(y)|N + |u2

ε(y)|N ,

which implies that∫
RN

Vε|uε|N dy ≥
∫
RN

Vε|u1
ε|N dy +

∫
RN

Vε|u2
ε|N dy.

Meanwhile, it is easy to verify that∫
RN
|∇u1

ε|N dy =

∫
RN

ϕNε

(
· −xε

ε

)
|∇uε|N dy + o(1),

and ∫
RN
|∇u2

ε|N dy =

∫
RN

(
1− ϕε

(
· −xε

ε

))N
|∇uε|N dy + o(1),
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where o(1)→ 0 as ε→ 0. Obviously, for any y ∈ RN ,

|∇uε(y)|2 ≥ ϕ2
ε(y − xε/ε)|∇uε(y)|2 + (1− ϕε(y − xε/ε))2 |∇uε(y)|2.

It follows that ∫
RN
|∇uε|N ≥

∫
RN
|∇u1

ε|N +

∫
RN
|∇u2

ε|N + o(1).

Thus, we get

Γε(uε) ≥Γε(u
1
ε) + Γε(u

2
ε) + o(1)(2.14)

−
∫
Bε

(
G(εy, uε)−G(εy, u1

ε)−G(εy, u2
ε)
)
dy.

By (F1)–(F2), there exists α ∈ (0, αn) such that, for any ρ > 0 with ρCα ∈
(0, 1/(2N)) and fixed q > N , there exists C > 0 such that

(2.15) |F (t)| ≤ ρΨN (t) + C|t|q, t ∈ R,

where ΨN and Cα are given in Lemma 1.2. By Lemma 1.2,

lim sup
ε→0

∫
RN

ΨN (uε) = c <∞.

Then, by uε → 0 strongly in Lq(Bε) which has been proved in Step 1, we have

lim sup
ε→0

∫
Bε

(
G(εy, uε)−G(εy, u1

ε)−G(εy, u2
ε)
)
dy

= lim sup
ε→0

∣∣∣∣ ∫
Bε

(F (uε)− F (u1
ε)− F (u2

ε)) dy

∣∣∣∣
≤ lim sup

ε→0

∫
Bε

(ρΨN (uε) + C|uε|q) dy ≤ cρ.

Since ρ is arbitrary,
∫
Be

(F (uε)− F (u1
ε)− F (u2

ε)) dy = o(1) as ε→ 0. By (2.15),

Lemma 1.2 and Sobolev’s inequality, there exists C > 0 (independent of ε) such

that

Γε(u
2
ε) ≥ P (u2

ε) ≥
1

N
‖u2

ε‖Nε − ρ
∫
RN

ΨN (u2
ε) dy − C‖u2

ε‖qε

≥ 1

2N
‖u2

ε‖Nε − C‖u2
ε‖qε.

It follows from q > N that Γε(u
2
ε) ≥ ‖u2

ε‖Nε /(6N) ≥ 0 for d > 0 small. Therefore,

the claim is true.

Step 3. Let wε(y) := u1
ε(y+xε/ε) = ϕε(y)uε(y+xε/ε). Up to a subsequence,

wε ⇀ w weakly in W 1,N (RN ), wε → w almost everywhere in RN . Now, we claim

that

wε → w strongly in Lq(RN ),



566 J. Zhang— J.M. do Ó — O.H. Miyagaki

where q is given in (2.15). Assume by contradiction that there exists r > 0 such

that

lim inf
ε→0

sup
z∈RN

∫
B(z,1)

|wε − w|q dy = 2r > 0.

Then, there exists zε ∈ RN such that

lim inf
ε→0

∫
B(zε,1)

|wε − w|q > r.

Obviously, {zε} is unbounded. Without loss of generality, lim
ε→0
|zε| =∞. Then,

lim inf
ε→0

∫
B(zε,1)

|wε|q dy ≥ r,

i.e.

lim inf
ε→0

∫
B(zε,1)

∣∣∣∣ϕε(y)uε

(
y +

xε
ε

)∣∣∣∣q dy ≥ r.
Similarly to [11], |zε| ≤ β/2ε for ε small enough. Assume that εzε → z0 ∈
B(0, β/2) and w̃ε = wε(y+ zε) ⇀ w̃ weakly in W 1,N (RN ), almost everywhere in

RN . Then w̃ 6≡ 0 and as in Step 1, w̃ satisfies

−∆N w̃(y) + V (x+ z0)|w̃(y)|N−2w̃(y) = f(w̃(y)) in RN .

Similarly to Step 1, we get a contradiction for d > 0 small enough. Thus, wε → w

strongly in Lq(RN ).

Step 4. By Step 3,

lim
ε→0

∫
RN

G(εx, u1
ε) dx = lim

ε→0

∫
RN

G(εx+ xε, wε) dx

= lim
ε→0

∫
Oε−xε/ε

F (wε) dx =

∫
RN

F (w) dx.

Then, similarly to [9, Proposition 4], there exist U ∈ Sm and yε ∈ RN such that

lim
ε→0
|εyε − x| = 0 and lim

ε→0
‖uε − ϕε( · − yε)U( · − yε)‖ε = 0. �

By Proposition 2.7, there exists d0 > 0 small enough such that for any

d ∈ (0, d0) there exist ρd > 0, ωd > 0 and εd > 0 such that, for ε ∈ (0, εd),

(2.16) |Γ′ε(u)| ≥ ωd for u ∈ ΓEm+ρd
ε ∩ (Xd0

ε \Xd
ε ).

Similarly to [11], by Proposition 2.5, we have

Proposition 2.8. There exists M0 > 0 such that for any δ > 0, there exist

αδ > 0 and εδ < 1 such that for ε ∈ (0, εδ) and t ∈ [0, T ],

Γε(γ
δ
ε(t)) ≥ Em − αδ implies γδε(t) ∈ XM0δ

ε .

By (2.16) and Proposition 2.8, with a deformation argument, similarly to

[11], there exist d > 0 and δ > 0 such that Γε admits a Palais–Smale sequence

in Γ
Dδε
ε ∩Xd

ε , where Dδ
ε is given in (2.9). Precisely,
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Proposition 2.9. For sufficiently small ε > 0, there exists a sequence

{un,ε}∞n=1 ⊂ Γ
Dδε
ε ∩Xd

ε such that |Γ′ε(un,ε)| → 0 as n→∞.

In the following, by Proposition 2.9, we show the existence of a critical point

of Γε.

Proposition 2.10. For sufficiently small ε, d > 0, Γε has a nontrivial critical

point uε ∈ Xd
ε ∩ Γ

Dδε
ε .

Proof. Let ε > 0 be fixed, small enough. By Proposition 2.9, there exists a

sequence {un,ε}∞n=1 ⊂ Xd
ε ∩ Γ

Dδε
ε such that |Γ′ε(un,ε)| → 0 as n → ∞. Since Xd

ε

is bounded, we can assume that un,ε ⇀ uε weakly in Wε as n → ∞. Similarly

to [14, Proposition 3],

lim
R→∞

sup
n≥1

∫
|x|≥R

(|∇un,ε|N + Vε|un,ε|N ) dx = 0,

which immediately implies that un,ε → uε strongly in Lr(RN ) (r ≥ N) as

n → ∞. Moreover, by (F1)–(F2) and Lemma 1.1, sup ‖f(un,ε)‖N < ∞. Then,

for any ϕ ∈ C∞0 (RN ),∫
RN

g(εy, un,ε)(un,ε − uε)ϕdy → 0 as n→∞.

Then, similarly to [28, Proposition 5.3], un,ε → uε strongly in Wε as n → ∞.

Thus, Γ′ε(uε) = 0 in Wε and uε ∈ Xd
ε ∩Γ

Dδε
ε . Obviously, 0 6∈ Xd

ε for small enough

d > 0. Thus uε 6≡ 0. �

Let us continue with the proof of Theorem 1.3. By Proposition 2.10, there

exist d > 0 and ε0 > 0 such that Γε has a nontrivial critical point uε ∈ Xd
ε ∩Γ

Dδε
ε

for ε ∈ (0, ε0). Since f(t) = 0 for t ≤ 0, we see that uε ≥ 0.

Step 1. We prove that there exists C > 0 such that

(2.17) ‖uε‖∞ < C uniformly for ε ∈ (0, ε0).

If (2.17) is true, then it follows from the Harnark inequality (see [37]) that uε > 0

in RN . Thus, from (V1) and (F1), it is easy to see that inf
ε∈(0,ε0)

‖uε‖∞ > 0.

Now, we use the Moser iteration argument (see [30]) to prove (2.17). For any

L > 0 and β ≥ 1, define

uε,L = min{uε, L} and vε = uεu
N(β−1)
ε,L ,

then vε ∈ Wε. By Γ′ε(uε) = 0 and (F1)–(F2), for any α ∈ (0, αN ), there exists

C > 0 such that uε satisfies

(2.18) −∆Nuε ≤ CΨN (uε)u
N−1
ε , uε > 0, x ∈ RN ,
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where ΨN is defined in Lemma 1.2. Using vε as a test function in (2.18), we get∫
RN
|∇uε|NuN(β−1)

ε,L +N(β − 1)

∫
RN
|∇uε,L|NuN(β−1)

ε,L

≤ C
∫
RN

ΨN (uε)u
N
ε u

N(β−1)
ε,L .

Set wε,L = uεu
β−1
ε,L . We have ∇wε,L = ∇uεuβ−1

ε,L + (β − 1)∇uε,L∇uβ−1
ε,L . Then∫

RN
|∇wε,L|N ≤ CβN

∫
RN

ΨN (uε)w
N
ε,L,

where C > 0 is independent of ε, L, β. Take some fixed t > N , then by (F2) and

Lemma 1.1, we can choose α in ΨN small enough such that

sup
ε∈(0,ε0)

‖ΨN (uε)‖Lt/(t−N)(RN ) <∞.

So, ‖∇wε,L‖N ≤ Cβ‖wε,L‖t. Choosing some fixed s > t, by the Gagliardo–

Nirenberg inequality (see [29, Proposiotion 8.12]), we have

‖wε,L‖s ≤ C(‖∇wε,L‖N + ‖wε,L‖t) ≤ Cβ‖wε,L‖t,

where C depends only on s, t,N . Let L→∞, we get that

(2.19) ‖uε‖Lsβ(RN ) ≤ C1/ββ1/β‖uε‖Ltβ(RN ),

where C depends only on s, t,N . Let κ = s/t > 1, β = κn, then by (2.19),

(2.20) ‖uε‖Ltκn+1 (RN ) ≤ C
κ−nκnκ

−n
‖uε‖Ltκn (RN ).

By iterating (2.20), we can get that for any n ≥ 1,

‖uε‖Ltκn+1 (RN ) ≤ C
n∑
i=0

κ−i

κ

n∑
i=1

iκ−i

‖uε‖Lt(RN ),

which implies that ‖uε‖∞ ≤ C‖uε‖Lt(RN ), where C does not depend on ε. Re-

calling that uε ∈ Xd
ε , we know that sup ‖uε‖t <∞. Therefore, the claim (2.17)

is concluded.

Step 2. There exist C, c > 0 (independent of ε) and yε ∈ RN such that

(2.21) 0 < wε(y) ≤ C exp(−c|y|) for y ∈ RN , ε ∈ (0, ε0),

where wε(y) = uε(y+yε). By Proposition 2.7 and (2.17), for small enough d > 0

there exist {yε} ⊂ RN , x ∈M, U ∈ Sm such that

lim
ε→0
|εyε − x| = 0 and lim

ε→0
‖uε − U( · − yε)‖ε = 0.

Then, for any σ > 0, there exists R > 0 (independent of ε) such that

sup
ε∈(0,ε0)

∫
RN\B(0,R)

wNε ≤ σ.

Moreover, since Γ′ε(uε) = 0 and {uε} is bounded in L∞(RN ) uniformly for

ε ∈ (0, ε0), there exists C > 0 (independent of ε) such that −∆Nwε ≤ CwN−1
ε
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in RN . Then by [37, Theorem 1.3], there exists C > 0 (independent of ε) such

that sup
B(y,1)

wε ≤ C‖wε‖LN (B(y,2)) for any y ∈ RN . Then, 0 < wε(y) ≤ Cσ1/N for

ε ∈ (0, ε0), |y| ≥ R+ 2. Thus, (2.21) follows from the maximum principle.

Step 3. Similarly to [40], by (2.21) it is easy to show that Qε(uε) = 0 for

small ε > 0. Thus, uε is a critical point of Pε and a solution to (2.2). Moreover,

by (2.21), uε(x)→ 0 as ε→ 0 uniformly for x ∈ RN \Oε, which implies that uε
is a solution to the original problem (2.1) for small enough ε > 0. By Lemma 2.3

and Step 1, uε ∈ C1,α
loc (RN ) for some α ∈ (0, 1). Let zε ∈ RN be such that

‖wε‖∞ = wε(zε), then by Step 1 and (2.21), {zε} ⊂ RN is bounded. Up to a

subsequence, we can assume that zε → z0 as ε → 0. Let x̃ε = yε + zε, then

max
RN

uε = uε(x̃ε). Let xε = εyε + εzε, then max
RN

vε = vε(xε) and lim
ε→0

xε =

lim
ε→0

εyε = x ∈ M. Finally, it is easy to check that vε(ε · +xε) → U( · + z0)

strongly in Wε as ε→ 0. This completes the proof.

3. Proof of Theorem 1.4

In this section, assume that f satisfies (F1) and (F4)–(F5), we consider the

semiclassical states of (1.1) in the critical case. We use a truncation argument

to prove Theorem 1.4. Similar arguments can also be found in [41].

3.1. The limit problem. We study the existence and properties of ground

state solutions to the limiting problem (1.2) in the critical case. It was shown

in [39] that (1.2) possesses a ground state solution by means of the following

constraint minimization problem:

(2.1) A := inf
{
T (u) : G(u) = 0, u ∈W 1,N (RN ) \ {0}

}
,

where

T (u) =
1

N

∫
RN
|∇u|N dx and G(u) =

∫
RN

(
F (u)− m

N
|u|N

)
dx.

If problem (2.1) admits a minimizer u, then there exists θ > 0 such that u( · / N
√
θ)

is indeed the ground state solution to (1.2). Following [5], [39], to prove the

existence of the minimizer to (1.2), it is enough to prove that A < 1/N . For this

goal, let

c := inf
u∈W 1,N (RN )\{0}

max
t≥0

Lm(tu),

then it can be seen from [39] that A ≤ c. It follows from Lemma 3.2 (see below)

that A < 1/N , then from [39] one has the following

Lemma 3.1. Assume (F1), (F4) and (F5) hold with

(2.2) β0 >
e

wN−1
· (N − 2)!

NN−2
m.
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Then (1.2) admits a positive ground state solution. Moreover, the least energy

Em is obtained by a mountain pass value.

Lemma 3.2. There exists w ∈W 1,N (RN )\{0} such that max
t≥0

Lm(tw) < 1/N

where

Lm(u) =
1

N

∫
RN

(|∇u|N +m |u|N ) dx−
∫
RN

F (u) dx.

Proof. Let us first remark a few facts: by (2.2) we can choose r > 0 such

that

(2.3) β0 >
Ne(N−2)! rNm/NN−1

wN−1rN
,

and considering the Moser sequence of functions

w̃n(x) := w
−1/N
N−1


(log n)(N−1)/N if |x| ≤ r

n
,

log(r/|x|)
(log n)1/N

if
r

n
≤ |x| ≤ r,

0 if |x| ≥ r,

where wN−1 is the volume of the unit sphere in RN , it is readily seen that

‖∇w̃n‖N = 1 and ‖w̃n‖NN =
1

log n

(
(N − 1)!

NN
rN + on(1)

)
.

Let

9w̃n9N := ‖∇w̃n‖NN +m‖w̃n‖NN = 1 +
dn(r)

log n
m,

where

dn(r) :=
(N − 1)!

NN
rN + on(1) and on(1)→ 0, as n→ +∞.

Set wn := w̃n/ 9 w̃n9, then for n large enough,

(2.4) wN/(N−1)
n (x) ≥ w−1/(N−1)

N−1

(
log n− dn(r)

N − 1
mi

)
, |x| ≤ r

n
.

Following the argument of Adimurthi [1] (see also [24]), we have

Claim. There exists n ∈ N such that max
t≥0

Lm(twn) < 1/N .

Indeed, assume by contradiction that

max
t≥0

Lm(twn) ≥ 1

N
, n ∈ N.

As a consequence of (F5), for any ε > 0 there exists Rε > 0 such that

(2.5) sf(s) ≥ (β0 − ε) exp(αNs
N/(N−1)), for all s ≥ Rε,

which implies that there exist C1, C2 > 0 such that

(2.6) F (s) ≥ C1s
N+1 − C2, s ≥ 0,
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which yields Lm(twn)→ −∞, as t→∞. Thus there exists tn > 0 such that

(2.7) Lm(tnwn) = max
t≥0

Lm(twn) ≥ 1

N
,

which in turn gives
1

N
≤ tNn
N
−
∫
RN

F (tnwn) ≤ tNn
N
,

thus tn ≥ 1.

Next we show that actually lim
n→∞

tn = 1. Observe that

(2.8) tNn =

∫
RN

f(tnwn)tnwn dx,

and

tnwn =
tn

9w̃n9
(log n)(N−1)/N

w
1/N
N−1

→ +∞, as n→∞, x ∈ Br/n,

for n large enough. Then for n large enough, by (2.4) and (2.5), we have

tNn ≥ (β0 − ε)
∫
Br/n

exp(αN (tnwn)N/(N−1)) dx

≥ wN−1

N
rN (β0 − ε) eNt

N/(N−1)
n [logn−dn(r)m/(N−1)]−N logn,

which implies that {tn} is bounded and also lim sup
n→∞

tn ≤ 1. Thus, Claim is

proved.

Noting that wn → 0 almost everywhere in RN , by the Lebesgue dominated

convergence theorem, as n→∞ one has∫
{tnwn<Rε}

f(tnwn)tnwn dx→ 0

and ∫
{tnwn<Rε}

exp(αN (tnwn)N/(N−1)) dx→ wN−1

N
rN .

Then from (2.8) and (2.5) it follows that

tNn =

∫
Br

f(tnwn)tnwn dx

≥(β0 − ε)
∫
Br

exp(αN (tnwn)N/(N−1)) dx+

∫
{tnwn<Rε}

f(tnwn)tnwn dx

− (β0 − ε)
∫
{tnwn<Rε}

exp(αN (tnwn)N/(N−1)) dx

=(β0 − ε)
[ ∫

Br

exp(αN (tnwn)N/(N−1)) dx− wN−1

N
rN + on(1)

]
.

Let us estimate the term∫
Br

exp(αN (tnwn)N/(N−1)) dx.



572 J. Zhang— J.M. do Ó — O.H. Miyagaki

On one hand, it follows from (2.4) that∫
Br/n

exp(αN (tnwn)N/(N−1)) dx

≥ wN−1

N
rN eNt

N/(N−1)
n [logn−dn(r)m/(N−1)]−N logn.

Noting also that tn ≥ 1, we have

lim inf
n→∞

∫
Br/n

exp(αN (tnwn)N/(N−1)) dx ≥ wN−1

N
rN e−(N−2)!/NN−1 rNm.

On the other hand, using the change of variable s = re−9w̃n9(logn)1/N t,∫
Br\Br/n

exp(αN (tnwn)N/(N−1)) dx

= wN−1r
N 9 w̃n 9 (log n)1/N

·
∫ (logn)(N−1)/N/9w̃n9

0

eN[(tnt)N/(N−1)−9w̃n9(logn)1/N t] dt

≥ wN−1r
N 9 w̃n 9 (log n)1/N

∫ (logn)(N−1)/N/9w̃n9

0

e−N9w̃n9(logn)1/N t dt

=
wN−1

N
rN
(
1− e−N logn

)
.

Then

lim inf
n→∞

∫
Br

exp(αN (tnwn)N/(N−1)) dx ≥ wN−1

N
rN
(
e−(N−2)!rNm/NN−1

+ 1
)
,

which implies

1 = lim
n→+∞

tNn ≥ (β0 − ε)
wN−1

N
rNe−(N−2)!rNm/NN−1

.

Since ε is arbitrary, we have

β0 ≤
Ne(N−2)!rNm/NN−1

wN−1rN
,

which contradicts (2.3) and the proof is complete. �

With the same assumptions on f as in Theorem 1.4, G.Q. Zhang and J. Sun

(see [39]) proved that there exists a radially symmetric positive ground state so-

lution U to (1.2) (see also [5] for N = 2) and the least energy Em is corresponding

to a mountain path value. Moreover,

(2.9)

1

N

∫
RN
|∇U |N dx = Lm(U) = Em <

1

N
,∫

RN

(
F (U)− m

N
UN
)
dx = 0.
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Let Sm be the set of positive ground state solutions U to (1.2) with U(0) =

max
x∈RN

U(x). Then Sm 6= φ. Similarly to Proposition 2.1, we have the following

result.

Proposition 3.3. Under the assumptions of Theorem 1.4,

(a) for any U ∈ Sm, U ∈ C1,α
loc (RN ) ∩ L∞(RN ) (α ∈ (0, 1)) is radially

symmetric and ∂U/∂r ≤ 0, r = |x|;
(b) Sm is compact in W 1,N (RN );

(c) 0 < inf {‖U‖∞ : U ∈ Sm} ≤ sup{‖U‖∞ : U ∈ Sm} <∞;

(d) there exist C, c > 0, independent of U ∈ Sm, such that |DαU(x)| ≤
C exp(−c|x|), x ∈ RN for |α| = 0, 1.

To prove Proposition 3.3, we need the following convergence result, which is

proved in [39] by a similar argument as in the case N = 2 in [5].

Lemma 3.4 ([39]). Assume that f satisfies the same assumptions as in The-

orem 1.4 and let {vn} be a sequence in W 1,N
rad (RN ) such that

sup
n
‖∇vn‖NN = ρ < 1 and sup

n
‖vn‖NN <∞.

Then, if vn → v weakly in W 1,N
rad (RN ) as n→∞, we have

lim
n→∞

∫
RN

F (vn) =

∫
RN

F (v).

Proof of Proposition 3.3. Obviously, (a) can be proved similarly to

Proposition 2.1. Now, we show the compactness of Sm. First, we prove that

Sm is bounded in W 1,N
rad (RN ) similarly to [11]. It suffices to prove that {‖U‖N :

U ∈ Sm} is bounded. Otherwise, there exists {Uj} ⊂ Sm such that λj =

‖Uj‖N → ∞ as j → ∞. Let Ũj(x) = Uj(λjx), then Ũj satisfies ‖Ũj‖N = 1,

‖∇Ũj‖NN = NEm < 1 and

(2.10) − 1

λNj
∆Ũj +mŨj = f(Ũj) in RN .

Assume that Ũj → U0 weakly in W 1,N
rad (RN ) and strongly in LN+1(RN ), as we

can see from [11], U0 ≡ 0. By (F1)–(F2), for any δ > 0 and α > αN , there exists

C > 0 such that |tf(t)| ≤ δΨN (t) + C|t|N+1 for t ∈ R, where ΨN is defined in

Lemma 1.1. Noting that ‖∇Ũj‖NN = NEm < 1, by Lemma 1.1, we can choose α

close to αN such that supj
∫
RN ‖ΨN (Ũj)‖ <∞. Then for some c > 0,

lim sup
j→∞

∣∣∣∣ ∫
R2

Ũjf(Ũj)

∣∣∣∣ ≤ cδ,
that is,

∫
RN Ũjf(Ũj) → 0 as j → ∞. Thus, by (2.10) ‖Ũj‖N → 0 as j → ∞,

which is a contradiction. Therefore, the claim is proved and Sm is bounded in
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W 1,N
rad (RN ). Second, assume {un} ⊂ Sm and un → u weakly in W 1,N

rad (RN ), then

by Lemma 3.4, ∫
R2

F (un)→
∫
R2

F (u).

Due to Em > 0, u 6≡ 0. As we can see from Proposition 2.1, up to a subsequence,

un → u strongly in W 1,N
rad (RN ) and Sm is compact in W 1,N

rad (RN ).

In the following, we give the L∞-estimate of Sm. By (F1) and Em > 0,

inf {‖u‖∞ : u ∈ Sm} > 0 is obvious. Noting that Sm is compact, to prove

sup{‖u‖∞ : u ∈ Sm} < ∞, it suffices to prove that for any {un} ⊂ Sm with

un → u strongly in W 1,N
rad (RN ), we have sup

n
‖un‖∞ <∞. First, we claim that

(2.11) sup
n

∫
RN
|f(un)|N <∞.

By (a), (b), (F1) and the radial lemma in [7], there exists R > 0 such that

|f(un(x))| ≤ |un(x)|N−1 for |x| ≥ R and any n. Then, by the Sobolev embedding

theorem, we get

(2.12) sup
n

∫
|x|≥R

|f(un)|N <∞.

Let α > αN be fixed, by (F1)–(F2), there exists C > 0 such that 0 < fN (t) ≤
CΨN (N1−1/N t) for t > 0, where ΨN is defined in Lemma 1.1. Now, we prove

that

(2.13) lim
n→∞

∫
|x|≤R

(
ΨN (N1−1/Nun)−ΨN (N1−1/Nu)

)
dx = 0,

which immediately implies by Lemma 1.1 that

sup
n

∫
|x|≤R

|f(un)|N dx <∞.

Thus, by (2.12), the claim (2.11) holds.

Now, we prove (2.13). Since un → u strongly in Lq(B(0, R)) for any q ≥ 1,

it is easy to show that (2.13) is equivalent to

(2.14) lim
n→∞

∫
|x|≤R

(
exp(NαuN/(N−1)

n )− exp(NαuN/(N−1))
)
dx = 0.

Due to u ∈ L∞(RN ) and un → u strongly in W 1,N
rad (RN ), there exists c > 0 such

that ∫
|x|≤R

∣∣ exp(NαuN/(N−1)
n )− exp(NαuN/(N−1))

∣∣ dx
≤ c

∫
|x|≤R

(
exp(Nα|uN/(N−1)

n − uN/(N−1)|)− 1
)
dx

≤ c
∫
|x|≤R

|uN/(N−1)
n − uN/(N−1)| exp(Nα|uN/(N−1)

n − uN/(N−1)|) dx.
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Noting that there exists C > 0 such that |aN/(N−1) − bN/(N−1)| ≤ bN/(N−1) +

C|a− b|N/(N−1) for any a, b ≥ 0 we get∫
|x|≤R

∣∣ exp(NαuN/(N−1)
n )− exp(NαuN/(N−1))

∣∣ dx(2.15)

≤ c
∫
|x|≤R

|uN/(N−1)
n − uN/(N−1)| exp(CNα|un − u|N/(N−1)) dx

≤ c
(∫
|x|≤R

|uN/(N−1)
n − uN/(N−1)|N+1 dx

)1/(N+1)

×
(∫
|x|≤R

exp(C(N + 1)α|un − u|N/(N−1)) dx

)N/(N+1)

.

Since ‖∇(un − u)‖N → 0 as n→∞, it follows from Lemma 1.1 that

sup
n

∫
|x|≤R

exp(C(N + 1)α|un − u|N/(N−1)) dx <∞.

Thus, (2.14) follows from (2.15) and un → u strongly in Lq(B(0, R)) for q ≥ 1.

Second, for any r > 0, similarly to Step 1 in Proposition 2.1, by Lemma 2.2,

there exists C = C(r) (independent of n) such that supn ‖un‖L∞(B(0,r)) ≤ C. It

follows from the radial lemma [7] that supn ‖un‖∞ <∞.

Finally, by a classical comparison principle, there exist c, C > 0 such that

U(x) + |∇U(x)| ≤ C exp(−c|x|), x ∈ RN ,

for any U ∈ Sm. �

3.2. The truncated problem. Since we are concerned with positive so-

lutions to (1.1), from now on, we can assume that f(t) = 0 for t < 0. By

Proposition 3.3, there exists κ > 0 such that

(2.16) sup
U∈Sm

‖U‖∞ < κ.

For any k > max
t∈[0,κ]

f(t), define fk(t) = min{f(t), k}, for t ∈ R. Consider the

truncated problem

(2.17) −∆Nu+ Vε(x)|u|N−2u = fk(u), u ∈Wε,

whose corresponding limiting problem is

(2.18) −∆Nu+m|u|N−2u = fk(u), u ∈W 1,N (RN ).

Define

Lkm(u) =
1

N

∫
RN

(|∇u|N +m|u|N ) dx−
∫
RN

Fk(u) dx, u ∈W 1,N (RN ),

where Fk(s) =
∫ s

0
fk(t) dt. Similarly to [41], fk satisfies (F1)–(F3) in Theorem

1.3 for any k > max
t∈[0,κ]

f(t). Then it follows from [23] that, for any k > max
t∈[0,κ]

f(t),

(2.18) admits one positive ground state solution. Denote by Ekm the least energy
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of (2.18) and by Skm the set of positive ground state solutions U to (2.18) with

U(0) = max
x∈RN

U(x). Then Ekm ≥ Em and Skm 6= ∅. By Proposition 2.1, Skm ⊂

W 1,N
r (RN ) is compact in W 1,N (RN ). Due to Sm ⊂ Skm, thus Ekm ≤ Em and

Ekm = Em for k > max
t∈[0,κ]

f(t).

Lemma 3.5. For k > max
t∈[0,κ]

f(t), we have Skm = Sm.

Proof. Noting that Sm ⊂ Skm for k > max
t∈[0,κ]

f(t), it suffices to prove Skm ⊂

Sm for k > max
t∈[0,κ]

f(t). Let

Gk(u) =

∫
RN

(
Fk(u)− m

N
|u|N

)
dx,

then it is easy to show that

(2.19) Ekm = inf
{
T (u) : Gk(u) = 0, u ∈W 1,N (RN ) \ {0}

}
.

For any uk ∈ Skm, uk is a minimizer of (2.19). By the definition of fk and

Ekm = Em, uk satisfies T (uk) = Em and G(uk) ≥ 0, where

G(u) =

∫
RN

(
F (u)− m

N
|u|N

)
dx.

Meanwhile, it is easy to show that

(2.20) Em = inf
{
T (u) : G(u) = 0, u ∈W 1,N (RN ) \ {0}

}
.

Now, we claim that G(uk) = 0. Otherwise, if G(uk) > 0, there exists θ ∈
(0, 1) such that G(θuk) = 0. However, T (θuk) = θNEm < Em, which is a

contradiction. Thus, G(uk) = 0, which implies that uk is a minimizer of (2.20).

Therefore, uk is a ground state solution to (1.3), i.e., uk ∈ Sm. �

Proof of Theorem 1.4. By Lemma 3.5 we fix k > max
t∈[0,κ]

f(t) with Skm =

Sm. We consider the following truncated problem:

(2.21) −εN∆Nv + V (x)|v|N−2v = fk(v), v > 0, x ∈ RN .

Since fk satisfies (F1)–(F3), it follows from Theorem 1.3 that for sufficiently

small ε > 0, there exists a positive solution vε to (2.21), such that there exist

U ∈ Sm and a maximum point xε ∈ RN of vε such that lim
ε→0

dist(xε,M) = 0

and vε(ε · +xε) → U( · + z0) as ε → 0 in W 1,N (RN ) for some z0 ∈ RN . Let

wε( · ) = vε(ε · +xε), then wε satisfies

−∆Nwε + Vε

(
x+

xε
ε

)
wN−1
ε = fk(wε), wε ∈Wε.

Since 0 ≤ fk(t) ≤ k for all t ∈ R, we get that sup
ε
‖wε‖L∞(B(0,2)) <∞ by Lemma

2.2. It follows from Lemma 2.3 that wε( · )→ U( · + z0) uniformly in B1(0). By
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Proposition 3.3, ‖vε‖∞ = wε(0) ≤ κ holds uniformly for sufficiently small ε > 0.

Then, fk(vε(x)) ≡ f(vε(x)), x ∈ RN , for sufficiently small ε > 0. �
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[41] J.J. Zhang and J.M. do Ó, Standing waves for nonlinear Schrödinger equations involving

critical growth of Trudinger–Moser type, Z. Angew. Math. Phys. 66 (2015), 3049–3060.

Manuscript received July 28, 2016

accepted November 26, 2016

Jianjun Zhang

College of Mathematics and Statistics
Chongqing Jiaotong University

Chongqing 400074, P.R. CHINA

E-mail address: zhangjianjun09@tsinghua.org.cn
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