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MULTIPLICITY OF SOLUTIONS

FOR p -LAPLACIAN TYPE ELLIPTIC PROBLEMS

WITH ELECTROMAGNETIC FIELDS

AND CRITICAL NONLINEARITY

Zhongyi Zhang

Abstract. We consider a class of p-Laplacian type elliptic problems with

electromagnetic fields and critical nonlinearity in bounded domains. New

results about the existence and multiplicity of solutions to these problems
are obtained by using the concentration-compactness principle and varia-

tional method.

1. Introduction

In this paper we deal with the existence and multiplicity of solutions to

the following p-Laplacian type elliptic problems with electromagnetic fields and

critical nonlinearity:

(1.1)


[
g

(∫
Ω

|∇Au|p dx
)]

∆p,Au = λh(x, |u|p)|u|p−2u+ |u|p
∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where ∆p,Au(x) := div(|∇u+ iA(x)u|p−2(∇u+ iA(x)u), here i is the imaginary

unit, Ω ⊂ RN is an open bounded domain with smooth boundary and λ is

a positive parameter, p∗ = Np/(N − p) is the critical exponent according to
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the Sobolev embedding. Functions h : Ω× R → R, g : R+ → R+ are continuous

functions that satisfy the following conditions:

(G1) There exists α0 > 0 such that g(t) ≥ α0 for all t ≥ 0.

(G2) There exists σ such that 1 < p/σ < p∗ and G(t) ≥ σg(t)t for all t ≥ 0,

where G(t) =
∫ t

0
g(s) ds.

(H1) h(x, s) ∈ C(Ω× R,R), h(x,−s) = −h(x, s) for all s ∈ R.

(H2) lim
|s|→∞

h(x, s)/s(p∗−p)/p = 0 uniformly for x ∈ Ω.

(H3) lim
|s|→0+

h(x, s)/s1/σ−1 =∞ uniformly for x ∈ Ω.

There is a vast literature concerning the existence and multiplicity of solu-

tions for (1.1) with no magnetic field, namely A(x) ≡ 0, g(t) ≡ 1 and p = 2,

starting from the celebrated paper by Brezis and Nirenberg [2]. For example, Li

and Zou [28] obtained infinitely many solutions with odd nonlinearity. Chen and

Li [7] established the existence of infinitely many solutions by using the minimax

procedure. For more related results, we refer the interested readers to [3], [5],

[14], [15], [17], [22], [34] and references therein.

On the one hand, for the special case of problem (1.1) with A(x) ≡ 0, g(t) =

at + b and p = 2, equation (1.1) reduces to the following Dirichlet problem of

Kirchhoff type:

(1.2)

−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u), x ∈ Ω,

u|∂Ω = 0,

where Ω ⊂ RN , problem (1.2) is a generalization of a model introduced by

Kirchhoff [23]. More precisely, Kirchhoff proposed a model given by the equation

(1.3) ρ
∂2u

∂t2
−
(
ρ0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx)∂2u

∂x2
= 0,

where ρ, ρ0, h, E, L are constants, which extends the classical D’Alembert’s wave

equation, by considering the effects of changes in the length of strings during

vibrations. Equation (1.2) is related to the stationary analogue of problem (1.3).

Problem (1.2) received much attention only after Lions [26] proposed an abstract

framework to the problem. Some important and interesting results can be found

in, for example, [11], [10], [18], [20], [21], [24], [30], [32], [39]. We note that the

results dealing with problem (1.2) with critical nonlinearity are relatively scarce.

For the case p 6= 2, by means of a direct variational method, the authors proved

the existence and multiplicity of solutions to a class of p-Kirchhoff-type problem

with Dirichlet boundary data [12]. In [29], the author showed the existence of

infinite solutions to the p-Kirchhoff type quasilinear elliptic equation. But they

did not give any further information on the sequence of solutions.
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For A(x) 6≡ 0, there are also many works dealing with the magnetic case. The

first one seems to be [13] where the existence of standing waves was obtained for

~ > 0 fixed and for special classes of magnetic fields. If A and W are periodic

functions, the existence of various types of solutions for fixed ~ > 0 was proved

in [1] by applying minimax arguments. Concerning semiclassical bound states,

it is proved in [25] that for ~ > 0 sufficiently small there exists a least energy

solution which concentrates near the global minimum of W . A multiplicity result

for solutions was obtained in [8] by using a topological argument. There it was

also proved that the magnetic potential A contributes only to the phase factor

of solitary solutions for ~ > 0 sufficiently small. In [9] single-bump bound states

were considered by using perturbation methods, these concentrate near a non-

degenerate critical point of W as ~→ 0. For the critical growth case, Wang [37]

studied the electromagnetic Schrödinger equations

(1.4) −(∇+ iA(x))2u(x) + λV (x)u(x) = K(x)|u|2
∗−2u for x ∈ RN .

By applying the linking theorem twice to the corresponding functional, they es-

tablished the existence results. Chabrowski and Szulkin [4] considered problems

(1.2) under the assumption that V changes sign, by using a minmax type ar-

gument based on a topological linking, they obtained a solution in the Sobolev

space which is defined in the paper. For K(x) ≡ 1, Han [19] studied problem

(1.4) and established the existence of nontrivial solutions in the critical case by

means of variational method. For more results, we refer the reader to [35]–[37]

and the references therein.

Motivated by the above, we aim to show the existence of infinitely many

solutions of problem (1.1) and a sequence of infinitely many arbitrarily small

solutions converging to zero, by using a new version of the symmetric mountain-

pass lemma due to Kajikiya [31].

To the best of our knowledge, the existence and multiplicity of solutions to

problem (1.1) has not been studied so far by variational methods. As we shall

see, problem (1.1) can be viewed as an elliptic equation coupled with a non-local

term. The competing effect of the non-local term with the critical nonlinearity

and the lack of compactness of the embedding of W 1,p
0 (Ω,C) into the space

Lp
∗
(Ω,C) prevents us from using variational methods in a standard way. Some

new estimates for such Kirchhoff equation involving Palais–Smale sequences,

which are key points to apply this kind of theory, are needed to be re-established.

We mainly follow the idea of [16], [31]. Let us point out that although the idea

was used before for other problems, the adaptation of the procedure to our

problem is not trivial since due to the appearance of non-local term we must

consider our problem in a suitable space and so we need more delicate estimates.

Our main result of this paper is the following.
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Theorem 1.1. Suppose that (G1)–(G2) and (H1)–(H3) hold. Then there

exists λ∗ > 0 such that for any λ ∈ (0, λ∗) problem (1.1) has a sequence of

nontrivial solutions {un} and un → 0 as n→∞.

2. Preliminary lemmas

We shall denote by W 1,p
0 (Ω,C) the closure of C∞0 (Ω,C) under the norm

induced by

‖u‖p =

∫
Ω

|∇Au|p dx,

where ∇Au := ∇u + iAu. Similar to the diamagnetic inequality [13], we have

the following inequality:

|∇Au(x)| ≥ |∇|u(x)||, for u ∈W 1,p
0 (Ω,C).

Indeed, since A is real-valued

|∇|u|(x)| =
∣∣∣∣Re

(
∇u u

|u|

)∣∣∣∣ =

∣∣∣∣Re(∇u+ iAu)
u

|u|

∣∣∣∣ ≤ |∇u+ iAu|

(the bar denotes complex conjugation). Thus, if u ∈ W 1,p
0 (Ω,C), |u| belongs to

the usual Sobolev space W 1,p
0 (Ω,R). Moreover, the embedding W 1,p

0 (Ω,C) ↪→
Lq(Ω,C) is continuous for each 1 ≤ q ≤ p∗ and it is compact for 1 ≤ q < p∗.

Consider the energy functional J : W 1,p
0 (Ω,C)→ R defined by

J(u) =
1

p
G(‖u‖p)− λ

∫
Ω

H(x, |u|p) dx− 1

p∗

∫
Ω

|u|p
∗
dx.

It is well-known that a critical point of J is a weak solution of problem (1.1)

(see [38]). Denote by J ′ the derivative operator of J in the weak sense. Then

〈J ′(u), v〉 = Re

{
g(‖u‖p)

∫
Ω

(|∇Au|p−2∇Au · ∇Av) dx

−
∫

Ω

|u|p
∗−2uv dx− λ

∫
Ω

h(x, |u|p)|u|p−2uv dx

}
,

for all u, v ∈W 1,p
0 (Ω,C).

Hereafter, we denote by λ1 > 0 the best constant of the compact embedding

W 1,p
0 (Ω,C) ↪→ Lp(Ω,C) which is given by

λ1 = inf
u∈W 1,p

0 (Ω,C)\{0}

∫
Ω

|∇Au|p dx(∫
Ω

|u|p dx
)1/p

.
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Denote by S the best Sobolev constant of the embedding W 1,p
0 (Ω,R) ↪→Lp

∗
(Ω,R)

which is given by

S = inf
u∈W 1,p

0 (Ω,R)\{0}

∫
Ω

|∇u|p dx(∫
Ω

|u|p
∗
dx

)p/p∗ .
It is well-known that S is independent of Ω and it is never achieved, except when

Ω = RN .

To use variational methods, we give some results related to the Palais–Smale

compactness condition. Recall that a sequence (un) is called a Palais–Smale

sequence of J at the level c if J(un)→ c and J ′(un)→ 0.

Definition 2.1 (see [40]). Let X be a reflexive Banach space and X∗ its

topological dual. The mapping A : X → X∗ is said to have type (S+) if any

sequence un in X satisfying un ⇀ u0 in X and

lim sup
n→+∞

〈A(un), un − u0〉 ≤ 0

contains a convergent subsequence.

For each u ∈W 1,p
0 (Ω,C), we define A : W 1,p

0 (Ω,C)→W−1,p′

0 (Ω,C) by

〈A(u), ϕ〉 =

∫
Ω

|∇u|p−2∇u∇ϕdx, for all ϕ ∈W 1,p
0 (Ω,C).

Remark 2.2. It is easy to prove that the operator A is of type (S+).

We recall the second concentration-compactness principle of Lions [27].

Lemma 2.3 (see [27]). Let {un} be a weakly convergent sequence to u in

W 1,p
0 (Ω,R) such that |un|p

∗
⇀ ν and |∇un| ⇀ µ in the sense of measures.

Then, for some at most countable index set I,

(a) ν = |u|p∗ +
∑
j∈I

δxj
νj, νj > 0,

(b) µ ≥ |∇u|p +
∑
j∈I

δxj
µj , µj > 0,

(c) µj ≥ Sνp/p
∗

j ,

where S is the best Sobolev constant, xj ∈ RN , δxj are Dirac measures at xj and

µj , νj are constants.

Under assumptions (H1) and (H2), we have

h(x, |s|p)|s|p = o
(
|s|p

∗)
, H(x, |s|p) = o

(
|s|p

∗)
,

which means that, for all ε > 0, there exist a(ε), b(ε) > 0 such that

|h(x, |s|p)|s|p| ≤ a(ε) + ε|s|p
∗
,(2.1)

|H(x, |s|p)| ≤ b(ε) + ε|s|p
∗
.(2.2)
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Hence, for some c(ε) > 0,

(2.3) H(x, |s|p)− σ

p
h(x, |s|p)|s|p ≤ c(ε) + ε|s|p

∗
.

Lemma 2.4. Suppose that (G1)–(G2) and (H1)–(H3) hold. Then, for any

λ > 0, the functional J satisfies the local (PS)c condition in

c ∈
(
−∞, p

∗σ − p
2pp∗

(α0S)N/p − λc
(
p∗σ − p
2pp∗λ

)
|Ω|
)

in the following sense: if

J(un)→ c <
p∗σ − p

2pp∗
(α0S)N/p − λc

(
p∗σ − p
2pp∗λ

)
|Ω|

and J ′(un) → 0 for some sequence in W 1,p
0 (Ω,C), then {un} contains a subse-

quence converging strongly in W 1,p
0 (Ω).

Proof. Let {un} be a sequence in W 1,p
0 (Ω,C) such that

(2.4) J(un) =
1

p
G(‖un‖p)− λ

∫
Ω

H(x, |un|p) dx−
1

p∗

∫
Ω

|un|p
∗
dx = c+ o(1),

(2.5) 〈J ′(un), v〉 = Re

{
g
(
‖un‖p

) ∫
Ω

(
|∇Aun|p−2∇Aun · ∇Av

)
dx

−
∫

Ω

|un|p
∗−2unv dx− λ

∫
Ω

h(x, |un|p)|un|p−2unv dx

}
= o(1)‖un‖.

From (G2) we see that

G(‖un‖p)− σg(‖un‖p)‖un‖p ≥ 0 for all n.

By (2.4) and (2.5), we have

c+ o(1)‖un‖ = J(un)− σ

p
〈J ′(un), un〉

=
1

p
G(‖un‖p)−

σ

p
g
(
‖un‖p

)
‖un‖p +

(
σ

p
− 1

p∗

)∫
Ω

|un|p
∗
dx

− λ
∫

Ω

H(x, |un|p) dx+
σ

p
λ

∫
Ω

h(x, |un|p)|un|p dx

≥ p∗σ − p
pp∗

∫
Ω

|un|p
∗
dx− λ

∫
Ω

H(x, |un|p) dx+
σ

p
λ

∫
Ω

h(x, |un|p)|un|p dx,

i.e.

p∗σ − p
pp∗

∫
Ω

|un|p
∗
dx ≤ λ

∫
Ω

(
H(x, |un|p)−

σ

p
h(x, |un|p)|un|p

)
dx+c+o(1)‖un‖.

Then, by inequality (2.3), we have(
p∗σ − p
pp∗

− λε
)∫

Ω

|un|p
∗
dx ≤ λc(ε)|Ω|+ c+ o(1)‖un‖.



Multiplicity of Solutions for p-Laplacian Type Elliptic Problems 121

Setting ε = (p∗σ − p)/(2pp∗λ), we get

(2.6)

∫
Ω

|un|p
∗
dx ≤M + o(1)‖vn‖,

where o(1) → 0 and M is some positive number. On the other hand, by (2.2)

and (2.6), we have

c+ o(1)‖un‖ = J(un)(2.7)

=
1

p
G(‖un‖p)− λ

∫
Ω

H(x, |un|p) dx−
1

p∗

∫
Ω

|un|p
∗
dx

≥ α0σ

p
‖un‖p − λb(ε)|Ω| −

[
1

p∗
+ λε

] ∫
Ω

|un|p
∗
dx.

Therefore, (2.6) and (2.7) imply that {un} is bounded in W 1,p
0 (Ω,C). Hence,

by the diamagnetic inequality, {|un|} is bounded in W 1,p
0 (Ω,R). Then, for some

subsequence, there is u ∈W 1,p
0 (Ω,C) such that un ⇀ u in W 1,p

0 (Ω,C). We claim

that

(2.8)

∫
Ω

|un|p
∗
dx→

∫
Ω

|u|p
∗
dx.

In order to prove this claim, we suppose that

|∇|un||p ⇀ |∇|u||p + µ and |un|p
∗
⇀ |u|p

∗
+ ν (weak∗ sense of measures).

Using the concentration compactness-principle, we obtain a countable index

set I, sequences {xj} ⊂ RN , and {µj}, {νj} ⊂ (0,∞) such that

(2.9) ν =
∑
j∈I

δxjνj , µ ≥
∑
j∈I

δxjµj and µj ≥ Sνp/p
∗

j

for all j ∈ I, where δxj is the Dirac measure mass at xj ∈ Ω. Let ψ ∈
C∞0 (RN , [0, 1]) such that 0 ≤ ψ ≤ 1,

(2.10) ψ(x) =

1 if |x| < 1,

0 if |x| ≥ 2,

and |∇ψ|∞ ≤ 2.

For ε > 0 and j ∈ I, denote ψjε(x) = ψ((x−xj)/ε). Since {unψjε} is bounded

in W 1,p
0 (Ω,C) and ψjε takes values in R, a direct calculation shows that

〈J ′(un), ψjεun〉 → 0 and ∇A(unψ
j
ε) = iun∇ψjε + ψjε∇Aun,
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that is,

(2.11) g(‖un‖p)
∫

Ω

|∇Aun|pψjε dx

= −g(‖un‖p)Re

(∫
RN

i|∇Aun|p−2un∇Aun∇Aψjε dx
)

+ λ

∫
Ω

h(x, |un|p)|un|pψjε dx+

∫
Ω

|un|p
∗
ψjε dx+ on(1).

Hence, by Hölder’s inequality, we obtain

lim sup
n→∞

∣∣∣∣Re

∫
RN

i|∇Aun|p−2un∇Aun∇ψjε dx
∣∣∣∣(2.12)

≤ lim sup
n→∞

(∫
RN

|∇Aun|p dx
)(p−1)/p(∫

RN

|un∇Aψjε|p dx
)1/p

≤ C1

(∫
B(xj ,2ε)

|u|p|∇Aψjε|p dx
)1/p

≤ C1

(∫
B(xj ,2ε)

|∇Aψjε|N dx
)1/N(∫

B(xj ,2ε)

|u|p
∗
dx

)1/p∗

≤ C2

(∫
B(xj ,2ε)

|u|p
∗
dx

)1/p∗

→ 0 as ε→ 0.

Since ψjε has compact support, letting n → ∞ in (2.11), we deduce from (2.11)

and (2.12) that

α0

∫
Ω

ψjε dµ ≤ C2

(∫
B(xj ,2ε)

|u|p
∗
dx

)1/p?

+λ

∫
B(xj ,2ε)

h(x, |u|p)|u|p dx+

∫
Ω

ψjε dν.

Letting ε→ 0, we obtain α0µj ≤ νj . Therefore,

(2.13) (α0S)N/p ≤ νj .

We will prove that this inequality is not possible. Let us assume that (α0S)N/p ≤
νj0 for some j0 ∈ I. Since

c = J(un)− σ

p
〈J ′(un), un〉+ on(1),

it follows that

c = lim
n→∞

(
J(un)− σ

p
〈J ′(un), un〉

)
≥
(
σ

p
− 1

p∗

)∫
Ω

|un|p
∗
dx− λ

∫
Ω

[
H(x, |un|p)−

σ

p
h(x, |un|p)|un|p

]
dx

≥
(
p∗σ − p
pp∗

− λε
)∫

Ω

ψj0ε |un|p
∗
dx− λc(ε)|Ω|.
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Letting ε = (p∗σ − p)/(2pp∗λ) and n→∞, we obtain

c ≥ p∗σ − p
2pp∗

∑
j∈J

ψj0ε (xj)νj − λc
(
p∗σ − p
2pp∗λ

)
|Ω|

≥ p∗σ − p
2pp∗

(α0S)N/p − λc
(
p∗σ − p
2pp∗λ

)
|Ω|.

This is impossible. Then I = ∅, and hence un → u in Lp
∗
(Ω,C).

Then, using (2.8) and the fact that un → u in Lp
∗
(Ω,C), we have

lim
n→∞

Re

∫
Ω

h(x, |un|p)|un|p−2(un − u) dx = 0,(2.14)

lim
n→∞

Re

∫
Ω

|un|p
∗−2un(un − u) dx = 0.(2.15)

From 〈J ′(un), un − u〉 = on(1), we deduce that

〈J ′(un), un − u〉 = Re

{
g(‖un‖p)

∫
Ω

|∇Aun|p−2∇Aun∇A(un − u) dx

− λ
∫

Ω

h(x, |un|p)|un|p−2(un − u) dx−
∫

Ω

|un|p
∗−2un(un − u) dx

}
= on(1).

This, (2.14) and (2.15) imply

lim
n→∞

g(‖un‖p) Re

∫
Ω

|∇Aun|p−2∇un∇A(un − u) dx = 0.

Since un is bounded and g is continuous, up to subsequence, there is t0 ≥ 0 such

that

g(‖un‖p)→ g(tp0) ≥ α0, as n→∞,

and so

lim
n→∞

Re

∫
Ω

|∇Aun|p−2∇Aun∇A(un − u) dx = 0.

Thus, by the (S+) property, un → u strongly in W 1,p
0 (Ω,C). �

3. Existence of a sequence of arbitrarily small solutions

In this section, we prove the existence of infinitely many solutions of (1.1)

which tend to zero. Let X be a Banach space and denote

Σ = {A ⊂ X \ {0} : A is closed in X and symmetric with respect to the orgin}.

For A ∈ Σ, we define genus γ(A) as

γ(A) = inf{m ∈ N : ∃ ϕ ∈ C(A,Rm \ {0}, −ϕ(x) = ϕ(−x))}.

If there is no mapping ϕ as above for any m ∈ N , then γ(A) = +∞. Let Σk
denote the family of closed symmetric subsets A of X such that 0 6∈ A and

γ(A) ≥ k. We list some properties of the genus (see [31], [33]).
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Proposition 3.1. Let A and B be closed symmetric subsets of X which do

not contain the origin. Then the following hold:

(a) If there exists an odd continuous mapping from A to B, then γ(A) ≤
γ(B).

(b) If there is an odd homeomorphism from A to B, then γ(A) = γ(B).

(c) If γ(B) <∞, then γ(A \B) ≥ γ(A)− γ(B).

(d) The n-dimensional sphere Sn has a genus of n+ 1 by the Borsuk–Ulam

theorem.

(e) If A is compact, then γ(A) < +∞ and there exists δ > 0 such that

Uδ(A) ∈ Σ and γ(Uδ(A)) = γ(A), where Uδ(A) = {x ∈ X : ‖x−A‖ ≤ δ}.

The following version of the symmetric mountain-pass lemma is due to Ka-

jikiya [31].

Lemma 3.2. Let E be an infinite-dimensional space, J ∈ C1(E,R) and sup-

pose the following conditions hold:

(C1) J is even, bounded from below, J(0) = 0 and J satisfies the local Palais–

Smale condition, i.e. for some c > 0, every sequence {uk} in E such

that lim
k→∞

J(uk)=c <c and lim
k→∞

‖J ′(uk)‖E∗=0 has a convergent subse-

quence.

(C2) For each k ∈ N , there exists Ak ∈ Σk such that sup
u∈Ak

J(u) < 0.

Then either (R1) or (R2) below holds.

(R1) There exists a sequence {uk} such that J ′(uk) = 0, J ′(uk) < 0 and {uk}
converges to zero.

(R2) There exist two sequences {uk} and {vk} such that J ′(uk)=0, J(uk) < 0,

uk 6= 0, lim
k→∞

uk = 0, J ′(vk) = 0, J(vk) < 0, lim
k→∞

vk = 0, and {vk}
converges to a non-zero limit.

Remark 3.3. From Lemma 3.2 we have a sequence {uk} of critical points

such that J(uk) ≤ 0, uk 6= 0 and lim
k→∞

uk = 0.

In order to get infinitely many solutions we need some lemmas. Let ε =

1/p∗λ, from (2.2) we have

J(u) :=
1

p
G(‖u‖p)− λ

∫
Ω

H(x, |u|p)dx− 1

p∗

∫
Ω

|u|p
∗
dx

≥ α0σ

p

∫
Ω

|∇Au|p dx−
(

1

p∗
+ ελ

)∫
Ω

|u|p
∗
dx− λb(ε)|Ω|

=
α0σ

p

∫
Ω

|∇Au|p dx−
2

p∗

∫
Ω

|u|p
∗
dx− λb

(
1

p∗λ

)
|Ω|

≥L1‖u‖p − L2‖u‖p
∗
− L3λ,

where L1, L2, L3 are some positive constants.
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Let Q(t) = L1t
p − L2t

p∗ − L3λ. Then J(u) ≥ Q(‖u‖). Furthermore, there

exists

λ∗ :=
pL1

NL3

(
pL1

p∗L2

)(N−p)/p

such that for λ ∈ (0, λ∗), Q attains its positive maximum, that is, there exists

R1 =

(
pL1

p∗L2

)(N−p)/p2

such that e1 = Q(R1) = max
t≥0

Q(t) > 0. Therefore, for e0 ∈ (0, e1), we may find

R0 < R1 such that Q(R0) = e0. Now we define

χ(t) =


1, 0 ≤ t ≤ R0,
L1t

p − λL3 − e1

L2tp
∗ , t ≥ R1,

C∞, χ(t) ∈ [0, 1], R0 ≤ t ≤ R1.

Then it is easy to see χ ∈ [0, 1] and χ is C∞. Since the functional J is not

bounded from below, we could not use the theory directly. So we follow [16]

to consider a truncated functional of J . Let ϕ(u) = χ(‖u‖) and consider the

perturbation of J :

(3.1) T (u) :=
1

p
G(‖u‖p)− 1

p∗
ϕ(u)

∫
Ω

|u|p
∗
dx− λϕ(u)

∫
Ω

H(x, |u|p) dx.

Then

T (u) ≥ L1‖u‖p − L2ϕ(v)‖u‖p
∗
− L3λ = Q(‖u‖),

where Q(t) = L1t
p − L2χ(t)tp

∗− L3λ and

Q(t) =

Q(t), 0 ≤ t ≤ R0,

e1, t ≥ R1.

From the above arguments, we have the following:

Lemma 3.4. Let T be defined as in (3.1). Then

(a) T ∈ C1(W 1,p
0 (Ω,C),R) and T is even and bounded from below.

(b) If T (u) < e0, then Q(‖u‖) < e0, consequently, ‖u‖ < R0 and J(u) =

T (u).

(c) There exists λ∗ such that, for λ ∈ (0, λ∗), T satisfies a local (PS)c con-

dition for

c < e0 ∈
(

0,min

{
e1,

p∗σ − p
2pp∗

(α0S)N/p − λc
(
p∗σ − p
2pp∗λ

)
|Ω|
})

.

Lemma 3.5. Suppose that (G1)–(G2) and (H3) hold. Then for any k ∈ N,

there exists δ = δ(k) > 0 such that γ({u ∈W 1,p
0 (Ω,C) : T (u) ≤ −δ(k)}\{0})≥k.
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Proof. Firstly, by (H3) of Theorem 1.1, for any fixed u ∈W 1,p
0 (Ω,C), u 6= 0,

we have

H(x, |ρu|p) ≥M(ρ)|ρu|p/σ with M(ρ)→∞ as ρ→ 0.

On the other hand, by integrating (G2), we obtain

(3.2) G(t) ≤ G(t0)

t
1/σ
0

t1/σ = C0t
1/σ for all t ≥ t0 > 0.

Secondly, given any k ∈ N , let Ek be a k-dimensional subspace of W 1,p
0 (Ω,C).

There then exists a positive constant δ such that

‖u‖ ≤ δ|u|p/σ for all u ∈ Ek.

Therefore for any u ∈ Ek with ‖u‖ = 1 and ρ small enough, by (3.2) and (H3),

we have

T (ρu) =
1

p
G(‖ρu‖p)− 1

p∗
ϕ(u)

∫
Ω

|ρu|p
∗
dx− λϕ(u)

∫
Ω

H(x, |ρu|p) dx

≤ C0

p
ρp/σ − λM(ρ)

δp/σ
ρp/σ ≤

(
C0

p
− λM(ρ)

δp/σ

)
ρp/σ = −δ(k) < 0,

since lim|ρ|→0M(ρ) = +∞. That is,

{u ∈ Ek : ‖u‖ = ρ} ⊂ {u ∈W 1,p
0 (Ω,C) : T (u) ≤ −δ(k)} \ {0}.

This completes the proof. �

Proof of Theorem 1.1. Recall that

Σk = {A ∈W 1,p
0 (Ω,C) \ {0} : A is closed and A = −A, γ(A) ≥ k}

and define ck = inf
A∈Σk

sup
u∈A

T (u). By Lemmas 3.4 (a) and 3.5, we know that

−∞ < ck < 0. Therefore, assumptions (C1) and (C2) of Lemma 3.2 are satisfied.

This means that T has a sequence of solutions {un} converging to zero. Hence,

Theorem 1.1 follows by Lemma 3.4 (b). �

4. A special case of problem (1.1)

We consider the following the special case of problem (1.1):

(4.1)
−
(
α+ β

∫
Ω

|∇u|p dx
)

∆pu = λf(x, u) + |u|p
∗−2u in Ω,

u = 0 on ∂Ω,

where Ω is a bounded smooth domain of RN , 1 < p < N < 2p, α and β are

positive constants.

Set g(t) = α+ βt. Then, g(t) ≥ α and

G(t) =

∫ 1

0

g(s) ds = αt+
1

2
βt2 ≥ 1

2
(α+ βt)t = σg(t)t,
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where σ = 1/2. Hence conditions (G1) and (G2) are satisfied.

For this case, a typical example of a function satisfying conditions (F1)–(F3)

is given by

f(x, t) =

k∑
i=1

ai(x)|t|qi−2t,

where k ≥ 1, 1 < qi < p/σ and ai ∈ C(Ω). In view of Theorem 1.1, we have the

following corollary.

Corollary 4.1. Suppose that (F1)–(F3) hold. There then exists λ∗ > 0 such

that for any λ ∈ (0, λ∗), problem (4.1) has a sequence of nontrivial solutions {un}
and un → 0 as n→∞.
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