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CQ METHOD FOR APPROXIMATING FIXED POINTS

OF NONEXPANSIVE SEMIGROUPS

AND STRICTLY PSEUDO-CONTRACTIVE MAPPINGS

Hossein Piri — Samira Rahrovi

Abstract. We use the CQ method for approximating a common fixed

point of a left amenable semigroup of nonexpansive mappings, an infi-
nite family of strictly pseudo-contraction mappings and the set of solu-

tions of variational inequalities for monotone, Lipschitz-continuous map-

pings in a real Hilbert space. Our results are a generalization of a result
announced by Nadezhkina and Takahashi [N. Nadezhkina and W. Taka-

hashi, Strong convergence theorem by a hybrid method for nonexpansive

mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim.
16 (2006), 1230–1241] and some other recent results.

1. Introduction

Let H be a real Hilbert space with inner product 〈 · , · 〉 and induced norm

‖ · ‖. Let C be a nonempty closed convex subset of H. A mapping T of C into

itself is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C. By ne(C),

we denote the set of all nonexpansive mappings of C into itself and by Fix(T ),

we denote the set of fixed points of T (i.e. Fix(T ) = {x ∈ C : Tx = x}), it is

well known that Fix(T ) is closed and convex. Let A : C → H be a nonlinear
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operator. The classical variational inequality problem is to find x ∈ C such that

(1.1) 〈Ax, y − x〉 ≥ 0, for all y ∈ C.

The set of solutions of variational inequality (1.1) is denoted by VI(C,A), that is,

VI(C,A) = {x ∈ C : 〈Ax, y − x〉 ≥ 0 for all y ∈ C}.

Variational inequality theory has emerged as an important tool in studying

a wide class of obstacle, unilateral and equilibrium problems, which arise in

several branches of pure and applied sciences in a unified and general frame-

work. Several numerical methods have been developed for solving variational

inequalities and related optimization problems, see [5], [7], [9], [13], [25]–[28] and

the references therein. We start with Korpelevich’s extragradient method which

was introduced by Korpelevich [9] in 1976. He proved that the sequence {xn}
generated via the recursionyn = PC(xn − λnAxn),

xn+1 = PC(xn − λnAyn), n ≥ 0,

where PC is the metric projection from Rn onto C, A is a monotone operator

and λ is a constant, converges strongly to a solution of VI(C,A). Note that the

setting of the problem is the Euclidean space Rn.

Korpelevich’s extragradient method has been extensively studied in the lit-

erature for solving a more general problem that consists of finding a common

point that lies in the solution set of a variational inequality and the set of fixed

points of a nonexpansive mapping. Especially, Nadezhkina and Takahashi [14]

introduced the following iterative method which combines Korpelevich’s extra-

gradient method and the CQ method:

(1.2)



x0 ∈ C chosen arbitrarily,

yn = PC(xn − λnAxn),

zn = αnxn + (1− αn)SPC(xn − λnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qn

x0,

where PC denotes the metric projection from H onto a closed convex subset C

of H.

Inspired by the ideas in Korpelevich [9], Nadezhkina and Takahashi [14], Lau

et al. [11], Lau et al. [12], Katchang and Kumam [10], Piri [15], [16], Piri and

Badali [18] and the references therein, we introduce some new iterative schemes

based on Korpelevich’s extragradient method (and the CQ method) for find-

ing a common element of the set of solutions of the variational inequality for
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a monotone, Lipschitz-continuous mapping, the set of fixed points of an infinite

family of strictly pseudo-contraction mappings and the set of fixed points of a left

amenable semigroup of nonexpansive mappings. We obtain strong convergence

theorems for the sequences generated by the corresponding processes. The re-

sults in this paper generalize, improve and unify some well-known convergence

theorems in the literature.

2. Preliminaries

Let S be a semigroup and let l∞(S) be the space of all bounded real valued

functions defined on S with supremum norm. For s ∈ S and f ∈ l∞(S), we

define elements l(s)f and r(s)f in l∞(S) by

(l(s)f)(t) = f(st), (r(s)f)(t) = f(ts), for all t ∈ S.

Let X be a subspace of l∞(S) containing 1 and let X∗ be its topological dual.

An element µ of X∗ is said to be a mean on X if ‖µ‖ = µ(1) = 1. We often write

µt(f(t)) instead of µ(f) for µ ∈ X∗ and f ∈ X. X is said to be left invariant

(resp. right invariant) if l(s)(X) ⊂ X (resp. r(s)(X) ⊂ X) for each s ∈ S. A

mean µ on X is said to be left invariant (resp. right invariant) if µ((l(s)f) = µ(f)

(resp. µ(r(s)f) = µ(f)) for each s ∈ S and f ∈ X. X is said to be left (resp.

right) amenable if X has a left (resp. right) invariant mean. X is amenable if X

is both left and right amenable. As is well known, l∞(S) is amenable when S

is a commutative semigroup (see [11]). A net {µα} of means on X is said to be

strongly left regular if

lim
α
‖l(s)∗µα − µα‖ = 0,

for each s ∈ S, where l(s)∗ is the adjoint operator of l(s).

Let C be a closed convex subset of a Banach space E and let T be a mapping

of C into itself. Then ϕ = {T (t) : t ∈ S} is called a representation of S as

nonexpansive mappings on C if T (s) ∈ ne(C) for each s ∈ S, T (e) = I and

T (st) = T (s)T (t) for each s, t ∈ S. We denote by Fix(ϕ) the set of common

fixed points of ϕ, i.e.

Fix(ϕ) =
⋂
t∈S
{x ∈ C : T (t)x = x},

by l∞(S,E) the Banach space of all bounded mappings of S into a Banach space

E with supremum norm, and by l∞c (S,E) the subspace of elements f ∈ l∞(S,E)

such that f(S) = {f(s) : s ∈ S} is a relatively weakly compact subset of E.

Let X be a subspace of l∞(S) containing 1 such that for each f ∈ l∞(S,E) and

x∗ ∈ E∗, the function s 7→ 〈f(s), x∗〉 is contained in X. Then, for each µ ∈ X∗

and f ∈ l∞c (S,E), let us define a continuous linear functional τ(µ)f on E∗ by

τ(µ)f : x∗ 7→ µ〈f( · ), x∗〉.
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It follows from the bipolar theorem that τ(µ)f is contained in E. We know that

if µ is a mean on X, then τ(µ)f is contained in the closure of convex hull of

{f(s) : s ∈ S}. We also know that for each µ ∈ X∗, τ(µ) is a bounded linear

mapping of l∞c (S,E) into E such that for each f ∈ l∞c (S,E), ‖τ(µ)‖ ≤ ‖µ‖‖f‖
(see [8]). Let ϕ = {T (t) : t ∈ S} be a representation of S as nonexpansive

mappings on C such that T ( · )x ∈ l∞c (S,E) for some x ∈ C. If for each x∗ ∈ E∗

the function s 7→ 〈T (s)x, x∗〉 is contained in X, then there exists a unique point

x0 of E such that µ〈T (s)x, x∗〉 = 〈x0, x∗〉 for each x∗ ∈ E∗ (see [6] and [22]).

We denote such a point x0 by T (µ)x.

Lemma 2.1 ([11]). Let S be a semigroup and C be a nonempty closed convex

subset of a reflexive Banach space E. Let ϕ = {T (s) : s ∈ S} be a nonexpansive

semigroup on H such that {T (s)x : s ∈ S} is bounded for some x ∈ C, let X be

a subspace of B(S) such that 1 ∈ X and the mapping t 7→ 〈Ttx, y∗〉 is an element

of X for each x ∈ C and y∗ ∈ E∗, and µ is a mean on X. Then:

(a) T (µ) is nonexpansive mapping from C into C.

(b) T (µ)x = x for each x ∈ Fix(ϕ).

(c) T (µ)x ∈ co{T (s)x : s ∈ S} for each x ∈ C.

Notation 2.2.

(a) ⇀ denotes weak convergence and → denotes strong convergence.

(b) ωω{xn} = {x ∈ H : ∃{xnj} ⊂ {xn} and xnj ⇀ x}.

Let C be a nonempty subset of a normed space E and let x ∈ E. An element

y0 ∈ C is said to be the best approximation to x if

‖x− y0‖ = d(x,C),

where d(x,C) = inf
y∈C
‖x− y‖. The number d(x,C) is called the distance from x

to C or the error in approximating x by C. The (possibly empty) set of all best

approximations from x to C is denoted by

PC(x) = {y ∈ C : ‖x− y‖ = d(x,C)}.

This defines a mapping PC from X into 2C and it is called a metric (nearest

point) projection onto C. It is well known that PC is a nonexpansive mapping

of H onto C.

Lemma 2.3 ([24]). Let C be a nonempty convex subset of a Hilbert space H

and PC be the metric projection mapping from H onto C. Let x ∈ H and y ∈ C.

Then, the following statements are equivalent:

(a) y = PC(x),

(b) 〈x− y, y − z〉 ≥ 0, for all z ∈ C.
(c) ‖x− y‖2 ≥ ‖x− PC(x)‖2 + ‖y − PC(x)‖2.
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Lemma 2.4 ([23]). Let H be a real Hilbert space. Then, for all x, y ∈ H,

(a) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉,
(b) ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉.

Definition 2.5 ([2]). A mapping T : C → C is called λ-strictly pseudo-

contractive of Browder and Petryshyn type if there exists a constant λ ∈ [0, 1)

such that

(2.1) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + λ‖(I − T )x− (I − T )y‖2, for all x, y ∈ C.

It is well known that the last inequality is equivalent to

(2.2) 〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 − 1− λ
2
‖(I − T )x− (I − T )y‖2,

for all x, y ∈ C. If λ = 1, then T is called a pseudo-contractive mapping, that is,

(2.3) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2, for all x, y ∈ C.

This is equivalent to

(2.4) 〈(I − T )x− (I − T )y, x− y〉 ≥ 0, for all x, y ∈ C.

Lemma 2.6 ([2]). Let T : C → H be a λ-strictly pseudo-contractive mapping.

Define S : C → H by S(x) = δI(x) + (1 − δ)T (x) for each x ∈ C. Then, as

δ ∈ [λ, 1), T is a nonexpansive mapping such that Fix(S) = Fix(T ).

Let {Tn}∞n=1 be an infinite family of λn-strictly pseudo-contractive mappings

of C into itself, we define a mapping Wn of C into itself as follows:

(2.5)

Un,n+1 = I,

Un,n = γnSnUn,n+1 + (1− γn)I,

Un,n−1 = γn−1Sn−1Un,n + (1− γn−1)I,

...

Un,k = γkSkUn,k+1 + (1− γk)I,

Un,k−1 = γk−1Sk−1Un,k + (1− γk−1)I,

...

Un,2 = γ2S2Un,3 + (1− γ2)I,

Wn = Un,1 = γ1S1Un,2 + (1− γ1)I,

where, 0 ≤ γn ≤ 1, Sn = δnI + (1 − δn)Tn and γn ≤ δn < 1, for all n ∈ N. We

can obtain Sn is a nonexpansive mapping and Fix(Sn) = Fix(Tn) by Lemma 2.6.

Furthermore, we obtain Wn is a nonexpansive mapping. To establish our results,

we need the following technical lemmas.
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Lemma 2.7 ([21]). Let C be a nonempty closed convex subset of a strictly

convex Banach space. Let {Sn} be an infinite family of nonexpansive mappings

of C into itself and let {λi} be a real sequence such that 0 < λn ≤ b < 1 for

every n ∈ N. Then, for every x ∈ C and k ∈ N, the limit lim
n→∞

Un,kx exists.

In view of the previous lemma, we will define

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1, for all x ∈ C.

Lemma 2.8 ([21]). Let C be a nonempty closed convex subset of a strictly

convex Banach space. Let {Sn} be an infinite family of nonexpansive mappings

of C into itself and let {λi} be a real sequence such that 0 < λn ≤ b < 1 for

every n ∈ N. Then

Fix(W ) =

∞⋂
n=1

Fix(Sn) 6= ∅.

The following lemmas follow from Lemmas 2.6–2.8.

Lemma 2.9 ([4]). Let C be a nonempty closed convex subset of a strictly

convex Banach space. Let {Tn}∞n=1 be an infinite family of λn-strictly pseudo-

contractive mappings of C into itself such that
∞⋂
n=1

Fix(Tn) 6= ∅. Define Sn =

δnIn + (1− δn)Tn and 0 < λn ≤ δn < 1 and let {γn} be a real sequence such that

0 < γn ≤ b < 1 for every n ∈ N. Then

Fix(W ) =

∞⋂
n=1

Fix(Tn) =

∞⋂
n=1

Fix(Sn) 6= ∅.

Lemma 2.10 ([3]). Let C be a nonempty closed convex subset of a Hilbert

space. Let {Sn}∞n=1 be an infinite family of nonexpansive mappings of C into

itself such that
∞⋂
n=1

Fix(Sn) 6= ∅ and let {γn} be a real sequence such that 0 <

γn ≤ b < 1 for every n ∈ N. If K is a bounded subset of C, then

lim
n→∞

sup
x∈K
‖Wx−Wnx‖ = 0.

Let K be a nonempty subset of a Banach space X and {xn} be a sequence

in K. Consider the functional ra( · , {xn}) : X → R defined by

ra(x, {xn}) = lim sup
n→∞

‖xn − x‖, for all x ∈ X.

The infimum of ra( · , {xn}) over K is called an asymptotic radius of {xn} with

respect to K and it is denoted by ra(K, {xn}). A point x ∈ K is called an

asymptotic center of the sequence {xn} with respect to K if

ra(x, {xn}) = inf{ra(y, {xn}) : y ∈ K}.

The set of all asymptotic centers of {xn} with respect to K is denoted by

Ca(K, {xn}). This set may be empty, a singleton, or infinite.
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Lemma 2.11 ([1]). Let X be a uniformly convex Banach space satisfying the

Opial condition and K a nonempty closed convex subset of X. If a sequence

{xn} ⊂ K converges weakly to a point x0, then x0 is an asymptotic center of

{xn} with respect to K.

A set-valued mapping U : H → 2H is called monotone if for all x, y ∈ H, f ∈
U(x) and g ∈ U(y) imply 〈x−y, f−g〉 ≥ 0. A monotone mapping U : H → 2H is

maximal if the graph of G(U) of U is not properly contained in the graph of any

other monotone mapping. It is known that a monotone mapping U is maximal

if and only if for (x, f) ∈ H×H, 〈x−y, f−g〉 ≥ 0 for every (y, g) ∈ G(U) implies

that f ∈ Ux.

Lemma 2.12 ([19]). Let A be a monotone mapping of C into H and let NCx

be the normal cone to C at x ∈ C, that is, NCx = {y ∈ H : 〈z− x, y〉 ≤ 0 for all

z ∈ C} and define

(2.6) Ux =

Ax+NCx for x ∈ C,
∅ for x /∈ C.

Then U is maximal monotone and 0 ∈ Ux if and only if x ∈ VI(C,A).

Notation 2.13. The open ball of radius r centered at 0 is denoted by Br
and for a subset D of H, by coD we denote the closed convex hull of D. For

ε > 0 and a mapping T : D → H, we let Fε(T ;D) be the set of ε-approximate

fixed points of T , i.e. Fε(T ;D) = {x ∈ D : ‖x− Tx‖ ≤ ε}.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert

space H and let {fn}∞n=1 be a sequence of ψn-contraction self-mappings of C such

that {fn}∞n=1 is uniformly convergent for any x ∈ D, where D is any bounded

subset of C. Let {Tn}∞n=1 be an infinite family of λn-strictly pseudo-contractive

mappings of C into itself. Let S be a semigroup and ϕ = {Tt : t ∈ S} be

a nonexpansive semigroup of C into itself such that for all n ∈ N, Tn(Fix(ϕ)) ⊂
Fix(ϕ). Let X be a left invariant subspace of B(S) such that 1 ∈ X, t 7→ 〈Ttx, y〉
is an element of X for each x, y ∈ C and {µn}∞n=0 is a left regular sequence

of means on X. Let A be a monotone and k-Lipschitz-continuous mapping of

C into H and F =
∞⋂
n=1

Fix(Tn) ∩ Fix(ϕ) ∩ VI(C,A) be nonempty and bounded.

Let {ζn}∞n=0, {αn}∞n=0 and {βn}∞n=0 be sequences such that {ζn}∞n=0 ⊂ [a, b]

for some a, b ∈ (0, 1/k), {αn}∞n=0 ⊂ [0, c] for some c ∈ [0, 1), lim
n→∞

αn = 0,

{βn}∞n=0 ⊂ [0, 1), lim
n→∞

βn = 0 and Wn be the mapping generated by {Tn}∞n=1

and {γn}∞n=1 as in (2.5). Define sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 in C
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by the iteration algorithm

(3.1)



x0 ∈ C,
yn = βnxn + (1− βn)PC(I − ζnA)xn,

zn = αnfn(yn) + (1− αn)T (µn)WnPC(xn − ζnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + rn},
Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qn

x0,

where, rn = αnδn and

δn = sup{‖fn(p)− p‖[‖fn(p)− p‖+ 2‖xn − p‖] : p ∈ F}.

Then the sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 converge strongly to PFx0.

Proof. First we note that Cn is closed and Qn is closed and convex for every

n ∈ N∪{0}. As Cn = {z ∈ C : ‖zn−xn‖2 +2〈zn−xn, xn−z〉 ≤ 0}, we also have

Cn is convex for every n ∈ N∪{0}. As Qn = {z ∈ C : 〈xn− z, xn−x0〉 ≤ 0}, we

have 〈xn − z, xn − x0〉 ≤ 0 for all z ∈ Qn and by Lemma 2.3, xn = PQn
x0. Put

tn = PC(xn − ζnAyn) for every n ∈ N ∪ {0}. Next, we show that F ⊂ Cn for all

n ∈ N ∪ {0}. Let p ∈ F . From Lemma 2.3 and monotonicity of A, we have

‖tn − p‖2 ≤‖xn − ζnAyn − p‖2 − ‖xn − ζnAyn − tn‖2

= ‖xn − p‖2 − ‖xn − tn‖2 + 2ζn〈Ayn, p− tn〉

= ‖xn − p‖2 − ‖xn − tn‖2 + 2ζn[〈Ayn −Ap, p− yn〉

+ 〈Ap, p− yn〉+ 〈Ayn, yn − tn〉]

≤‖xn − p‖2 − ‖xn − tn‖2 + 2ζn〈Ayn, yn − tn〉

= ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

− 2〈xn − yn, yn − tn〉+ 2ζn〈Ayn, yn − tn〉

= ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+ 2〈xn − ζnAyn − yn, tn − yn〉.

Further, since yn = PC(I − ζnA)xn and A is k-Lipschitz-continuous, we have

〈xn − ζnAyn − yn, tn − yn〉

= 〈xn − ζnAxn − yn, tn − yn〉+ 〈ζnAxn − ζnAyn, tn − yn〉

≤ 〈ζnAxn − ζnAyn, tn − yn〉 ≤ ζnk‖xn − yn‖‖tn − yn‖.

So, we have

‖tn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − tn‖2(3.2)

+ 2ζnk‖xn − yn‖‖tn − yn‖

≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − tn‖2
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+ ζ2nk
2‖xn − yn‖2 + ‖tn − yn‖2

= ‖xn − p‖2 + (ζ2nk
2 − 1)‖xn − yn‖2 ≤ ‖xn − p‖2.

From yn = βnxn + (1− βn)PC(I − ζnA)xn, we have

‖yn − p‖2 = ‖βnxn + (1− βn)PC(I − ζnA)xn − p‖2(3.3)

≤ βn‖xn − p‖2 + (1− βn)‖PC(I − ζnA)xn − p‖2

≤ βn‖xn − p‖2 + (1− βn)‖xn − p‖2 = ‖xn − p‖2.

From ζn < 1/k, zn = αnfn(yn) + (1− αn)T (µn)Wntn, Lemma 2.1 and relations

(3.2) and (3.3), we have

‖zn − p‖2 = ‖αnfn(yn) + (1− αn)T (µn)Wntn − p‖2(3.4)

≤ [αn‖fn(yn)− p‖+ (1− αn)‖T (µn)Wntn − p‖]2

≤ [αn‖fn(yn)− fn(p)‖+ ‖fn(p)− p‖+ (1− αn)‖tn − p‖]2

≤ [αnψn(‖yn − p‖)

+ ‖fn(p)− p‖+ (1− αn)‖tn − p‖]2

≤ [αn‖yn − p‖+ ‖fn(p)− p‖+ (1− αn)‖tn − p‖]2

≤ [αn‖xn − p‖+ ‖fn(p)− p‖+ (1− αn)‖xn − p‖]2

≤ [‖xn − p‖+ ‖fn(p)− p‖]2

≤‖xn − p‖2 + αn[‖fn(p)− p‖2 + 2‖fn(p)− p‖‖xn − p‖]

≤‖xn − p‖2 + αnδn = ‖xn − p‖2 + rn,

for every n ∈ N ∪ {0} and hence p ∈ Cn. So F ⊂ Cn for all n ∈ N ∪ {0}. Next,

we show by induction that

F ⊂ Cn ∩Qn, for all n ∈ N ∪ {0}.(3.5)

From Q0 = C, we have F ⊂ C0 ∩ Q0. Suppose that F ⊂ Cn ∩ Qn for some

n ∈ N ∪ {0}. Since xn+1 = PCn∩Qn
x0, by Lemma 2.3, we have

〈xn+1 − z, x0 − xn+1〉 ≥ 0, for all z ∈ Cn ∩Qn.

As F ⊂ Cn ∩ Qn by the induction assumption, the last inequality holds, in

particular, for all z ∈ F . This together with the definition of Qn+1 implies that

F ⊂ Qn+1. Hence (3.9) holds. As in the proof of Theorem 3.1 in [16], we can

prove that

‖x0 − xn‖ ≤ ‖x0 − u‖, for all u ∈ F ,(3.6)

and

lim
n→∞

‖xn+1 − xn‖ = 0.(3.7)
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From xn+1 ∈ Cn, we have ‖zn − xn+1‖2 ≤ ‖xn − xn+1‖2 + rn and hence

‖zn − xn‖2 ≤ [‖zn − xn+1‖+ ‖xn+1 − xn‖]2

≤ 2‖zn − xn+1‖2 + 2‖xn+1 − xn‖2 ≤ 4‖xn − xn+1‖2 + 2rn.

Since lim
n→∞

rn = 0, so from (3.7), we have

(3.8) lim
n→∞

‖zn − xn‖ = 0.

From zn = αnfn(yn)+(1−αn)T (µn)Wntn, (3.3), (3.2) and Lemma 2.1, we have

‖zn − p‖2 = ‖αnfn(yn) + (1− αn)T (µn)Wntn − p‖2

≤αn‖fn(yn)− p‖2 + (1− αn)‖T (µn)Wntn − p‖2

≤αn[‖fn(yn)− fn(p)‖+ ‖fn(p)− p‖]2 + (1− αn)‖tn − p‖2

≤αn‖yn − p‖2 + αn‖fn(p)− p‖[‖fn(p)− p‖+ 2‖yn − p‖]

+ (1− αn)‖tn − p‖2

≤αn‖xn − p‖2 + αn‖fn(p)− p‖[‖fn(p)− p‖+ 2‖xn − p‖]

+ (1− αn)[‖xn − p‖2 + (ζ2nk
2 − 1)‖xn − yn‖2].

It follows that

‖xn − yn‖2 ≤
1

(1− αn)(1− ζ2nk2)

(
‖xn − p‖2 − ‖zn − p‖2(3.9)

+ αn‖fn(p)− p‖[‖fn(p)− p‖+ 2‖xn − p‖]
)

≤ 1

(1− αn)(1− ζ2nk2)

(
[‖xn − p‖+ ‖zn − p‖]‖xn − zn‖

+ αn‖fn(p)− p‖[‖fn(p)− p‖+ 2‖xn − p‖]
)

≤ 1

(1− αn)(1− ζ2nk2)

(
[2‖xn − p‖+ rn]‖xn − zn‖

+ αn‖fn(p)− p‖[‖fn(p)− p‖+ 2‖xn − p‖]
)

≤ 1

(1− αn)(1− ζ2nk2)

(
[2‖x0 − p‖+ rn]‖xn − zn‖

+ αn‖fn(p)− p‖[‖fn(p)− p‖+ 2‖x0 − p‖]
)
.

Since lim
n→∞

αn = 0, so from (3.8) and (3.9), we get

lim
n→∞

‖xn − yn‖ = 0.(3.10)

As A is k-Lipschitz-continuous, we have

‖yn − tn‖ = ‖βnxn + (1− βn)PC(I − ζnA)xn − PC(xn − ζnAyn)‖

≤βn‖xn − PC(I − ζnA)xn‖

+ (1− βn)‖PC(I − ζnA)xn − PC(xn − ζnAyn)‖

≤βn‖xn − PC(I − ζnA)xn‖+ (1− βn)ζnk‖xn − yn‖
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≤βn[‖xn − p‖+ ‖p− PC(I − ζnA)xn‖] + (1− βn)ζnk‖xn − yn‖

≤ 2βn‖xn − p‖+ (1− βn)ζnk‖xn − yn‖

≤ 2βn‖x0 − p‖+ (1− βn)ζnk‖xn − yn‖.

Since lim
n→∞

βn = 0, from (3.10), we get

(3.11) lim
n→∞

‖tn − yn‖ = 0.

Noticing that zn = αnfn(yn) + (1− αn)T (µn)Wntn, we have

zn − yn = αn(fn(yn)− yn) + (1− αn)[T (µn)Wntn − yn].

It follows that

(1− c)‖T (µn)Wntn − yn‖ ≤ (1− αn)‖T (µn)Wntn − yn‖

≤αn‖fn(yn)− yn‖+ ‖zn − yn‖

≤αn[‖fn(yn)− fn(p)‖+ ‖fn(p)− p‖+ ‖p− yn‖] + ‖zn − yn‖

≤αn[ψ(‖yn − p‖) + ‖fn(p)− p‖+ ‖p− yn‖] + ‖zn − yn‖

≤αn[‖yn − p‖+ ‖fn(p)− p‖+ ‖p− yn‖] + ‖zn − yn‖

≤αn[2‖xn − p‖+ ‖fn(p)− p‖] + ‖zn − yn‖

≤αn[2‖x0 − p‖+ ‖fn(p)− p‖] + ‖zn − xn‖+ ‖xn − yn‖.

Since lim
n→∞

αn = 0, from (3.8) and (3.10), we get

(3.12) lim
n→∞

‖T (µn)Wntn − yn‖ = 0.

From Lemma 2.1, we have

‖xn − T (µn)Wnxn‖

≤‖xn − yn‖+ ‖ yn − T (µn)Wntn‖+ ‖T (µn)Wntn − T (µn)Wnxn‖

≤‖xn − yn‖+ ‖ yn − T (µn)Wntn‖+ ‖tn − xn‖

≤‖xn − yn‖+ ‖ yn − T (µn)Wntn‖+ ‖tn − yn‖+ ‖yn − xn‖.

It follows from (3.10), (3.11) and (3.12) that

(3.13) lim
n→∞

‖xn − T (µn)Wnxn‖ = 0.

Set D = {y ∈ C : ‖y − x0‖ ≤ 2‖x0 − p‖}, for p ∈ F . We remark that D is

a bounded closed convex set, from (3.2) and (3.6), {tn} ⊂ D and {xn} ⊂ D, and

it is invariant under ϕ and Wn. As it was proved in [11], [15], [18], we have

(3.14) lim sup
n→∞

sup
x∈D
‖T (µn)x− T (t)T (µn)x‖ = 0, for all t ∈ S.

We now claim that

(3.15) lim
n→∞

‖xn − T (t)xn‖ = 0, for all t ∈ S.
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Let t ∈ S and ε > 0. As in the proof of Shioji and Takahashi [20, Lemma 1],

there exists δ > 0 such that

(3.16) coFδ(T (t);D) +Bδ ⊂ Fε(T (t);D).

Since {Wntn} ⊂ D, from (3.14) there exists N2 ∈ N such that

(3.17) T (µn)Wntn ∈ Fδ(Tt;D), n ≥ N2.

Observe that

‖fn(yn)− T (µn)Wntn‖(3.18)

≤‖fn(yn)− fn(p)‖+ ‖fn(p)− p‖+ ‖p− T (µn)Wntn‖

≤‖yn − p‖+ ‖fn(p)− p‖+ ‖p− tn‖

≤ 2‖xn − p‖+ ‖fn(p)− p‖ ≤ 2‖x0 − p‖+ ‖fn(p)‖+ ‖p‖.

Since {fn(p)}∞n=1 converges and lim
n→∞

αn = 0, from (3.18), there exists N3 ∈ N
such that

(3.19) αn(fn(yn)− T (µn)Wntn) ∈ Bδ, n ≥ N3.

Observe that

zn = αnfn(yn) + (1− αn)T (µn)Wntn

= αn(fn(yn)− T (µn)Wntn) + T (µn)Wntn.

It follows from (3.17) and (3.19) that zn∈Fε(Tt;D) for all n ≥ N=max{N2, N3}.
Since t ∈ S and ε > 0 are arbitrary, we get

(3.20) lim
n→∞

‖zn − T (t)zn‖ = 0, for all t ∈ S.

Noticing that

‖xn − T (t)xn‖ ≤ ‖xn − zn‖+ ‖zn − T (t)zn‖+ ‖T (t)zn − T (t)xn‖

≤ 2‖xn − zn‖+ ‖zn − T (t)zn‖,

from (3.8) and (3.20), we get (3.15). Now we prove the weak ω-limit set of {xn},
ωω{xn}, is a subset of F . Let z ∈ ωω{xn} and let {xnj

} be a subsequence of {xn}
such that xnj

⇀ z. Now, we prove that z ∈ Fix(ϕ). Assume by contradiction

that there exists t ∈ S such that z 6= T (t)z. Since every Hilbert space satisfies

the Opial condition, from (3.20) we have

lim sup
j→∞

‖xnj
− z‖ < lim sup

j→∞
‖xnj

− T (t)z‖

≤ lim sup
j→∞

(‖xnj
− T (t)xnj

‖+ ‖T (t)xnj
− T (t)z‖)

≤ lim sup
j→∞

(‖xnj
− T (t)xnj

‖+ ‖xnj
− z‖) ≤ lim sup

j→∞
(‖xnj

− z‖)

which derives a contradiction. Thus, we have z ∈ Fix(ϕ). By our assumption, we

have Tiz ∈ Fix(ϕ) for all i ∈ N and thenWnz ∈ Fix(ϕ), hence T (µn)Wnz = Wnz.
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As in the proof of Step 7 of [15, Theorem 3.1], we can show that z ∈ Fix(W ).

In terms of Lemma 2.9, we conclude that z ∈
∞⋂
n=1

Fix(Tn). As in the proof of

Step 7 of [17, Theorem 3.1], we can show that z ∈ VI(C,A). Since z ∈ Fix(ϕ) and

z ∈
∞⋂
n=1

Fix(Tn); therefore, z ∈ F . So, ∅ 6= ωω{xn} ⊂ F . Since xn = PQn
x0 and

PFx0 ⊂ F ⊂ Qn, we have ‖xn−x0‖ ≤ ‖x0−PFx0‖. By the lower semicontinuity

of the norm, we have ‖w−x0‖ ≤ ‖x0−PFx0‖ for all w ∈ ωω{xn}. However, since

ωω{xn} ⊂ F , we must have w = PFx0 for all w ∈ ωω{xn}. Hence xn ⇀ PFx0.

To see that xn → PFx0, we compute

‖xn − PFx0‖2 = ‖(xn − x0) + (x0 − PFx0)‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − PFx0〉+ ‖x0 − PFx0‖2

≤ 2〈xn − x0, x0 − PFx0〉+ 2‖x0 − PFx0‖2

= −2〈x0 − xn, x0 − PFx0〉+ 2‖x0 − PFx0‖2 → 0.

That is, {xn} converges to PFx0. It is easy to see that {yn} converges to PFx0
and {zn} converges to PFx0. �

Theorem 3.2. Let C, {Tn}∞n=1, S, ϕ, X, {µn}∞n=0, F , {ζn}∞n=0, {αn}∞n=0

and {βn}∞n=0 be as in Theorem 3.1. Define sequences {xn}∞n=0, {yn}∞n=0 and

{zn}∞n=0 in C by the iteration algorithm

(3.21)



x0 ∈ C,
yn = βnxn + (1− βn)PC(I − ζnA)xn,

zn = αnyn + (1− αn)T (µn)WnPC(xn − ζnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0.

Then the sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 converge strongly to PFx0.

Proof. It suffices to replace fn by I (identity mapping) for every n ∈ N in

the proof of Theorem 3.1. �

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert

space H and {Tn}∞n=1 be an infinite family of λn-strictly pseudo-contractive map-

pings of C into itself. Let A be a monotone and k-Lipschitz-continuous mapping

of C into H and F =
∞⋂
n=1

Fix(Tn) ∩VI(C,A) 6= ∅. Let {ζn}∞n=0 and {αn}∞n=0 be

sequences such that {ζn}∞n=0 ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn}∞n=0 ⊂ [0, c]

for some c ∈ [0, 1) and Wn be the mapping generated by {Tn}∞n=1 and {γn}∞n=1 as

in (2.5). Define sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 in C by the iteration
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algorithm

(3.22)



x0 ∈ C,
yn = PC(I − ζnA)xn,

zn = αnyn + (1− αn)WnPC(xn − ζnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qn

x.

Then the sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 converge strongly to PFx0.

Proof. It suffices to take T (t) = I, for all t ∈ S in Theorem 3.1 and replace

fn by I (identity mapping) for every n ∈ N in the proof of Theorem 3.1. �

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert

space H and A be a monotone and k-Lipschitz-continuous mapping of C into H.

Let S be a semigroup and ϕ = {T (t) : t ∈ S} be a nonexpansive semigroup of

C into itself such that F = VI(C,A) ∩ Fix(ϕ) 6= ∅. Let X be a left invariant

subspace of L∞(S) such that 1 ∈ X, t 7→ 〈T (t)x, y〉 an element of X for each

x, y ∈ C and {µn}∞n=0 is a left regular sequence of means on X. Let {ζn}∞n=0

and {αn}∞n=0 be sequences such that {ζn}∞n=0 ⊂ [a, b] for some a, b ∈ (0, 1/k) and

{αn}∞n=0 ⊂ [0, c] for some c ∈ [0, 1). Define sequences {xn}∞n=0, {yn}∞n=0 and

{zn}∞n=0 in C by the iteration algorithm

(3.23)



x0 ∈ C,
yn = PC(I − ζnA)xn,

zn = αnyn + (1− αn)T (µn)PC(xn − ζnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qn

x.

Then the sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 converge strongly to PF x0.

Proof. It suffices to take βn = 0 and Wn = I, for all n ∈ N in Theorem 3.1

and replace fn by I for every n ∈ N in the proof of Theorem 3.1. �

Corollary 3.5 ([14, Theorem 3.1]). Let C be a nonempty closed convex

subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz-continuous

mapping of C into H and S be nonexpansive mappings of C into itself such that

F = VI(C,A) ∩ Fix(S) 6= ∅. Let {ζn}∞n=0 and {αn}∞n=0 be sequences such that

{ζn}∞n=0 ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn}∞n=0 ⊂ [0, c] for some c ∈ [0, 1).
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Define sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 in C by the iteration algorithm

(3.24)



x0 ∈ C,
yn = PC(I − ζnA)xn,

zn = αnyn + (1− αn)SPC(xn − ζnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qn

x.

Then the sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 converge strongly to PFx0.

Proof. It suffices to take βn = 0 and Wn = S, for all n ∈ N in Theorem 3.1

and replace fn by I for every n ∈ N in the proof of Theorem 3.1. �

Corollary 3.6 ([14, Theorem 4.1]). Let C be a nonempty closed convex

subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz-continuous

mapping of C into H such that F = VI(C,A) 6= ∅. Let {ζn}∞n=0 and {αn}∞n=0 be

sequences such that {ζn}∞n=0 ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn}∞n=0 ⊂ [0, c]

for some c ∈ [0, 1). Define sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 in C by

the iteration algorithm

(3.25)



x0 ∈ C,
yn = PC(I − ζnA)xn,

zn = PC(xn − ζnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx.

Then the sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 converge strongly to PFx0.

Proof. It suffices to take αn = βn = 0 and Wn = I, for all n ∈ N and

T (t) = I, for all t ∈ S in Theorem 3.1. �

Example 3.7. Let C be a nonempty closed convex subset of a real Hilbert

space H and let T be a nonexpansive mapping of C into itself. Let {fn}∞n=1 be

a sequence of ψn-contraction self-mappings of C such that {fn}∞n=1 is uniformly

convergent for any x ∈ D, where D is any bounded subset of C. Let {Tn}∞n=1 be

an infinite family of λn-strictly pseudo-contractive mappings of C into itself such

that, for all n ∈ N, Tn(Fix(T )) ⊂ Fix(T ). Let A be a monotone and k-Lipschitz-

continuous mapping of C into H and F =
∞⋂
n=1

Fix(Tn) ∩ Fix(T ) ∩ VI(C,A) be

nonempty and bounded. Let {ζn}∞n=0, {αn}∞n=0 and {βn}∞n=0 be sequences such

that {ζn}∞n=0 ⊂ [a, b] for some a, b ∈ (0, 1/k), {αn}∞n=0 ⊂ [0, c] for some c ∈ [0, 1),
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lim
n→∞

αn = 0, {βn}∞n=0 ⊂ [0, 1), lim
n→∞

βn = 0 and Wn be the mapping generated

by {Sn}∞n=1 and {γn}∞n=1 as in (2.5). Define sequences {xn}∞n=0, {yn}∞n=0 and

{zn}∞n=0 in C by the iteration algorithm

(3.26)



x0 ∈ C,
yn = βnxn + (1− βn)PC(I − ζnA)xn,

zn = αnfn(yn) + (1− αn)
2

n2 + n

n∑
k=0

WnPC(xn − ζnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + rn},
Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0,

where rn = αnδn and δn = sup{‖fn(p)− p‖[‖fn(p)− p‖+ 2‖xn − p‖] : p ∈ F}.
Then the sequences {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 converge strongly to PFx0.

Proof. Let S = {0, 1, . . .} and ϕ = {Tn : n ∈ S}. For each f = (x0, x1, . . .)

in B(S), define

µn =
2

n2 + n

n∑
k=0

kxk.

Then {µn}∞n=1 is a left regular sequence of means on B(S). In fact, for f ∈ B(S),

|µn(f)| ≤ 2

n2 + n

n∑
k=0

k|xk| ≤
2

n2 + n

n∑
k=0

k‖f‖ = ‖f‖,

and

µn(1) =
2

n2 + n

n∑
k=0

k = 1.

It follows that ‖µn‖ = µn(1) = 1, i.e., µn is a mean on B(S). Next, for each

f ∈ B(S) and m ∈ S,

|µn(f)− µn(lmf)| =
∣∣∣∣ 2

n2 + n

n∑
k=0

kxk −
2

n2 + n

n∑
k=0

kxk+m

∣∣∣∣
=

2

n2 + n

∣∣∣∣ m∑
k=0

kxk +

n∑
k=m+1

kxk −
n−m∑
k=0

kxk+m −
n∑

k=n−m+1

kxk+m

∣∣∣∣
=

2

n2 + n

∣∣∣∣ m∑
k=0

kxk +m

n∑
k=m+1

xk −
n∑

k=n−m+1

kxk+m

∣∣∣∣
≤ 2‖f‖
n2 + n

[ m∑
k=0

k +m

n∑
k=m+1

1−
n∑

k=n−m+1

k

]

=
2‖f‖
n2 + n

[ m∑
k=0

k +m

n∑
k=m+1

1−
n−m+m∑
k=n−m+1

k

]



CQ Method for Approximating Fixed Points 529

=
2‖f‖
n2 + n

[
2

m∑
k=0

k + 2m(n−m)

]
=

2‖f‖
n2 + n

[2mn+m−m2],

for every n ∈ N. So, we get lim
n→∞

|µn(f)−µn(lmf)| = 0. Hence {µn}∞n=1 is a left

regular sequence of means on B(S). Further, for x ∈ C and y ∈ H,

(µn)k〈T kx, y〉 =
2

n2 + n

m∑
k=0

k〈T kx, y〉 =

〈
2

n2 + n

m∑
k=0

kT kx, y

〉
and hence

T (µn)x =
2

n2 + n

m∑
k=0

kT kx.

Therefore, the result follows from Theorem 3.1. �
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