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ABSTRACT. In this paper we study the nonlinear Schrédinger-Poisson sys-
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—Au+u+ K(x)pu = [uP~2u + Af(x)|u|?2"%u  in R3,
—A¢ = K(x)u? in R3,

where K and f are nonnegative functions, 2 < ¢ < p < 6 and p > 4, and
the parameter A € R. Under some suitable assumptions on K and f, the
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means of the Lusternik—Schnirelmann category and minimax method.
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1. Introduction

In this paper we are concerned with the coupled system of Schrédinger—
Poisson equations of the form:

sp —Au+u+ K(z)¢(x)u = h(z,u) in R3,
(5F) —A¢ = K(x)u? in R3,
where K is a nonnegative function and h: R3 xR — R is a Carathédory function.

Such a system, also known as the nonlinear Schrodinger—Maxwell equations,
have a strong physical meaning. It was first introduced in [8] as a model describ-
ing solitary waves for the nonlinear stationary Schrodinger equations interacting
with the electrostatic field, and also in semiconductor theory, in nonlinear optics
and in plasma physics. Indeed, in Problem (SP) the first equation is a nonlinear
stationary Schrodinger equation (where, as usual, the nonlinear term simulates
the interaction between many particles) that is coupled with a Poisson equation,
to be satisfied by ¢, meaning that the potential is determined by the charge of
the wave function.

In recent years, problem (SP) has been studied widely via variational meth-
ods under the various hypotheses on K and f, see [3], [5], [6], [13], [14], [18], [20],
[24], [25] and the references therein. Now we recall some of them as follows.

If h(z,u) = |ulP~2u and K(z) = pu > 0, Ruiz [24] gave existence and nonex-
istence results on positive radial solutions of problem (SP), depending on the
parameters p and p. It turned out that p = 3 is a critical value for the exis-
tence of solutions. Later, the results in [24] were further improved in Ambrosetti
and Ruiz [5] by showing the presence of multiple bound states when certain
conditions on the parameters are satisfied.

If h(z,u) = a(z)uP~?u and K (x) = p > 0, Chen et al. [14] studied the mul-
tiplicity of positive solutions for problem (SP) with 4 < p < 6. They showed that
the number of positive solutions are dependent on the profile of the function a.

If h(z,u) = a(x)|ulP~2u and K is a nonnegative L2-function, Cerami and
Vaira [13] obtained the existence of positive ground state and bound state so-
lutions for problem (SP) with 4 < p < 6 under some suitable assumptions, but
not requiring any symmetry property on a and K.

Motivated by these findings, we now extend the analysis to the nonlinear
Schrodinger—Poisson system with a perturbation. Our intension here is to illus-
trate the difference in the solution behavior which arises from the consideration of
the perturbation. Here we consider the following Schrodinger—Poisson systems:

—Au+u+ K(z)p(x)u = |ulP~2u + Af(x)|u|9%u in R3,

SP
(5P3) —A¢ = K(x)u? in R3,
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where K and f are nonnegative functions, 2 < ¢ <p < 2* (2*:=2x3/(3-2) =
6) and p > 4, and A € R. We assume that the functions K and f satisfy the
following conditions:

(K) K € L?(R?) and there exists a positive number 7 > 1 such that
K(z) < Cexp(—rk|z|) for some ¢ > 0 and for all x € R;

(D1) f € C(R®) N LP/(P=9)(R3) and there exist positive numbers 1 < r; <
min{rg, 2} and Ry such that

f(x) > coexp(—r¢|z|) for some ¢y > 0 and for all z € R? with |z| > R,.
f

Tt is well known that problem (SPy) can be easily transformed in the Schro-
dinger equation with a non-local term (see [13], [24], [25] etc.). Briefly, the
Poisson equation is solved by using the Lax—Milgram theorem, so, for all u in
H'(R3), a unique ¢, € DV2(R?) is obtained, such that —A¢ = K(z)u? and
that, inserted into the first equation, gives

(SP}) —Au+ u+ K(x)du(x)u = [ul~u + M (2)[u] 2y,

Moreover, wquation (SP)) is variational and its solutions are the critical points
of the functional defined in H'(R?) by

In(u) = 1/Rs(‘VuP +u2) d:p+i/RS K(x)¢u(x)u2 dx

2
1
o [ upde=2 [ flufrda,
P Jrs q JRr3

Furthermore, it is known that Jy is a C! functional with derivative given by
(Jy(u),v) = / (VuVo + uv + Koyuv — [ulP~2uv — Af|u|? ?uv) dx.
R3
Note that (u,¢) € HY(R3?) x DY2(R3) is a solution of problem (SPy) if and
only if w is a critical point of Jy and ¢ = ¢, (see [9], [15]). It is clear that for
u € HY(R?)\ {0}, tlim Ji(tu) = —oo and so Jy is not longer bounded below
—00

on H'(R3). In order to obtain the existence results, we introduce the Nehari
manifold

Ni = {u € H'(R*)\ {0} | (J}(u), u) = 0}.
Thus, v € N, if and only if

/(|Vu|2—|—u2)dx+ K(x)gbu(x)qum—/ |u|pdx—)\/ flul?dz = 0.
RS RS R3 RS

Clearly, N contains every non-trivial critical point of J, on H!(R3).
Consider the following minimization problem

= inf J
o= B N,

and we have the following definition.
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DEFINITION 1.1. (u,¢) € H'(R?) x DV2(R3) is a ground state of problem
(SP) we mean that (u, ¢) is such a solution of problem (SP) which minimizes
the action functional Jy on the Nehari manifold N . If there exists a nontrivial
solution (u,¢,) of problem (SP,) such that Jy(u) > ay, then we called the
solution (u, ¢,,) is a higher energy solution of of problem (SP).

Let
(p—2)(p — 4)la=2/(r=2)
4—q)(p—q)P-0/-2)(q — 2)(q—2>/(p—2>5§<1>*q>/<1’*2>|f|p/(p,q)
>0,

(11) No =

it is easy to see that 19 — oo as ¢ — 4. Define

oo if4<q<p,

1.2 Ag) =1 -
(12) @ A if2<qg<4,

where A = min{2~9/®=2)y, ¢p(2=2/(=2pt Then our main result is the
following.

THEOREM 1.2. Suppose that the functions K, [ satisfy the conditions (K)
and (D1), and | l‘im f(z) =0. Then we have the following:
x| —00

(a) Problem (SPy) has a positive higher energy solution and no any ground
state solution for \ = 0

(b) Problem (SPy) has a positive ground state solution for 0 < XA < A(q);

(c) there exists a positive number A, < A(q) such that problem (SPy) has at
least three positive solutions for 0 < A < A,.

REMARK 1.3. (a) By a similar argument to that in the proof of [13, Propo-
sition 6.1], problem (SP)) does not admit any ground state solutions for A = 0.
Moreover, [13] showed that the existence of higher energy solution for problem
(SP) with A =0 and p = q.

(b) Regarding the existence of higher energy solution, the main difference is
the type of assumption on function K (see [13]) requires K being in L which is
restricted within certain value, but K decays exponentially in our study.

Our analysis also makes use of the following result.

THEOREM 1.4. If in addition to the conditions (KC) and (D1), we still have
(D2) there exists a positive number 1 <7y < ry such that

f(z) <eyexp(—Ts|z|) for some e > 0 and for all x € R?,

then problem (SPy) has a positive higher energy solution and no any ground state
solution for A < 0.
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PRrROOF. The proof is similar to that of Theorem 1.2(a) (see Sections 3 and 4),
so we leave the details to the reader. ]

This paper is organized as follows. In Section 2, we give some notations and
preliminaries. In Section 3, we give some estimates of the energy. In Section 4,
we establish the existence of a positive solution. In Section 5, we establish the
existence of two positive solutions for A sufficiently small. In Section 6, we prove
Theorem 1.2.

2. Notations and preliminaries

Hereafter we use the following notations:

e H'(R?) is the usual Sobolev space endowed withthe standard scalar
product and norm

(u,v) = / (VuVo + w) de, lu|? = / (|Vul? + u?) da.
R3 R3
e D12(R3) is the completion of C§°(R3) with respect to the norm

|u|2D1,2 = / |VUJ‘2dZ‘
R3

e H~! denotes the dual space of H'(R3).

e L°(R3),2 < s < 400, a Lebesgue space, the norm in L*(R?) is denoted
by | : |s~

e S, is the best Sobolev constant for the embedding of H!(R?) in L*(R3),

that is
|ul

S, = inf .
ue H'(R3)\{0} |uls

e S is the best Sobolev constant for the embedding of D*?(R3) in L5(R?),

that is
|U‘D1,2

n .
ueDL2(R3N\{0} |ulg

g:

e (U is various positive constants which may vary from line to line and are
not essential to the problem.

Let us now define the operator ®: H*(R3?) — D12(R?) as ®[u] = ¢,,.
In the following lemma we summarize some properties of @, useful to study
our problem, the readers are referred to [13, Lemma 2.1] for a detailed proof.

LEMMA 2.1. We have the following:

(a) @ is continuous;

(b) ® maps bounded sets into bounded sets;

(¢) if up, — u weakly in H'(R3), then ®[u,] — ®[u] weakly in D*?(R3);
(d) ®[tu] = t2®[u] for all t € R.
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_ 2 2 _ p _ q
Jul +/R3K(x)q§u(:n)u da /]R luf? dz )\/RSf|u| da.

Then, for u € Ny, if 4 < g < p < 6,

WA, =2 +4 [ K@ou@tde—p [ de =) [ fluftds

Define

—@- P+ =g [ K@ - ) [ P ds<o

for all A € R.
If2<qg¢g<4<p<6,

Whta) ) =2 +4 [ K(@oulayitdo—p [ Jupde=dq [ fluftds
R3 R3 R3
— —2fuP o+ (4-p) [ uPdot A=) [ flultda
R3 R3
0 if A <0,
—QSP_Z|U|Z2) — (p — 4)|u|£ + )\(4 — q)|f|p/(p,q)|u\g if A> 0.
We can prove that for any 0 < A < 200=90/®P=2)pe and u € Ny,

=28, 2[uly — (p = Dlul) + M4 = @) flp/ g luly <0,

(see Lemma A.1 in Appendix), where 19 > 0 is as in (1.1). Therefore, if 2 < ¢ <
4 < p <6, then (P} (u),u) <0 for any A < 2(P=0/(P=2)p5 These show that N
is a C'! manifold and so the Nehari manifold N is a natural constraint for the
functional Ny. Furthermore, we have the following results.

LEMMA 2.2. The energy functional Jy is coercive and bounded below on Ny
for any X < X(q), where A(q) is as in (1.2).

PrOOF. For any u € N). We consider two cases: Case 1. 4 < q < p < 6.

Since
(2.1)  Jx(u) |u|2 /K Vo (z)u dm—f/ |u|pdx—f/ flu|? dz

S AP /qub xuzdx—i-i/ ul|Pdx >0
Lol + 2 [ K@@ 4/
for all A € R. Then Jy is coercive and bounded below on N.

Case,?.2<q<4<p<6. Since

(2.2)  Jx(u) |u|2 /K Ybu(z)u dx—f/ |u|pd:r—f/ flul? dzx

gl Pt [ apae = 2020 [ s
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A4 —q)

4q
A4
4

p—4
4p

1
> Z|u|2 + ulp — o/ —alul

>S§| 2+p_4| p_ _q)‘f | q>0
fju|p Ap ulp q lp/—a)lulp J

for all w € Ny and A\ < gp~9/(=2)y, (see Lemma A.l in Appendix). Set
A = min{20=D/ =2y gpR=D/=2p\ - Then, by (2.2), for any XA < X, Jy is
coercive and bounded below N. O

LEMMA 2.3. Suppose that ug is a local minimizer for Jy on Ny. Then
J4 (up) = 0 in H™H(R?).

PROOF. The proof is essentially the same as that in Brown and Zhang [12,
Theorem 2.3] (or see Binding, Drabek and Huang [10]). O

To get a better understanding of the Nehari manifold, we consider the func-
tion m,,: RT — R defined by

Mo (t) =t ul? — tP~4 /R3 |ulP dz for ¢ > 0.

Clearly, tu € Ny if and only if m,, (t)+ [s K (x)pu(x)u? dz = 0 and m,, (tH(u)) = 0,
where Ny = N with A =0 and
N |u|2 1/(p—2)
2.3 t(u) = —F——— > 0.
(2.3 w=(=rps)
Moreover,

ml, (t) = =2t 3ul|® — (p — 4)tP~° /3 |u|P de.
-

Thus, m/,(t) < 0 for all ¢ > 0, which implies that m,, is strictly decreasing on
(0, 00) with lim+ m., (t) = oo and tlim My (t) = —oco. Then we have the following
t—0 —00

lemma.

LEMMA 2.4. Suppose that A < X(q). Then, for each u € H'(R?)\ {0} we
have the following results:

(a) There exists a unique tx(u) > 0 such that ty(u)u € Ny, and

(2.4) Ja(ta(w)u) = sup Jy(tu).
>0
In particular, there exists a unique to(u) > t(u) such that to(u)u € Ny,
and
(2.5) Jo(to(u)u) = sup Jo(tu) = sup Jo(tu),
>0 t>1(u)
where Jo = Jx with A = 0.
(b) ta(u) is a continuous function for u € H*(R3)\ {0}.

(©) ta(u) = (1/|ul)tx(w/u]).
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(d) N = {ue H'(R*)\ {0} | (1/Jul)tr(u/|u]) = 1}.
PROOF. (a) Fix u € HY(R?)\ {0} and let
hay(t) =J>\(tu)

t4
—| |2 + / K () ¢y (x)u? dx—— |u\pdx——/ flul? dx
R3
for t > 0. Then
B () = tlul? + t3/ K (2) ()2 dar — tp*/ uf? da — Atﬂ/ Flul? da.

R3 R3 R3

We distinguish two cases:

Case 1. 4 < q<p<6. Let

gu®) =2 [ K(2)pu(z)? dz — 172 / (ufP da — 12 / Flul? da
R3 R3 R3
for t > 0. Clearly, tu € N if and only if g, (¢) + ||u]|*> = 0.

g (t) =2 /R K@)ouaytda = (p=20 [ Jurdo

g 2)t‘1‘3/ Flul da.
3
If there exists ¢ > 0 such that g/, (f) = 0, that is

2 | K(@)pu(z)u®dr - (p—2)t"~" / [ul? dx — A(q — 2)i*~* / Flul? dz = 0.
R3 R3 s
Then

gu(®) =2 | K(z)pu(x)u®dx

R3

-2 -3F [ [uPdr - Mg —2)(g - 3)F" / flul da
R3 R3
=[2—-2(q—3)] /RS K(z)py(x)u” dx
- 2)(g—3) — (0 2)(p — 3P / Juf? de
]R3

=24-0) [ K@ou@ptde + =2 [ e <0

Therefore, there exists a unique ¢ (u) > 0 such that g, (tx(u)) +||ul|> = 0, which
implies that k!, (tx(u)) = 0 and t5(u)u € Ny. Moreover, by the profile of g, one
has h,, is strictly increasing on (0,¢x(u)) and strictly decreasing on (¢x(u),00).
Therefore, (2.4) holds.

Case 2. 2<q<4<p<6. Let

Gult) :t_2|u|2—tp_4/ |u|pdx—)\tq_4/ Flul? dz
R3 R3
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for t > 0. Clearly, G, (t) — +oc as t — 07 and G,(t) = —o0 as t — +o0.
Furthermore, for any A < A, and t > 0, we have

G () = — 23 [uf2 — (p— 4y /}R lufP da + A(4 — g)19=5 /}R Flul? da

=5 (—2ftul? — (p—4)/ [tul? da + (4 — q)/ fltul? dz) < 0
R3 R3

(see Lemma A.1 in Appendix), which implies that G, is decreasing on ¢ for any
A < A(q). Therefore, there exists a unique ¢ (u) > 0 such that

Gu(ta(u) + | K(x)p,(z)u?, dx =0,

R3
which implies that k!, (ty(u)) = 0 and ¢y (u)u € N. Moreover, it is easy to obtain
that h, is strictly increasing on (0,¢x(u)) and strictly decreasing on (¢ (u), 00).
Therefore, (2.4) holds. Let

t2 t tP
RO (8) = Jo(tu) = —Juf? + f/ K@) éu(@)utdz— 2 [ |uP da.
2 4 R3 P

R3
Thus

[hg(t)]'=t|u|2+t3/ K(2)bu(@)u2de — 7= | |ul? da
R3 R3

—$3(4=2],,12 _ 4p—4 p 2
B2l — ¢ /R [l dx+/RS K (2) ()02 da)

=t (mu(t) + /R ) K (2) ¢y (2)u? dx).

Since [oq K )qbu( yu?dr > 0 for any u € H*(R?) \ {0}, then the equation
w(t)+ [gs K (2) ¢y (x)u? dz = 0 has a unique solution to(u) > t(u), which implies

that [P (to ( ))] = 0 and to(u)u € Ny. Moreover, h,, is strictly increasing on

(0,t0(u)) and strictly decreasing on (¢g(u),o0). Therefore, (2.5) holds.

(b) By the uniqueness of ¢)(u) and the extrema property of ¢ (u), we have
tx(u) is a continuous function for u € H*(R?) \ {0}.

(¢) Let v = w/Ju|. Then, by parts (a) and (b), there is a unique ty(v) > 0
such that ¢y (v)v € Ny or tx(u/|u|)u/|u|] € Ny. Thus, by the uniqueness of ¢ (v),
we can conclude that ¢y (u) = (1/|u])tx(u/|u]).

(d) For u € Ny. By parts (a)—(c), tx(u/|u|)u/|u] € N. Since u € Ny, we
have ty(u/|u|)/|u| = 1, which implies that

N, C {u € H'(R3) ‘ ﬁm <|Z|> - 1}.

Conversely, let v € H'(R3) such that (1/|u|)tx(u/|u|) = 1. Then, by part (c),

tx i EEN)\.
ul / |ul
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Thus,
1(p3 1 u
This completes the proof. O

We define the Palais—Smale (or simply (PS)-) sequences, (PS)-values, and
(PS)-conditions in H*(R?) for Jy as follows.

DEFINITION 2.5. (a) For 8 € R, a sequence {u,} is a (PS)g-sequence in
HY(R3) for Jy if Jy(un) = B+ o(1) and J§(u,) = o(1) strongly in H~1(R?) as
n — oo.

(b) Jy satisfies the (PS)g-condition in H'(R?) if every (PS)g-sequence in
H'(R3) for Jy contains a convergent subsequence.

Now we consider the following elliptic problem:

—Au+u=|uP72u in R3,
EOO
(E%) lim «=0.
|z|— 00

Associated with equation (E>°), we consider the energy functional J> in H!(R3)

1 1

T () = f/ (Vul? + 2] do — f/ luf? da.

2 Jre D Jrs

Consider the minimizing problem:
I =0
where N> = {u € H(R3)\ {0} | ((J>°) (u),u) = 0}.
It is known that equation (E°°) has a unique positive radially solution w(x)
such that J*°(w) = a* and w(0) = me%w(x) (see [19]). Then we have the
T ERS

following results.

PROPOSITION 2.6. Let {u,} be a (PS)g-sequence in H(R3) for Jy. Then
there exist a subsequence {u,}, m € N, sequences {x%}°° ;| in R®, and functions
vo € HY(R?), and 0 # w' € HY(R3), for 1 <i < m such that:

(a) |28 | — oo and |x!, — x| — 00 asn — oo, for 1 <i# j <m;

(b) —Avg + vg + K (2)bu, (z)ve = |vo[P~ 209 + Af(x)|vo]? 20g in R3;

(c) —Aw' +w' = |wP~ 2w’ in R3;

)

(d) up =vo+ > wi(- — )+ o(1) strongly in H'(R?);

i=1
(e) Ja(un) = Jx(vo) + 22 J=(w') +o(1).
i=1
In addition, if u, >0, then vy > 0 and w’ > 0 for each 1 < i < m.

PROOF. The proof is essentially the same as Lemma 4.1 in Cerami and
Vaira [13] (or see Lions [21], [22]), and so we omit it here. O
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COROLLARY 2.7. Suppose that {u,} is a (PS)s-sequence in H*(R?) for J
with 0 < B < a® 4+ min{ay,a®} and B # a®°. Then there exists a subsequence
{un} and a non-zero ug in H*(R®) such that u,, — ug strongly in H*(R?) and
Jx(ug) = B. Furthermore, (ug, ¢u,) i a non-zero solution of problem (SPy).

3. The estimate of energy

First, we let w(z) be a positive radially solution of Equation (E°°) such that
J%°(w) = a®°. Then by Gidas, Ni and Nirenberg [17], for any ¢ > 0, there exist
positive numbers A. and By such that

(3.1) A exp(—(1+¢)|z]) < w(z) < Byexp(—|z|) for all x € R®.

Let e €S2 = {z € R? | |z| = 1} and let zo = (Jp,0,0) € R?, where

0<dp= M <1
Clearly,
(3.2) 1-6g<l|e—zo| <1469 for all e € S%.
Define
(3.3) we 1 (7) = w(z —1le) forl>0and e € S?
and

Wyt (x) = w(x —lz9) for 1> 0.

Note that w, ; and w,, ; are also least energy positive solutions of equation (E*)
for all | > 0. Moreover, by Lemma 2.4 for each u € H'(R?)\ {0} and A < \1(q),
there is a unique ty(u) > 0 such that t5(u)u € Ny. Let ¢ be as in (2.3). Then
we have the following results.

LEMMA 3.1. For each sg € (0,1) there exist l(sg) > 0 and o(sg) > 1 such
that, for any l > l(sg), we have

a(s0)
sP72 4+ (1 —s)p—2

tAp_Q(swe,l + (1= 8wy, ) >

for all e € S* and for all s € (0,1) with min{s,1 — s} > sq.

PROOF. Since

N 2 2 1— 2 2 2s(1 — . .
50) 2o (1 — sy ) = S+ (= 5 250 = 5w
Jgs |$We—zo1 + (1 = s)w[Pdx

for all s € [0,1] and for all e € S2. Moreover, by

(3.5) 1-0g<|e—2| <146 forallecS?
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we have

<we,lawz0,l>:/ wP ., g dx
R3
<Bf [ expl((lal +lo Uz ) do
|z|<(14+d0)l
vy | exp(—(ja] + |z — U(z0 — €)])) da
|| >(1460)1

<coBhI? / exp(—(1 — o)1) dx + CoBE exp(—(1 + do)l)
|z]<(1460)
< CoBEIP exp(—1(1 — dp))
for all { > 1 and for all e € S?, and implies that
(3.6) llim (We1,W501) =0 uniformly in e € S?,
—00

By (3.1), (3.5) and Brézis—Lieb lemma [11], for any s € [0, 1] we also have

3.7)  lim \swe_207l+(1—s)w|p—|swe_20,l|pda@:/ (1= $)uwl? da
R3

=00 JR3

uniformly in e € S%.

Thus, by (3.4), (3.6) and (3.7), for any s € [0,1],

N 2 1— 2
(3.8)  lim P72 (swey + (1 — 8)wsy 1) = s +(1-s)

: m uniformly ineé€ Sz.
—00 S — S

Since

(s> +(1—9)*)(sP 2+ (1 —5)P?) sg(1 = 50)" "> + (1 — 50)%sf
>1+
P+ (1—s)P - 2(1 — s9)P
for all s € (0,1) with min{s, 1 — s} > sq, by (3.8) and (3.9), there exist I(sp) > 0
and o(sg) > 1 such that for any [ > I(sp), we have

(3.9)

a(so)
P72 4 (1 — s)p2

for all e € S? and for all s € (0,1) with min{s,1 — s} > sq.

fpfz(swe,l + (1 —s)wyy 1) >

PROPOSITION 3.2. (a) For each 0 < A < A(q), there exists [, = 1;(A) > 0
such that, for any 1 > ly, sup Jy(tw. ;) < a™ for all e € S?. Furthermore, there
t>0

is a unique tx(wey) >0 such that ta(we,)we,; € Ny.
(b) If A =0, then there exists l; > 0 such that for any 1 > 1

sup Jo(t[swe,; + (1 — s)w,4]) < 20 foralle € S2.
>0

Furthermore, there is o unique to(swe; + (1 — 8)w,, 1) > 0 such that

to(swe + (1 — 8)wyy 1)[swe + (1 — $)ws, 1] € No.
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PRrROOF. (a) Since

t2 t4
(310)  Ja(twes) = Slwoi+ & / K(2)¢, , ()w?, dx
VT T fes e

tP At4
— g/ |we |P do — —q / flwe |? de
R3 R3
t2 tP
:§|w|2 — —/ wP dz

/K T)pu, , (z weldx——/ flwe |? dx

gt—|w|2f—/ w? dx
2 p R3
s 251K 3wl /f\wezlqdw

for all 0 < A < A(q), it implies that Jy(tw.;) — —oo as t — oo for all e € S2.
Thus, there exists t; > 0 such that, for any [ > 0,

(3.11) Ix(twe;) < > for all t > ¢; and for all e € S*.

Moreover, it is easy to obtain that Jy(0) = 0 < a™, Jy € C*(H'(R?),R) and
|we 1|? = 2pa /(p — 2) for all [ > 0, which implies that there exists t2 > 0 such
that, for any [ > 0,

(3.12) Ia(twey) < @™ for all 0 <t < ¢y and for all e € S2.

By Brown and Zhang [12] and Willem [27], we also know that

t? tP
(3.13) J*®(tw) = —|w|? — —/ wPdr <a* forall t > 0.
2 D Jrs
Thus, by (3.10),
4
(3.14) Ia(twe,) < > + 1 . K(z)pw,,(x) e pde — —/ qu dx

for all £ > 0. By (3.11) and (3.12), we only need to show that there exists ; > 0
such that, for any [ > [y,

sup Jy(twe;) < a® forallee S2.
to<t<ty

We set Co = min__w(z) > 0, where B3(0,1) = {z € R® | |z| < 1}. Then, by
*€B3(0,1)
the condition (D1),

(3.15) )\/ fwd,de > X fwd,de =\ f(x+le)w(z)dx
R3

|z|>Ro |z+le|>Ro

> )\Co/ f(xz+le)dx > ACyexp(—r¢l)
B3(0,1)
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for all I > 2max{1, Ro}. Moreover, by (3.1) and the condition (K), we have

(3.16) K(x)¢w, (x)wil dx

R3
s 5/6 1/6
< (/}RS K6/5(x)we’/ dx) (/RS (bie’l(a:) dx)

2p a®|Ce min 6r 12 l e
xp [ —min<{ — —
p—2 p 5 K05

< Cexp(—min{rg, 2}).

§Bg§_2572|K|2

Since ry < min{rg,2} and ty <t < t1, we can find I > 2max{1, Ry} such that,
for any [ > [y,

t 9 At? .
(3.17) — | K(@)pw, (v)w: de < — fwg, dx
4 R3 © ? q R3 €
for all e € S and for all t € [ta,¢;]. Thus, by (3.11)—(3.14) and (3.17), we obtain

that, for any 1 > ZAl, sup Jy (twe,) < a™ for all e € S%. Moreover, by Lemma 2.4,
>0

there is a unique ¢)(we,;) > 0 such that tx(we )we,; € Ny.
(b) When s = 0 or 1, by a similar argument in part (a), there exists t; > 0
such that

t1Co exp(—r¢l)

(3.18) max { sup Jo (twe 1), sup Jg(th(,’l)} <a™+
>0 >0

for all e € S?, this implies that there exists l~1 > 0 such that, for any [ > l~1,

3
max { sup Jo (twe,1), sup Jo(tho,l)} < Za>® forallecS>
t>0 t>0 2

Therefore, by Jy € C?(H'(R?),R), there exist positive constants so and I such
that, for any { > I, sup Jo(t[swe, + (1 — 8)w,, 1]) < 2a for all e € S? and for all
>0

min{s,1 — s} < so. In the following we always assume that min{s,1 — s} > so.
By Lemma 2.4(a) and Lemma 3.1, we may show that there exists I; > [ such
that, for any [ > Iy,

(3.19) sup Jo(t[swe; + (1 — $)wy,1]) < 20
t<(o(s0)/(sP=24(1—s)P—2)1/(p=2))

for all e € S?, where o(sg) > 1 is as in Lemma 3.1. Since

(3.20) Jo(t[swe s + (1 — $)wsy 1))
t2
- 5[82|w|2 + (1= )% |wf* + 25(1 — ) (we 1, Wz 1)]
t 9
+ 4 R3 K($)¢SU75:J+(175)7—UZOJ(x)(sweal +01- S)wZO’l> dx
P

— E [swe, + (1 — s)wy, )P dx
R3
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< 182+ 25(1 — 8) + (1 — 5)2]|w|?

| T

th__o
+557s KB swe + (1 — 8)wsg |

P
— —max{s?, (1 —s)P} | wPdzx
R3

TN s POV VR p
§§|w\ +ZS STHK |3 w] —ﬁ/mw dx
for all 0 < s <1 and e € S?, there exists t; > 0 such that, for any ¢ > ¢,
(3.21)  Jo(t[swe + (1 — 8)ws,4]) < 22> forall 0 < s <1 and for all e € S%.

By (3.19) and (3.21), we only need to show that there exists [; > I such that,
for any [ > [y,

(3.22) sup Jo(t[swe,; + (1 — s)wyy 1)) < 2™
(0(50)/ (57 =24+ (1—5)r=2))1/ (=D <e<ty

for all e € S%. By Lemma 2.1 in Bahri-Li [7], there exists C,, > 0, such that, for

any nonnegative real numbers ¢, d,

(c+d)P > P 4 dP + p(P~ d + cdP~r) — CpeP/2dP/2.
Then, by (3.13), (3.20) and Lemma 3.1,
(3.23) Jo(t[swe,; + (1 — s)wyy 1))

t2
< [P w? + (1= 8)?wl* + 25(1 — 5)(we 1, w2 )]

-2
t 9
+ Z - K(m)¢swe,z+(1—8)wz0,z (‘T)(SMGJ + (1 - S)MZOJ) dx
tP p—1
- Rg(swe,z)p + (1 = 8)wszo 1]P + p(swe, )’ (1 — s)wze)

+ p(swe,)[(1 - S)WZD,l]p_l - Cp(sw&l)p/Z[(l - S)MZOJ]MZ dz
o, He2qo2 2
<207 + U552 K]y u]
5/6
X < KG/S(z)(sweyl +(1- s)sz,l)m/S dx)
RB
—s(1 — )t [tP72(sP72 4 (1 — 5)P72) — 1]/ WP we, p da
R3
4 tIIJCP wP/QwP/2 dx
P RS e,l 20,l
oo, a2 2 2
<207 + 5 TS Ko |w]
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5/6
X < KG/E’(J:)(swe,l +(1- s)wzc,l)u/‘r’ dx)
RS

2 p—1 t’l’C’p p/2. p/2
- CvO [0(80) - ]'] We Wzl dr + Wep Wy dx
R3S P Jrs o

for all e € S?, where we have used the result

p—1 _ _ p—1
\/3 W Wzl de = <w6,l>w20,l> = /3 We 1W, dz.
R? R

We first estimate fR3 w’e’;lsz,l dx. Setting Cp = min _wP~(z) > 0, by (3.1)
’ x€B3(0,1)

and (3.2), for any € > 0, we have
(3.24) / WP w,  de = / wP () )w(x — (2 — €)) dx
; s

260145/ exp(—(1+e¢)|jx — (20 — €)]) dx
B3(0,1)
> CoAc exp(—I(1+¢€)(1 + dgp)).

From (3.2) we have

25 [ wlutliae < g exp (= Bl 1o~ 120 — 0 ) do
RS ’ |2 < (1480 )1 2
sy e (= el ot - o)) o
|z[>(1+60)1

. !
SC’BSZS/ exp(p|ezo|> dx
|| <(1+60) 2

l
+ OBl exp ( %|e - zo|>
<OBPIP exp(—ry (1 — dp)l)

for I sufficiently large. By (3.16) and the condition (K), one has

5/6
(3.26) ( K6/5(a:)(swe7l +(1- s)sz,l)u/E’ dm)
RS

5/6
<27/6 ( / K5 (@)w}? dx + / K5 (2)w!/? dx)
R3 R3
< OB31P exp(—min{rg, 2}) < CB3I exp(—r;(1 — do)l)

for [ > 1. Since
”I’ffl Tf*l
146 =14+ —+ 1——L — V=r,(1-6
o +2(Tf+1)<rf< 2(7"f+1)> r(L =),

we may take 0 < ¢ << 1 such that (1 +¢)(1+ do) < 74(1 — dp). Then, by
(3.23)—(3.26), there exists Iy > max{l,1} such that (3.22) holds. Thus, we can
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conclude that, for any [ > [y,

sup Jo(t[swe, + (1 — $)w,,1]) < 2a™ forall0 <s<1andforalleec S2.
>0

Moreover, by Lemma 2.4(a), there is a unique to(swe, + (1 — s)w,, ;) > 0 such

that to(swe,; + (1 — )W, 1) [Swe + (1 — 8)w,, 1] € No. O

REMARK 3.3. Using (3.15), (3.16) and ry < min{rg, 2}, it is not difficult to
obtain that [; — oo as A — 0.

4. Existence of a positive solution

First, we establish the existence of positive ground state solutions for problem
(SP,) for 0 < A < A(g).

THEOREM 4.1. For each 0 < X < A(q), problem (SP)) has a positive ground
state solution (Uo, ¢z, )-

PROOF. By analogy with the proof of Ni and Takagi [23], one can show that
by the Ekeland variational principle (see [16]), there exists a minimizing sequence
{un} C Ny such that

In(un) = ax+o(1) and Jyn, (ua) = o(1) in H'(R?).
Moreover, by a similar argument to that in the proof of [13, Lemma 4.1 ],
Ji(uy) = o(1) in HH(R?).

Since ay < @™ from Proposition 3.2(a), by Lemma 2.2 and Corollary 2.7 there
exists a subsequence {u,} and @y € N, such that

up — Up  strongly in HY(R?) and Jy(Tg) = ay.

Since Jyx(up) = Ja(|tp|) and |tg| € Ny, by Lemma 2.3, we obtain that (Uo, ¢z,)
is a positive solution of problem (SP}). O

Set ag = infyen, Jo(u). Then by a similar argument to that in the proof of
[13, Proposition 6.1], we have

(4.1) oy = ulenl\flo Jo(u) = ué%foo J(u) = o,

and aq is not attained. Moreover, we have the following result.

LEMMA 4.2. Suppose that {u,} is a minimizing sequence for Jo in No. Then

( K(x)pu, (x)ui dx = o(1).
Rd

Furthermore, {u,} is a (PS)qac-sequence for J° in H*(R3).
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PRrROOF. For each n, there is a unique ¢,, > 0 such that t,u, € N°°, that is

£ [y :tg;/ P da
RB

Then, by Lemma 2.4(a),
4

R3

4

>a®™ + tn K(x)pu, (a:)ufl dx.
4 o

Since Jo(upn) = a® + 0o(1) from (4.1), we have
"
b [ K ()¢, (202 do = o(1).
4 Jys

We will show that there exists ¢; > 0 such that ¢,, > ¢; for all n. Suppose the
contrary. Then we may assume ¢, — 0 as n — 0o. Since Jo(uy) = a® +0(1), by
Lemma 2.2, we have |u,| is uniformly bounded and so [t,u,| — 0 or J*(t,u,) —
0, and this contradicts the fact that J*°(t,uy,) > a® > 0. Thus,

K(2)¢u, (2)u? dz = o(1),
RS

which implies that
lun|? = / |un|P dz 4+ 0(1) and J*®(u,) =a*> + o(1).
R3

Moreover, by Wang and Wu [26, Lemma 7], we have {u,} is a (PS)4~-sequence
for J> in H(R3). O

For u € H'(R3), we define the center mass function from N to the unit ball
B3(0,1) in R3,

1
m(u) / L ()P da.

B lulp Jrs ||

Clearly, m is continuous from Ny to B3(0,1) and |m(u)| < 1. Let
O = inf{J\(u) | v € Nx, u >0, m(u) = 0}.
Then we have the following result.

LEMMA 4.3. There exists & > 0 such that o < & < 0y, where 6y = 0
with A = 0.

PROOF. Suppose the contrary. Then there exists a sequence {u,} C Ny
and m(u,) = 0 for each n, such that Jo(u,) = a® + o(1). By Lemma 4.2,
{un} is a (PS)a~-sequence in H*(R3) for J>°. Moreover, by the concentration—
compactness principle (see Lions [21], [22]) and the fact that ™ > 0, there exist
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a subsequence {uy, }, a sequence {z,,} C R?, and a positive solution wy € H'(R?)
of equation (E*°) such that

(4.2) |tn(z) — wo(x — x,)] — 0 as n — co.

Now we will show that |x,| — oo as n — oco. Suppose the contrary. Then we
may assume that {z,} is bounded and x,, — x¢ for some zy € R3. Thus, by
(4.2),

K (@)pu, (x)updr = [ K(z + 20)pu, (¢ + zo)wp (x) dz + o(1),
R3 R3
this contradicts the result of Lemma 4.2: [o5 K(2)dy, (z)u dz = o(1). Hence
we may assume I, /|z,| — e as n — oo, where e € S2. Then, by (4.2) and the
Lebesgue dominated convergence theorem, we have

0=m(u,) = |w0|];p/R

which is a contradiction. Therefore, there exists £y > 0 such that a™ <&, < 6y.00

T+ T,

ooy ro@Pdz o) = et ofl) asn = oo,

By Lemma 2.4 and Proposition 3.2, for each e € S? and [ > I; there exists
to(we,;) > 0 such that to(we ;)we,; € Ng. Moreover, we have the following result.

LEMMA 4.4. There exists lg > 11 such that, for anyl > ly,

(a) a® < Jo(to(we)we) < & for all e € S?;
(b) (m(to(we)wey),e) > 0, for all e € S?.

ProOOF. (a) Follows from (3.13)—(3.16) and (4.1).
(b) For z € R? with = + le # 0, we have

T +le 1
T e = le]| — ———— l
<x+le|’e) |z + le \x+le|(x+ €,x)
> |z +le| — |x| > lle] — 2|x| =1 — 2|x|.
Then
1 x+le
t = l Pd
mtta(uywen)e) =i [ (5 ol ds
1 262
>——=(l | |wPde—-2[ |z|jwfdr)|=1-—=,
l|w‘p R3 R3 l
where ¢y = |w[,? [ps |2||w|? dz. Thus, there exists lo > I; such that, for any
lZ lOa
260 2
(m(to(we,)wey),e) > 1 — - > 0 forall eeS”. O

In the following, we will use Bahri-Li’s minimax argument [7]. Let

B={uecH (R*\{0}|u>0and u| =1}.
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We define Ip(u) = sup Jo(tu): B — R. Then, by Lemma 2.4(c), for each u €

>0
H'(R3)\ {0} there exists
1 U
i = —to| — ) >0
o= o (1)
such that ¢o(u)u € Ny and

(4.3) I (|Z|) = Jo(to (|Z|) %) = Jo(to(u)u).

Next, we define a map ho from S? to B by

w(x —le)  wey

h()(e) =

lw(z —le)]  |weal’

where e € S?. Then, by (3.18) and (4.3), for [ > Iy very large, we have
Io(ho(e)) = Jo(to(weg)we,) < 0o for all e € S2.

We define another map h* from B3(0,1) to B by

SWe,p 4+ (1 — $)wy,

h* 1-
(se+ (1 —5)z0) = |swe + (1 — s)wsy |’

where 0 < s < 1 and e € S2. It is clear that h*|sz = ho. It follows from
Proposition 3.2(b) and (4.3) that

(4.4) Iy(ho(e)) = Jo(to(swe, + (1 — 8)wyy 1) [SWey + (1 — S)wsyi1]) < 20

for all e € S2. We next define a min-max value. Let

(4.5) Bo=inf max Iy(v(x)),
Y€l zeB3(0,1)
where
(4.6) I'={yeC(B%0,1),B) | vls: = ho}.

Note that S? = dB3(0,1). Then we have the following result.
LEMMA 4.5. We have a™ < & < 0y < By < 2a>

PROOF. By Lemmas 4.3 and 4.4, (4.4) and (4.3), we only need to show
6o < Bo. For any v € T, there exists to(y(x)) > 0 such that to(y(z))y(x) €
Ny and to(y(z))y(z) = to(wy)w,,; for all x € S2. Consider the homotopy
H(s,x): [0,1] x B3(0,1) — R? defined by
H(s,z) = (1 = s)m(to(v(x))v(x)) + sI(x),
where I denotes the identity map. Note that m(to(y(x))vy(z)) = m(to(wye,)ws 1)
for all z € S%. By Lemma 4.4(b), H(s,z) # 0 for # € S? and s € [0, 1]. Therefore,

deg(m(t0(7)7)7 33(07 1)7 0) = deg([, 33(07 1)7 0) =1.
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There exists g € B3(0,1) such that m(to(y(z0))v(zo)) = 0. Hence, for each
v €T, we have

0o = inf{Jo(u) | u € Ng, u >0, m(u) =0} < max Io(y(z)).
z€B3(0,1)

This shows that 6y < (. O

Now, we are going to assert that problem (SP)) has a positive higher energy
solution for A < 0.

THEOREM 4.6. Problem (SPy) with A\ = 0 has a positive solution (U, ¢z, )
such that Jo(ug) = Po > a.

PROOF. By Lemma 4.5 and the minimax principle (see Ambrosetti and Ra-
binowitz [4]), there exists a sequence {u, } C B such that

IO(”n) = ﬁO + 0<1)7

[1o(un)|T: B = sup{lj(u,)w | w € T, B, jw| =1} = o(1) asn — oo,
where a® < By < 2a® and T, B = {w € HYR?) | (w,u,) = 0}. By an
argument similar to the proof of Proposition 1.7 in Adachi and Tanaka [1], there
exists to(uy) > 0 such that ¢o(u,)u, € Ny and

JO(tO(un)un) = o + 0(1)7

Jo(to(un)un) = o(1)  in H1(R3) as n — oo.
Thus, by Corollary 2.7, we can conclude that Problem (SPy) with A = 0 has
a positive solution (U, ¢z,) and such that Jo(ug) = Bo. O

5. Existence of two positive solutions
First, we need the following result.

LEMMA 5.1. There exists dy > 0 such that if u € Ny and Jo(u) < a®> + dy,
then

/ £(|Vu|2 +u?)dx # 0.
R

s ||
PROOF. Suppose the contrary. Then there exists a sequence {u, } C N such
that Jo(un) = a® + o(1) and
/ L (Vunl? +12) da = 0.
Rs ||
Moreover, by Lemma 4.2, {u,} is a (PS)a~-sequence in H(R?) for J>. By
the concentration—compactness principle (see Lions [21], [22]) and the fact that
a™ > 0, there exist a subsequence {u,}, a sequence {z,,} C R?, and a positive
solution w € H'(R?) of equation (E*) such that

(5.1) lun(z) —w(z —x,)| >0 asn — oo.
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Now we will show that |z,| — oo as n — oo. Suppose the contrary. Then
we may assume that {z,} is bounded and z,, — =z for some zy € R3. Thus,
by (5.1),

K ()¢, (x)u? dx = K(z + x0) b (z + zo)w?(z) dz + o(1),
R3 R3
which contradicts the result of Lemma 4.2: [o; K(2)¢y, (2)u; dr = o(1). Hence
we may assume Z,,/|x,| — eg as n — 0o, where ey € S?. Then, by the Lebesgue
dominated convergence theorem, we have

= / (V2 + u2) da
R

3 ‘.73|

x+ T 2p
= Vul* +w?)d 1) = —=a> 1
[ T (vl + ) da + of1) = L0 + o(1).

which is a contradiction. O

For v € Ny, by Lemma 2.4, there is a unique to(u) > 0 such that to(u)u € Ny.
Moreover, we have the following result.

LEMMA 5.2. There exists a continuous function A: [0,00) — [0755/(1)72))
with A(0) =0 such that

_ _ 1/ (p—
to(u) < [1 +)\|f|p/(p_q)(5£/(p 2 _A(\) p)/p] /(P—=40)
for all 0 < A < A(q) and u € Ny, where gy = max{q,4}.

PrROOF. Let u € N). Then we have

2/p
sp</ u|pdm> < W:/ \u|pdx+/\/ f\u|qdm—/ K (2) ()02 do
R3 R3 R3 R3

q/p
< [wpdsen [ puitae< [P s e Moo ( [ iras)
R3 R3 R3 R3

which implies that there exists a continuous function A: [0,00) — [0, SIZ,)/ (p 72))
with A(0) = 0 such that

(5.2) /]R P dr >8P0 — A > 0.
We distinguish two cases.
Case 1. to(u) < 1. Since
1+ /\|f|p/(p_q)(55/(pf2) _ A(A))(Q*P)/P >1
for all A > 0 and p — ¢ > 0, we have

to(u) < 1< [T+ A fly)pog) (SE/ @2 — A(N))a=p)/p] H/(Pm00),
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Case 2. to(u) > 1. Since to(u)u € No for u € Ny,

/ [u|P da = [to(uw))?|ul® + [t / K(2)¢y(2)u? dx

< fo(w}" (Juf? + /  K(@)ou(o)d ).
and using (5.2), we have

P + [ K@) da Fluf? do
[to(u)]P~® < R3 =14 a\R

|u|? dx |u|? dx
R3 R3

(g—p)/p
S\ (/R |u|de)

T4 Al /o (S5 P72 = AQN)) 7P/,

This completes the proof. O

By the proof of Proposition 3.2, there exist positive numbers ¢y (w. ;) and I
such that t(w&l)wgl € N, and J)\(t)\(we,l)wevl) < a*® foralll>1I.
Let A(X\) be as in Lemma 5.2. Then we have the following result.

LEMMA 5.3. There exists a positive number X(q) such that for every A\ €
(0,A(q)), we have

/ CIVuft ) dr 0
for all uw € Ny with Jx(u) < o™, where
Y )\O Zf4 S q < b,
Mo =94 . ~ )
min{\, Ao} if2<q<4,
and Ao > 0 is defined in the proof.

PrOOF. For u € N with Jy(u) < a®, by Lemma 2.4, there exists to(u) > 0
such that to(u)u € Ny. Moreover,

Ja(u) = supa(tu) = Jx(to(w)u) = Jo(to(u)u) / flul? da.
>0

Thus, by Lemma 5.2 and the Sobolev inequality,
(5.3)  Jo(to(u)u) < Jx(u) + Alto(u / flul? dzx

<a® 4+ O+ )\|f|p/(p,q)(55/(p 2 — A(N))amP)/p)a/(p=a0) |y |a,
Moreover, by (2.1), we obtain there exists M > 0 such that

(5.4) lu| < M
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for all uw € Ny with Jy(u) < a®. Therefore, by (5.3) and (5.4),
Jo(to(u)u) < a™ + A\CMI[1 + /\‘f|p/(p_q)(‘g£/(p72) — A(\))aP)/P)a/ (p=a0)

Let dy > 0 be as in Lemma 5.1. Then there exists a positive number A\g such
that for A € (0, \g),

(55) Jo(t()(u)u) < a® +dy.

Since to(u)u € Ng and to(u) > 0, by Lemma 5.1 and (5.5),
[, I o)+ (o)) do 0,
R3

which implies that there exists a positive number X(q) such that, for every A €

(0, X(q)),
/ L (|Vul? +u?) dz £ 0
R

s |z|
for all w € N\ with Jy(u) < a®. O

In the following, we use an idea of Adachi and Tanaka [1]. For ¢ € R, we
define[Jy < ¢] = {u € Ny | u > 0,J x(u) < c}. We then try to show that for
a sufficiently small ¢ > 0,

(5.6) cat([Jy < a* —0o]) > 2.

To prove (5.6), we need some preliminaries. Recall the definition of the Luster-
nik—Schnirelmann category.

DEFINITION 5.4. (a) For a topological space X, we say that a non-empty,
closed subset Y C X is contractible to a point in X if and only if there exists
a continuous mapping &: [0,1] x Y — X such that, for some 2y € X and for all
reY,

£0,2) =2 and £(1,z) = xo.
(b) We define:

cat(X) = min {k: eN ’ there exist closed subsets Yi,...,Y, C X

k
such that Y; is contractible to a point in X for all j and U Y, = X}.
j=1

When there do not exist finitely many closed subsets Y7,...,Yr C X such
k
that Y; is contractible to a point in X for all j and |J Y; = X, we say that
j=1
cat(X) = oo.

We need the following two lemmas.

LEMMA 5.5. Suppose that X is a Hilbert manifold and F € C*(X,R). As-
sume that there exist ¢ € R and k € N such that:
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(a) F(x) satisfies the Palais—Smale condition for energy levels ¢ < G
(b) cat({x € X | F(z) <7¢}) > k.
Then F(z) has at least k critical points in {x € X; F(x) <¢}.

PROOF. See Ambrosetti [2, Theorem 2.3]. O

LEMMA 5.6. Let X be a topological space. Suppose that there are two con-
tinuous maps ®: S = X and ¥: X — S? such that ¥ o ® is homotopic to the
identity map of S?, that is, there exists a continuous map (: [0,1] x §? — S§?
such that,

C0,z) = (Vo d®)(x), ¢(1,z)==z foreachz €S>
Then cat(X) > 2.
PRrROOF. See Adachi and Tanaka [1, Lemma 2.5]. O
For I > 11, we may define a map Py, S* — HY(R?) by
Dy i(e)(z) = ta(w(x —le))w(x —le) for e € S?,

where t)(w(z —le))w(x — le) is as in the proof of Proposition 3.2. Then we have
the following result.

LEMMA 5.7. There exists a sequence {o;} C RT with o — 0 as | — oo such
that

<I>>\,l(82) C [J)\ <a*® - O’l] .

PROOF. By Proposition 3.2, for each [ > I; we have ta(w(z —le))w(x—le) €

N, and sup Jy(tx(w(z — le))w(z — le)) < a™ for all e € S, Since @, ;(S?) is
l>lA1
compact, Jy(tx(w(x —le))w(x —le)) < a®> — oy, so that conclusion holds. O

From Lemma 5.3, we define ¥ : [Jy < a®°] — §? by

/ £(|Vu|2 +u?) dx
R

s |2|

/ L (IVul? + u?) do
R

s ||

\I',\(u) =

Then we have the following results.

LEMMA 5.8. There exists A € (0,A(q)] and ly > Iy such that for A € (0,))
and | > ly, the map¥y o @) ;: S? — S? is homotopic to the identity.

PRrROOF. Let

Y= {ue H'(R3)\ {0} ‘ /Rs |i|(|VU|2+u2)dx7éO}.
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We define ¥y : ¥ — S? by

/ L (IVuf? + u?) da
R

s ||

/ i(|Vu\2 +u?) dx
R

s ||

\I/)\(u) =

an extension of ¥y. By Remark 3.3 for [0,1/2),

(1—20)®y,(e) + 20w(z — le) = w(x —le) +o(1) in H'(R?) as A\ — 0.
By an argument similar to that in Lemma 5.1, there exist X € (0,X(q)] and
lo € [l1,00) such that for A € (0,\) and [ € (I, 00),

(1—20)®y(e) +20w(z —le) € foralle € S? and 0 € [1/2,1)
and

le
———— )€y forall ? 1/2,1).
w(x 2(19))6 oralle e S*and 0 € [1/2,1)

Now we define (;(6,¢): [0,1] x S? — S? by
UA((1—20)®y(e) + 20w(z — le)) for 6 € [0,1/2);

G0, e) = \I/,\<w(x—2(1li6))> for 6 € [1/2,1);
e for 6 = 1.

Then (1(0,e) = WA(Pxi(e)) = Ua(Pru(e)) and ((1,¢) = e.
First, we claim that lim (;(0,e) = e and . lilr;12 G(0,e) = U(w(z—Ile)).
ey

theta—1—
el )] )

(a) el—igl— ¢i(0,e) = e. Since
x le
Lol 7).
= z+1e/(2(1 - 0)) w(z)]? + [w(z)]?) de = % a®e+o
= [ g V@ + ful)?) de = (25 e s o),
as § — 17, it follows that 91_1}1{17 G(B,e) =e.
(b) a_l}ilr?r G(0,e) = Uy (w(z — le)).
Since ¥, € C(%,S?), we obtain 93312— G(0,e) = Uy(w(z — le)). Thus,
G(0,¢) € C([0,1] x S2,8%) and

G(0,€) = Uy (P, () forall e S?

G(le) =e for all e € S?,

provided [ > le. O
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THEOREM 5.9. For each A € (0,A(q)), Jx has at least two critical points in
[Jn < a®]. In particular, problem (SPy) has two positive solutions (u(()l),gbu(l))
0

and (u((f), ¢,) such that uéi) €Ny fori=1,2.
0
ProoF. Applying Lemmas 5.6 and 5.8, we have for A € (O,X(q)),
cat([Jy < a® —ay]) > 2.

By Corollary 2.7 and Lemma 5.5, Jy(u) has at least two critical points in [J) <

a®]. This implies that problem (SPj) has two positive solutions (u(()l),qbu(l))
0

and (uéQ), qﬁu(z)) such that u(()i) €N, fori=1,2. O
0

6. Proof of Theorem 1.2

Given a positive real number rg > q/(p — q). Let

Ao :min{<m - 1),X(q)} >0,

where X(q) > 0 is as in Lemma 5.3. Then we have the following results.

LEMMA 6.1. We have

1 1 —2
SN = (1) - pT >0
p p
and ) )
POV P VA P=95

for all A € (0, A).
PROOF. Let

1 1 + pP—q
k(A = =(1+ A7 — =(14 3ot - 2=12
(V)= 0+% (1+2) .

Then £(0) = 0 and

1 1
K(\) = %0(1 Ayl - %(1 A = (14 Ao (’;}0 - ”’;(HA)) >0

for all A € (0,Ag). This implies that k(A) > 0 or

1 ) 1 i pP—q

S(I4 N — -1+ ——=>0 forall A€ (0,A).

SN -1yt - P (0, A0)
Similar to the argument we also have

1

1 p—2
-(1 o ——(1 rotl _ L~ for all Ag).
2( +A) p( +A) om >0 forall A € (0,A)

This completes the proof. O

We define I(u) = sup Jy(tu): B — R. Then we have the following result.
>0
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LEMMA 6.2. For each A € (0,A¢) and u € B we have

Ap—q)
pq

(L4 A)""Io(u) — flpyp—q) < In(u) < Io(u).

PrOOF. Let u € B. Using Lemma A.2 in Appendix, we obtain

A p/(p—q) >IQ/p( p)q/p
o 2([areas) ([ et

Ap —q) Atg(u) /
< — )+ — ul|P dx.
pq |f|p/(p q) D R3| |

Then, by Lemma 2.4, the Holder inequality, Lemma 6.1 and (6.1), (4.3), we have

Ix(u) = sup Jx(tu) = Jx(to(u)u)

t>0

=8 [ vap +yin+ B [ Ko do

4
-2 T pupeas - B /||de
> 60 / (vl + iy ds+ 0 [ Koo da

1—-q/p q/p P
A(/ |f‘p/(pfq) d;v) </ |t0(u)u|p> ,M/ lulP da:
q R3 R3 p R3

tg(u) 2, 2 to(u) 2
2—/}RS(|VU\ +u )derT K(z)p,(x)u” dx

2 s
p . P
_ At (u) |ul? dw — Alp—q) |f|p/(p—q) B to(u) / lu|? dz
p R3 pq p R3
2 4
_ o) / (Va2 + w2y dz+ 0 [ K (@)pu(a)u? do
2 R3 4 R3

(1+ \)th(u) / » Ap —9q)
- ul? doe — ——= _
D - |ul g |f|p/(p q)

2
2 Jes

Ap —q)
2dx — Flo/ (o
g | |p/(p q)

_ 1—;% {to( )/RSOVUP +u2)dx+t§(u) . K($)¢u(m)u2 de
- (; - Hp)\)fo( )/RB)(IVM2 +u?) dzx

+ (1 - m)to( ) [ K@ou@n de W\flp/@ ?

q p
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. Ap—q
> (1+ )" Jo(to(u)u) — (pq) flp/o—a)
. Alp —q
=1+ X)""Iy(u) — g|f|p/(p—q)'
pq
Moreover, Jy(tu) < Jo(tu) < Ip(u) for all ¢ > 0. Then Iy (u) < Iy(u). U

We observe that if A is sufficiently small, the minimax argument in Section 4
also works for Jy. Let I > max{ly,lo} be very large and let

Bx = inf max T, (y(x)),
7€l zeB3(0,1)

where I is as in (4.6). Then by (4.5) and Lemma 6.2, for A € (0, Ao), we have

(6.2 (0750 = 2Dy <y < o
Moreover, we have the following result.
THEOREM 6.3. There exists a positive number A, < Ag such that
a™ < B <2a™  for A€ (0,A).

Furthermore, problem (SPy) has a positive solution (u(()g)7 ¢, ) such that
0

Ia(uf’) = By.

PrOOF. By (4.1), Theorem 4.1 and Lemma 6.2, we have
Ap—q)
pq
For any ¢ > 0, there exists a positive number A\; < Ag such that, for A € (0, \;),

a® —e < ay < a®. Thus, 2a® —e < a™ + ay < 2a™.
Applying (6.2) for any 6 > 0 there exists a positive number Ay < A such that,
for A € (0,\2), Bo — < Bx < By. Moreover, by Theorem 4.6, > < [y < 2a™.
Fix a small 0 < £ < 2a™ — (3, choosing a § > 0 such that, for A € (0, A,),
we get

(I+X)"a™ — |flp/p—q) < ax <™.

a™ < By <2a™ —e < a®™ +ay <20,
where A, = min{\;, A\2}. Similar to the argument in the proof of Theorem 4.6,
we can conclude that the problem (SPy) has a positive solution (ués), ¢, ) such
0

that J,\(u(()B)) = B3,. This completes the proof. O
We can now complete the proof of Theorem 1.2.
(a) and (b). By Theorems 4.1 and 4.6, the results (a) and (b) hold.

(¢) By Theorems 5.9 and 6.3, there exists a positive number A, such that for
A € (0,A,), problem (SP,) has three positive solutions (uél), ¢, 1), (u(()z), ¢,)
0 0

and (ué3), ¢, ) with
0

0< JA(uéi)) <a® < J)\(uég)) <20 fori=1,2.
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This completes the proof of Theorem 1.2. O

Appendix A

LEMMA A.1. Suppose that a, b, ¢ are positive constants and 2 < q < 4 <
p < 6. Then there exists a positive number

1 a { (q— 2)] (2—q)/(p—2) b [a(q . 2)} (p—a)/(p—2)
cblp—a) clblp—q)
such that for any A < X, the function
y(r) = —az? — bx? + Aex? <0 for all x > 0.

PROOF. Let
b
Y(x) = 2204 20p=0 for &> 0.
c c
Clearly, Y (z) = 400 as ¢ — 0% and Y (2) — 400 as  — 400, and
, a 1— b o1
Yi@@)=-2-qga ™+ _(p-qa”"".

Thus, Y has an absolute minimum at point o = [a(q — 2)/(b(p — ¢))]*/®~2) and
Y'(z9) = 0. Take

(2—-9)/(p—2) (r—q)/(p—2)
< a a(q—2)} b[a(q—2)}
A=Y () = - +- |7 >0,
(o) C{b(pq) clblp—q)
then for any A < ), we obtain
y(x) = —cx?(Y(x) —A) <0 for all z > 0. O

LEMMA A.2. Suppose that a, b are positive constants. Then the function
y(r) =a' """ — (1 —z)a—bx <0 forall x €[0,1].

PRrROOF. Clearly, y(x) is a differentiable function on z € [0,1], and y(0) =
y(1) = 0. It is easy to obtain that

y'(z) = (b) alné +a-—0.
a a

Thus, y has an absolute minimum at point zg = log(b_a)/(aln(b_a)) € (0,1)

b/a
satisfying 3'(z9) = 0 and y”(z) > 0, which implies that

y(z) <0 forall z € [0,1]. O
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