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FRACTIONAL ORDER SEMILINEAR VOLTERRA

INTEGRODIFFERENTIAL EQUATIONS

IN BANACH SPACES

Kexue Li

Abstract. Sufficient conditions are established for the existence results of

fractional order semilinear Volterra integrodifferential equations in Banach
spaces. Results are obtained by using the theory of fractional cosine families

and fractional powers of operators.

1. Introduction

The integrodifferential equations in Banach spaces have attracted much in-

terest. Prüss [20] considered the solvability behavior on the real line of linear

integrodifferential equations in a general Banach space and gave several applica-

tions to integral partial differential equations. Grimmer [5] established general

conditions to ensure the existence of a resolvent operator for an integrodifferential

equation in Banach spaces. Fitzgibbon [4] studied the existence, continuation,

and behavior of solutions to an abstract semilinear Volterra integrodifferential

equation. Keyantuo and Lizama [8] characterized existence and uniqueness of

solutions for a linear integrodifferential equation in Hölder spaces. Londen [12]

proved an existence result on a nonlinear Volterra integrodifferential equation in

real reflexive Banach spaces by using the theory of maximal monotone opera-

tors. Prüss [22] studied linear Volterra integrodifferential equations in Banach
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spaces in case the main part of the equation generates an analytic C0-semigroup.

Travis and Webb [23] studied the existence of solutions to semilinear second or-

der Volterra integrodifferential equations in Banach spaces by using the theory of

strongly continuous cosine families. Mainini and Mola [14] considered in an ab-

stract setting, an instance of the Coleman–Gurtin model for heat conduction with

memory. Engler [3] constructed global weak solution of scalar second-order quasi-

linear hyperbolic integrodifferential equations with singular kernels. Prüss [21]

studied the existence, positivity, regularity, compactness and integrability of

the resolvent for a class of Volterra equations of scalar type. Hernández [6]

studied the existence of strict and classical solutions for a class of abstract non-

autonomous Volterra integrodifferential equations in Banach spaces. Lang and

Chang [10] investigated the local existence and uniqueness of solutions to inte-

grodifferential equations with infinite delay. Jawahdou [7] studied the existence

of mild solutions for initial value problems for semilinear Volterra integrodiffer-

ential equations in Banach spaces.

In recent years, fractional differential equations have received increasing at-

tention due to its applications in physics, chemistry, materials, engineering, bi-

ology, finance, we refer to [19], [13], [15]. Fractional order derivatives have the

memory property and can describe many phenomena that integer order deriva-

tives cannot characterize.

Consider the following fractional semilinear differential equation:

(1.1)

CDα
t u(t) = Au(t) for t > 0,

u(0) = x, u(k)(0) = 0 for k = 1, . . . ,m− 1,

where α > 0, m is the smallest integer greater than or equal to α, CDα
t is the

α-order Caputo fractional derivative operator, A : D(A) ⊂ X → X is a closed

densely defined linear operator on a Banach space X.

Bazhlekova [1] introduced the notion of solution operator for (1.1) as follows.

Definition 1.1. A family {Cα(t)}t≥0 ⊂ B(X) is called a solution operator

for (1.1) if the following conditions are satisfied:

(a) Cα(t) is strongly continuous for t ≥ 0 and Cα(0) = I (the identity

operator on X);

(b) Cα(t)D(A) ⊂ D(A) and ACα(t)ξ = Cα(t)Aξ for all ξ ∈ D(A), t ≥ 0;

(c) Cα(t)ξ is a solution of x(t) = ξ +
∫ t
0
gα(t− s)Ax(s) ds for all ξ ∈ D(A),

t ≥ 0, we refer to equality (2.3) concerning the definition of gα(t).

A is called the infinitesimal generator of Cα(t). Note that in some literature

the solution operator also is called the fractional resolvent family or fractional

resolvent operator function, see [2], [11]. As a matter of fact, the solution oper-

ator C2(t) is a cosine family, in this paper, for α ∈ (1, 2], the solution operator
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Cα(t) is called strongly continuous α-order fractional cosine family, or α-order

cosine family, for short.

Chen and Li [2] developed a purely algebraic notion, called the α-resolvent

operator function: A family {Sα(t)}t≥0 of bounded linear operators of a Banach

space X is called an α-resolvent operator function if the following conditions are

satisfied:

(a) Sα(t) is strongly continuous for t≥0 and Sα(0)=I (the identity operator),

(b) Sα(t)Sα(s) = Sα(s)Sα(t) for all t, s ≥ 0, and

(c) there holds for all t, s ≥ 0 that

Sα(s)Jαt Sα(t)− Jαs Sα(s)Sα(t) = Jαt Sα(t)− Jαs Sα(s),

where Jαt is the α-order Riemann–Liouville fractional integral operator.

It has been proved in [2] that a family {Sα(t)}t≥0 is an α-resolvent operator

function if and only if it is a solution operator (or an α-times resolvent family,

see [11]) for problem (1.1).

Peng and Li [18] developed a novel operator theory for problem (1.1) with

the order α ∈ (0, 1).

Definition 1.2 ([18]). Let 0 < α < 1. A one-parameter family {Tα(t)}t≥0 of

bounded linear operators ofX is called a strongly continuous fractional semigroup

of order α (or α-order fractional semigroup, for short) if it possesses the following

two properties:

(a) for every x ∈ X, the mapping t 7→ T (t)x is continuous over [0,∞);

(b) Tα(0) = I, and for all t, s ≥ 0,

(1.2)

∫ t+s

0

Tα(τ) dτ

(t+ s− τ)α
−
∫ t

0

Tα(τ) dτ

(t+ s− τ)α
−
∫ s

0

Tα(τ) dτ

(t+ s− τ)α

= α

∫ t

0

∫ s

0

Tα(τ1)Tα(τ2)

(t+ s− τ1 − τ2)1+α
dτ1d τ2,

where the integrals are understood in the sense of strong operator topo-

logy.

For α ∈ (0, 1), it is proved that a family of bounded linear operators is

a solution operator for (1.1) if and only if it is a fractional semigroup. Moreover,

it is shown that problem (1.1) is well-posed if and only if its coefficient operator

generates an α-order semigroup.

Keyantuo [9] investigated a general framework for connections between ordi-

nary non-homogeneous equations in Banach spaces and fractional Cauchy prob-

lems. When the underlying operator generates a strongly continuous semigroup,

using a subordination argument, the fractional evolution equation is well-posed.
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In this paper we are concerned with the fractional order semilinear Volterra

integrodifferential equation

(1.3)


CDα

t u(t) = Au(t) +

∫ t

0

h(t, s, u(s)) ds+ f(t) for t ∈ R+,

u(0) = x, u′(0) = y,

where R+ = [0,∞), α ∈ (1, 2], CDα
t is the α-order Caputo fractional derivative

operator, A is the infinitesimal generator of a strongly continuous fractional

cosine family {Cα(t)}t≥0 on a Banach space X, h is a nonlinear unbounded

operator from R+ × R+ ×X to X, f is a function from R+ to X and x, y ∈ X.

The paper is organized as follows. In Section 2, we give the basic notations

and preliminary facts. In Section 3, we give the sufficient conditions for the

existence of equation (1.3). At last, an example is presented to illustrate the

main results.

2. Preliminaries

Let X be a Banach space with norm ‖·‖. By B(X) we denote the space of all

bounded linear operators on X. Let 1 ≤ p <∞. By Lp([0, T ];X) we denote the

space of X-valued Bochner integrable functions f : [0, T ]→ X with the norm

(2.1) ‖f‖Lp([0,T ];X) =

(∫ T

0

‖f(t)‖p dt
)1/p

.

By C([0, T ];X), resp. C1([0, T ];X), we denote the spaces of functions f : [0, T ]→
X, which are continuous, resp. continuously differentiable. C([0, T ];X) and

C1([0, T ];X) are Banach spaces endowed with the norms

(2.2) ‖f‖C = sup
t∈[0,T ]

‖f(t)‖X , ‖f‖C1 = sup
t∈[0,T ]

1∑
k=0

‖f (k)(t)‖X .

Let I be the identity operator on X. If A is a linear operator on X, then

R(λ,A) = (λI − A)−1 denotes the resolvent operator of A. For the sake of

simplicity, we use the following notation for α > 0:

(2.3) gα(t) =
tα−1

Γ(α)
, t > 0,

where Γ(α) is the gamma function. If α = 0, we set g0(t) = δ(t), the delta

distribution.

Definition 2.1. The Riemann–Liouville fractional integral of order α ≥ 0

as defined

(2.4) Jαt u(t) =

∫ t

0

gα(t− s)u(s) ds,

where u(t) ∈ L1([0, T ];X).
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The set of the Riemann–Liouville fractional integral operators {Jαt }α≥0 is

a semigroup, i.e. Jαt J
β
t = Jα+βt for all α, β ≥ 0.

Definition 2.2. The Riemann–Liouville fractional derivative of order α ∈
(1, 2] as defined

(2.5) Dα
t u(t) =

d2

dt2
J2−α
t u(t),

where u(t) ∈ L1([0, T ];X), Dα
t u(t) ∈ L1([0, T ];X).

Definition 2.3. The Caputo fractional derivative of order α ∈ (1, 2] as

defined

(2.6) CDα
t u(t) = Dα

t (u(t)− u(0)− u′(0)t),

where u(t) ∈ L1([0, T ];X) ∩ C1([0, T ];X), Dα
t u(t) ∈ L1([0, T ];X).

The Laplace transform for the Riemann–Liouville fractional integral is given

by

(2.7) L{Jαt u(t)} =
1

λα
û(λ),

where û(λ) is the Laplace of u given by

(2.8) û(λ) =

∫ ∞
0

e−λtu(t) dt, Reλ > ω.

The Laplace transform for Caputo derivative is given by

(2.9) L{CDα
t u(t)} = λαû(λ)− u(0)λα−1 − u′(0)λα−2.

Definition 2.4. The fractional sine family Sα : R+ → B(X) associated with

Cα is defined by

(2.10) Sα(t) =

∫ t

0

Cα(s) ds.

Remark 2.5. For x ∈ X, define

S′(0)x =
dSα(t)x

dt

∣∣∣∣
t=0

.

From Definitions 2.4 and 1.1, it is clear that S′(0) = I (the identity operator

on X).

Definition 2.6. The fractional Riemann–Liouville family Pα : R+ → B(X)

associated with Cα is defined by

(2.11) Pα(t) = Jα−1t Cα(t).
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Definition 2.7. The α-order cosine family Cα(t) is called exponentially

bounded if there are constants M ≥ 1 and ω ≥ 0 such that

(2.12) ‖Cα(t)‖ ≤Meωt, t ≥ 0.

An operator A is said to belong to Cα(M,ω) if problem (1.1) has an α-order

cosine family Cα(t) satisfying (2.12).

3. Existence of solutions

For α ∈ (1, 2), we assume A ∈ Cα(M,ω) and let Cα(t) be the corresponding

α-order cosine family. We have (see [1], (2.5) and (2.6))

(3.1) {λα : Reλ > ω} ⊂ ρ(A),

and

(3.2) λα−1R(λα, A)ξ =

∫ ∞
0

e−λtCα(t)ξ dt, Reλ > ω, ξ ∈ X.

By (2.11) and (3.2), we have

(3.3) R(λα, A)ξ =

∫ ∞
0

e−λtPα(t)ξ dt, Reλ > ω, ξ ∈ X.

For a fractional cosine family Cα(t), we define E = {x ∈ X : Cα(t)x is continu-

ously differentiable on R+}. By the identity λαR(λα, A)− I = AR(λα, A), (3.2)

and (3.3), we have that Pα(t)E ⊂ D(A), t ∈ R+, and

(3.4)
d

dt
Cα(t)x = APα(t)x, x ∈ E, t ∈ R+.

By (2.10) and (3.2), we have

(3.5) λα−2R(λα, A)ξ =

∫ ∞
0

e−λtSα(t)ξ dt, Reλ > ω, ξ ∈ X.

Lemma 3.1. Let A be the infinitesimal generator of an α-order cosine family

Cα(t) and Sα(t) be the corresponding α-order sine family. Then:

(a) For all x ∈ D(A) and t ≥ 0,

Sα(t)x ∈ D(A) and ASα(t)x = Sα(t)Ax.

(b) For all x ∈ D(A) and t ≥ 0,

Sα(t)x = tx+ Jαt Sα(t)Ax.

Proof. (a) Fix some µα ∈ ρ(A), for λ > max{ω, 0} and x ∈ X,∫ ∞
0

e−λtSα(t)µα−2R(µα, A)x dt = λα−2R(λα, A)µα−2R(µα, A)x

= µα−2R(µα, A)λα−2R(λα, A)x =

∫ ∞
0

e−λtµα−2R(µα, A)Sα(t)x dt.



Fractional Order Semilinear Volterra Integrodifferential Equations 445

From the uniqueness theorem of the Laplace transform, it follows that

R(µα, A)Sα(t) = Sα(t)R(µα, A).

This implies (a).

(b) For x ∈ D(A), λ > ω ≥ 0,∫ ∞
0

λ2e−λttx dt = x = λαR(λα, A)x−R(λα, A)Ax

=

∫ ∞
0

λ2e−λtSα(t)x dt−
∫ ∞
0

λ2e−λtJαt Sα(t)Axdt.

Hence, (b) follows from the uniqueness theorem of Laplace transform. �

Since A ∈ Cα(M,ω) for α ∈ (1, 2), then from Theorem 3.3 in [1], it follows

that A generates an analytic semigroup T (t) of angle (α − 1)π/2. We suppose

that 0 ∈ ρ(A), then for β ∈ (0, 1), we can define the fractional powers operator

(−A)−β as follows:

(−A)−β =
sinπβ

π

∫ ∞
0

τ−β(τI −A)−1 dτ.

Definition 3.2. Let A be the infinitesimal generator of an analytic semi-

group T (t). For every β > 0 we define (−A)β = ((−A)−β)−1. For β = 0,

(−A)β = I.

We collect some basic properties of fractional powers (−A)β in the following

lemma.

Lemma 3.3 ([17]). Assume (−A)β is defined by Definition 3.1, then:

(a) (−A)β is a closed operator with domain D((−A)β) = R((−A)−β) (the

range of (−A)−β).

(b) For β ≥ γ > 0, D((−A)β) ⊂ D((−A)γ).

(c) D((−A)β) is dense in X for every β ≥ 0.

(d) If β, γ are real, then (−A)β+γx = (−A)β(−A)γx for every x ∈ D((−A)η)

where η = max(β, γ, β + γ).

By (c), (d) of Lemma 3.3, we see that for β ∈ (0, 1),

(3.6) (−A)β = (−A)β−1(−A).

We note that D((−A)β) is a Banach space equipped with the norm ‖x‖β =

‖(−A)βx‖, x ∈ D((−A)β). By Xβ we denote this Banach space.

Lemma 3.4. Let A be the infinitesimal generator of an α-order cosine family

Cα(t) on X. By Pα(t) we denote the corresponding Riemann–Liouville family.

If k : R+ → X is continuously differentiable and v(t) =
∫ t
0
Pα(t− s)k(s) ds, then

v(t) ∈ D(A) for t ≥ 0, and

Av(t) =

∫ t

0

Cα(t− S)k′(τ) ds+ Cα(t)k(0)− k(t).(3.7)
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Proof. Since k : R+ → X is continuously differentiable, we have

v(t) =

∫ t

0

Pα(t− s)k(s) ds =

∫ t

0

Pα(t− s)
(∫ s

0

k′(τ) dτ + k(0)

)
ds(3.8)

=

∫ t

0

∫ t−τ

0

Pα(s)k′(τ) ds dτ +

∫ t

0

Pα(t− s)k(0) ds.

From (2.11), (b) of Proposition 3.3 in [2], it follows that for all x ∈ X, t ≥ 0,∫ t

0

Pα(s)x ds ∈ D(A) and A

∫ t

0

Pα(s)x ds = Cα(t)x− x.

Then v(t) ∈ D(A),

Av(t) =

∫ t

0

(Cα(t− τ)k′(τ)− k′(τ)) dτ + Cα(t)k(0)− k(0)(3.9)

=

∫ t

0

Cα(t− s)k′(s) ds+ Cα(t)k(0)− k(t). �

Lemma 3.5. Let A be the infinitesimal generator of an α-order cosine family

Cα(t) on X. Let f : R+ → X be continuously differentiable, x, y ∈ D(A), and

let

ϕ(t) = Cα(t)x+ Sα(t)y +

∫ t

0

Pα(t− s)f(s) ds, t ∈ [0, T ],

then ϕ(t) ∈ D(A) and ϕ satisfiesCDα
t ϕ(t) = Aϕ(t) + f(t) for t ∈ R+,

ϕ(0) = x, ϕ′(0) = y.

Proof. From (3.4) and Lemma 3.3, it follows that ϕ(t) ∈ D(A). It is clear

that ϕ(0) = x. Since f : R+ → X is continuously differentiable, it is easy to

show that ϕ′(0) = y. By (2.6), Remark 2.5 and Lemma 3.1, we have

CDα
t ϕ(t) = CDα

t Cα(t)x+ CDα
t Sα(t)y + CDα

t

(∫ t

0

Pα(t− s)f(s) ds

)
=ACα(t)x+Dα

t (Sα(t)y − Sα(0)y − tS′α(0)y)

+Dα
t

(∫ t

0

Pα(t− s)f(s) ds

)
= ACα(t)x+Dα

t (Sα(t)y − ty) +
d2

dt2
J2−α
t (Pα(t) ∗ f(t))

=ACα(t)x+Dα
t J

α
t Sα(t)Ay +

d2

dt2
(
g2−α(t) ∗ gα−1(t) ∗ Cα(t) ∗ f(t)

)
=ACα(t)x+ Sα(t)Ay +

d2

dt2
(1 ∗ Cα(t) ∗ f(t))

=ACα(t)x+ASα(t)y +
d

dt
(Cα(t) ∗ f(t)).
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By Lemma 3.4, we have

d

dt
(Cα(t) ∗ f(t)) = A

∫ t

0

Pα(t− s)f(s) ds+ f(t).

Therefore, the proof is complete. �

We make the following assumptions on the functions h and f :

(A1) h : R+ × R+ ×D → X is continuous, where D is an open subset of Xβ ,

β ∈ [0, 1).

(A2) h1 : R+ × R+ × D → X is continuous, where h1 denotes the derivative

of h with respect to its first variable.

(A3) f : R+ → X is continuously differentiable.

Theorem 3.6. Let α ∈ (1, 2). Assume that A ∈ Cα(M,ω) and let Cα(t),

Sα(t) and Pα(t) denote the corresponding α-order cosine family, α-order sine

family and α-order Riemann–Liouville family, respectively. Assume that A−1

is compact. Let x ∈ D, β ∈ (0, 1) and let (−A)β−1y ∈ E. If (A1)–(A3) are

satisfied, then there exists T > 0 and a continuous function u : [0, T ]→ Xβ such

that, for t ∈ [0, T ],

(3.10) u(t) = Cα(t)x+ Sα(t)y

+

∫ t

0

Pα(t− s)
∫ s

0

h(s, r, u(r)) dr ds+

∫ t

0

Pα(t− s)f(s) ds.

If, in addition, x ∈ D(A) and y ∈ E, then the Caputo derivative CDα
t u of the

solution u of (3.10) is continuous, u ∈ D(A), and u satisfies

(3.11)


CDα

t u(t) = Au(t) +

∫ t

0

h(t, s, u(s)) ds+ f(t) for t ∈ [0, T ],

u(0) = x, u′(0) = y.

Proof. For δ > 0, let Nδ(x) = {x1 ∈ Xβ : ‖x− x1‖β < δ}. Let

ϕ(t) = Cα(t)x+ Sα(t)y +

∫ t

0

Pα(t− s)f(s) ds.

We can choose δ > 0 and T > 0 such that Nδ(x) ⊂ D and for r, s ∈ [0, T ] and

x1 ∈ Nδ(x),

(3.12) ‖h(r, s, x1)‖ ≤ 1 +M(x, T ), ‖h1(r, s, x1)‖ ≤ 1 +N(x, T );

for t ∈ [0, T ],

(3.13) ‖ϕ(t)− x‖β < δ/2;
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for t ∈ [0, T ] and x1, x2, x3 ∈ Nδ(x),

(3.14)

∥∥∥∥(−A)β−1
(
−
∫ t

0

Cα(t− s)
(
h(s, s, x1) +

∫ s

0

h1(s, r, x2) dr

)
ds

+

∫ t

0

h(t, s, x3) ds

)∥∥∥∥ < δ

2
,

where M(x, T ) = sup
r,s∈[0,T ]

‖h(r, s, x)‖ and N(x, T ) = sup
r,s∈[0,T ]

‖h1(r, s, x)‖. In

fact, since h : R+×R+×D → X is continuous, given ε > 0, there exists δ > 0 such

that for x1 ∈ Nδ(x) and r, s ∈ [0, T ], we have ‖h(s, r, x1)−h(s, r, x)‖ < ε. Letting

ε ∈ (0, 1), we obtain ‖h(r, s, x1)‖ ≤ 1 + M(x, T ). Similarly, ‖h1(r, s, x1)‖ ≤
1 +N(x, T ).

It is easy to show that (−A)βCα(t)x = Cα(t)(−A)βx for x ∈ Xβ . Note that

t ∈ [0, T ] and Cα(t) is strongly continuous for t ≥ 0, then

‖(−A)β(Cα(t)x− x)‖ = ‖(Cα(t)− I)(−A)βx‖(3.15)

≤‖Cα(t)− I‖‖x‖β = C(α, T )‖x‖β ,

where C(α, T ) = sup
t∈[0,T ]

‖Cα(t)− I‖. Since β ∈ (0, 1), then there exists a positive

constant M0 > 0 such that ‖(−A)β−1‖ ≤M0 (see Lemma 6.3 in [17]).

Since (−A)β−1y ∈ E, we have

‖(−A)βSα(t)y‖ = ‖(−A)β−1(−A)Sα(t)y‖ =

∥∥∥∥(−A)β−1
d

dt
Cα(t)y

∥∥∥∥(3.16)

≤ ‖(−A)β−1‖
∥∥∥∥ ddtCα(t)y

∥∥∥∥ ≤M0M
′(α, T, y),

where

M ′(α, T, y) = sup
t∈[0,T ]

d

dt
Cα(t)y.

By Lemma 3.4, we have∥∥∥∥(−A)β
∫ t

0

Pα(t− s)f(s) ds

∥∥∥∥ =

∥∥∥∥(−A)β−1(−A)

∫ t

0

Pα(t− s)f(s) ds

∥∥∥∥(3.17)

≤ ‖(−A)β−1‖
∥∥∥∥(−A)

∫ t

0

Pα(t− s)f(s) ds

∥∥∥∥
= ‖(−A)β−1‖

∥∥∥∥∫ t

0

Cα(t− s)f ′(s)ds+ Cα(t)f(0)− f(t)

∥∥∥∥
= ‖(−A)β−1‖(M ′TMeωTT +MT )

≤M0(M ′TMeωTT +MT ),
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where M ′T = sup
s∈[0,T ]

‖f ′(s)‖, MT = sup
s∈[0,T ]

‖Cα(t)f(0)− f(t)‖. Since

‖ϕ(t)− x‖β = ‖(−A)β(ϕ(t)− x)‖(3.18)

≤‖(−A)β(Cα(t)x− x)‖+ ‖(−A)βSα(t)y‖

+

∥∥∥∥(−A)β
∫ t

0

Pα(t− s)f(s) ds

∥∥∥∥.
Put (3.15)–(3.17) into (3.18) to get

‖ϕ(t)− x‖β ≤ C(α, T )‖x‖β +M0M
′(α, T, y)(3.19)

+M0(M ′TMeωTT +MeωTMT +MT ).

For t ∈ [0, T ] and x1, x2, x3 ∈ Nδ(x), we have

(3.20)

∥∥∥∥(−A)β−1
(
−
∫ t

0

Cα(t− s)
(
h(s, s, x1) +

∫ s

0

h1(s, r, x2) dr

)
ds

+

∫ t

0

h(t, s, x3) ds

)∥∥∥∥
≤M0

{
TMeωT (1 +M(x, T ) + T (1 +N(x, T )) + T (1 +M(x, T ))

}
.

From (3.19) and (3.20), it can be seen that we can choose δ > 0 and T > 0

such that (3.13) and (3.14) hold, provided that δ and T satisfy the following

inequalities:

(3.21) C(α, T )‖x‖β +M0M
′(α, T, y)

+M0(M ′TMeωTT +MeωTMT +MT ) <
δ

2
,

and

M0

{
TMeωT (1 +M(x, T ) + T (1 +N(x, T )) + T (1 +M(x, T ))

}
<
δ

2
.(3.22)

Let C := C([0, T ];Xβ) equipped with the norm ‖φ‖C = sup
t∈[0,T ]

‖φ(t)‖β . Let F

be the closed convex bounded subset of C([0, T ];Xβ), defined by

F =

{
φ ∈ C : ‖φ− ϕ‖C ≤

δ

2

}
.

From ‖φ(t) − x‖β ≤ ‖φ − ϕ‖C + ‖ϕ(t) − x‖β ≤ δ, it follows that φ(t) ∈ D for

φ(t) ∈ F , t ∈ [0, T ]. Set the mapping Q on F by

(Qφ)(t) = ϕ(t) +

∫ t

0

Pα(t− s)
∫ s

0

h(s, r, φ(r)) dr ds, t ∈ [0, T ].

Step 1. We show that Q maps F into F . Since

d

ds

∫ s

0

h(s, r, φ(r)) dr =

∫ s

0

h1(s, r, φ(r)) dr + h(s, s, φ(s)),
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by (3.4), (3.6), (3.9), (3.14), we have

‖(Qφ)(t) − ϕ(t)‖β = ‖(−A)β((Qφ)(t)− ϕ(t))‖

=

∥∥∥∥(−A)β−1
(
−
∫ t

0

(
APα(t− s)

∫ s

0

h(s, r, φ(r)) dr ds

))∥∥∥∥
=

∥∥∥∥(−A)β−1
[
−
∫ t

0

Cα(t− s)
(∫ s

0

h1(s, r, φ(r)) dr + h(s, s, φ(s))

)
ds

+

∫ t

0

h(t, s, φ(s)) ds

]∥∥∥∥ < δ

2
.

It is easy to show that Qφ : [0, T ]→ Xβ is continuous in t on [0, T ]. We see that

Q maps F into F .

Step 2. We show that Q is continuous. By (A1), (A2), for every ε > 0, there

exists some δ > 0 such that for φ1, φ2 ∈ F , ‖φ1 − φ2‖C < δ, s ∈ [0, T ],

sup
r∈[0,T ]

‖h(s, r, φ1(r))− h(s, r, φ2(r))‖ < ε,

sup
r∈[0,T ]

‖h1(s, r, φ1(r))− h1(s, r, φ2(r))‖ < ε.

Then

‖(Qφ1)(t) − (Qφ2)(t)‖β

=

∥∥∥∥(−A)β−1
[
(−A)

∫ t

0

Pα(t− s)
∫ s

0

h(s, r, φ1(r)) dr ds

∥∥∥∥
− (−A)

∫ t

0

Pα(t− s)
∫ s

0

h(s, r, φ2(r)) dr ds

]
=

∥∥∥∥(−A)β−1
[
−
∫ t

0

Cα(t− s)
(∫ s

0

h1(s, r, φ1(r)) dr

−
∫ s

0

h1(s, r, φ2(r)) dr + h(s, s, φ1(s))− h(s, s, φ2(s))

)
ds

+

∫ t

0

(h(t, s, φ1(s))−
∫ t

0

(h(t, s, φ2(s))) ds

]∥∥∥∥
≤‖(−A)β−1‖

[ ∫ t

0

Meω(t−s)
(∫ s

0

ε dr + ε

)
ds+

∫ t

0

ε ds

]
.

This implies that Q is continuous.

Step 3. We show that the set {Qφ : φ ∈ F} is equicontinuous. For φ ∈ F ,

0 ≤ t ≤ t′ ≤ T , we have

‖(Qφ)(t) − (Qφ)(t′)‖β
≤‖(Cα(t)− Cα(t′))(−A)βx‖+ ‖A(Pα(t)− Pα(t′))(−A)β−1y‖

+

∥∥∥∥(−A)β−1
[ ∫ t

0

(
Cα(t− s)

(
h(s, s, φ(s)) +

∫ s

0

h1(s, r, φ(r)) dr

)
ds
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−
∫ t′

0

Cα(t′ − s)
(
h(s, s, φ(s)) +

∫ s

0

h1(s, r, φ(r)

)
dr

)
ds

]∥∥∥∥
+

∥∥∥∥(−A)β−1
(∫ t

0

h(t, s, φ(s)) ds−
∫ t′

0

h(t′, s, φ(s)) ds

)∥∥∥∥
+

∥∥∥∥(−A)β−1
(∫ t

0

Cα(t− s)f ′(s) ds−
∫ t′

0

Cα(t′ − s)f ′(s) ds
)∥∥∥∥

+ ‖(−A)β−1(Cα(t)− Cα(t′))f(0)‖+ ‖(−A)β−1(f(t)− f(t′))‖.

Since Cα(t), Pα(t) are strongly continuous, it follows that

‖(Cα(t)− Cα(t′))(−A)βx‖+ ‖A(Pα(t)− Pα(t′))(−A)β−1y‖ → 0

as |t− t′| → 0, and

‖(−A)β−1(Cα(t)− Cα(t′))f(0)‖+ ‖(−A)β−1(f(t)− f(t′))‖ → 0

as |t− t′| → 0. By Lemma 2.1 in [23], since A−1 is compact, then for 0 < β < 1,

(−A)β−1 is compact. The compactness of (−A)β−1, the strong continuity of

Cα(t), Pα(t), together with (3.12) imply that∥∥∥∥(−A)β−1
[ ∫ t

0

(
Cα(t− s)

(
h(s, s, φ(s)) +

∫ s

0

h1(s, r, φ(r)) dr

)
ds

−
∫ t′

0

Cα(t′ − s)(h(s, s, φ(s)) +

∫ s

0

h1(s, r, φ(r)) dr

)
ds

]∥∥∥∥
≤
∥∥∥∥∫ t

0

(Cα(t− s)−Cα(t′ − s))(−A)β−1
(
h(s, s, φ(s))+

∫ s

0

h1(s, r, φ(r)) dr

)
ds

∥∥∥∥
+ ‖(−A)β−1‖

∥∥∥∥ ∫ t′

t

Cα(t′ − s)
(
h(s, s, φ(s)) +

∫ s

0

h1(s, r, φ(r)) dr

)
ds

∥∥∥∥→ 0

as |t− t′| → 0. On the other hand, by (3.12),∥∥∥∥(−A)β−1
(∫ t

0

Cα(t− s)f ′(s) ds−
∫ t′

0

Cα(t′ − s)f ′(s) ds
)∥∥∥∥

≤ ‖(−A)β−1‖
(∥∥∥∥∫ t

0

∫ t′

t

h1(r, s, φ(s)) dr ds

∥∥∥∥+

∥∥∥∥∫ t′

t

h(t′, s, φ(s)) ds

∥∥∥∥)→ 0

as |t− t′| → 0, and∥∥∥∥(−A)β−1
(∫ t

0

Cα(t− s)f ′(s) ds−
∫ t′

0

Cα(t′ − s)f ′(s) ds
)∥∥∥∥

≤ ‖(−A)β−1‖
(∥∥∥∥∫ t

0

(Cα(t− s)− C(t′ − s))f ′(s) ds
∥∥∥∥

+

∥∥∥∥ ∫ t′

t

Cα(t′ − s)f ′(s) ds
∥∥∥∥)→ 0

as |t− t′| → 0. Therefore, {Qφ : φ ∈ F} is equicontinuous.
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Step 4. We show that for any given t ∈ [0, T ], the set {Qφ : φ ∈ F} is

precompact in Xβ . Since A−1 is compact, then for γ ∈ (β, 1], (−A)−γ : X → Xβ

is compact, we only need to prove that {(−A)γ((Qφ)(t) − ϕ(t)) : φ ∈ F} is

bounded γ ∈ (α, 1]. In fact, we have

‖(−A)γ(Qφ− ϕ)(t)‖

≤
∥∥∥∥(−A)γ−1

∫ t

0

Cα(t− s)
(
h(s, s, φ(s)) +

∫ s

0

h1(s, r, ϕ(r)) dr

)
ds

+ (−A)γ−1
∫ t

0

h(t, s, φ(s)) ds

∥∥∥∥.
From (3.12), the boundedness is obtained. Therefore, it follows from the Arzela–

Ascoli theorem, Q is compact. By the Schauder fixed point theorem, Q has

a fixed point in F , which is a solution of (3.10). If x ∈ D(A), y ∈ E, then by

Lemma 3.4, the solution of (3.10) is a solution of (3.11). �

4. An example

Consider the fractional semilinear Volterra integrodifferential equation of or-

der α ∈ (1, 2]

(4.1)



CDα
t z(t, x) = ∆z(t, x) +

∫ t

0

ρ(t, s, z(s, x)) ds+ θ(t, x)

for t ∈ R+, x ∈ (0, π),

z(t, 0) = z(t, π) for t ∈ R+,

z(0, x) = σ(x), zt(0, x) = µ(x) for x ∈ (0, π),

where CDα
t is the α-order Caputo fractional derivative operator. Let X =

L2[0, π] and define A : X → X by Aw = w′′ with the domain D(A) = {w ∈
X : w,w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π) = 0}. Thus

Aw = −
∞∑
n=1

n2(w,wn)wn, w ∈ D(A),

where wn(s) =
√
π/2 sinns, n = 1, 2, . . ., is the orthonormal set of eigenvalues

of A. It is easy to see that A is the infinitesimal generator of a strongly continuous

cosine family C(t), t ∈ R, on X given by

C(t)w =

∞∑
n=1

cosnt(w,wn)wn, w ∈ X.

From the subordinate principle (see Theorem 3.1 in [1]), it follows that A is the

infinitesimal generator of α-order cosine family Cα(t) such that Cα(0) = I, and

Cα(t) =

∫ ∞
0

ϕt,α/2(s)C(s) ds, t > 0,
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where ϕt,α/2(s) = t−α/2φα/2(st−α/2), and

φγ(z) =

∞∑
n=0

(−z)n

n!Γ(−γn+ 1− γ)
, 0 < γ < 1.

If we take β = 1/2, then

(−A)1/2w =

∞∑
n=1

n(w,wn)wn, w ∈ D((−A)1/2).

The operator (−A)−1/2 is given by

(−A)−1/2w =

∞∑
n=1

1

n
(w,wn)wn, w ∈ X.

It is easy to show that (−A)−1/2 is compact. By Lemma 2.1 in [23], A−1 is

compact. Let ρ : R+ × R+ × R+ → R be continuous and continuously dif-

ferentiable with respect to its first variable. Let θ : R+ × R+ → R be con-

tinuous and continuously differentiable with respect to its first variable. Let

h : R+ ×R+ ×X1/2 → X be defined by (h(t, s, w))(x) = ρ(t, s, w(x)), w ∈ X1/2,

x ∈ [0, π], and let f : R+ → X be defined by (f(t))(x) = θ(t, x), x ∈ [0, π].

Then we can rewrite (4.1) as (3.11). If w ∈ D((−A)1/2), then w is absolutely

continuous, w′ ∈ X, w(0) = w(π) = 0, and ‖w‖1/2 = ‖w′‖ (see Chapter 6 in

[16]). Let t1, s1 ∈ [0, T ], w1 ∈ X1/2. For every ε > 0, there exists a δ > 0 such

that if t, s ∈ [0, T ], x ∈ [0, π], v ∈ R, and |t1− t| < δ, |s1−s| < δ, |w1(x)−v| < δ,

then |ρ(t1, s1, w1(x)) − ρ(t, s, v)| < ε. Let w ∈ X1/2, and ‖w1 − w‖1/2 < δ/
√
π.

Then

|w1(x)− w(x)| ≤
∣∣∣∣ ∫ x

0

(w′1(r)− w′(r)) dr
∣∣∣∣

≤
∫ x

0

|w′1(r)− w′(r)| dr ≤
√
π‖w′1 − w′‖ =

√
π‖w1 − w‖1/2.

Hence, for |t1 − t| < δ, |s1 − s| < δ, |w1(x)− v| < δ, we have

‖h(t1, s1, w)− h(t, s, w)‖ =

∫ π

0

|ρ(t1, s1, w1(x))− ρ(t, s, w(x))|2 dx ≤ πε2.

Therefore h is continuous. By a similar method, the conditions (A2) and (A3)

are satisfied. By Theorem 3.6, the integrodifferential equation (4.1) has a local

solution.
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