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PERIODIC SOLUTIONS

FOR SECOND ORDER SINGULAR DIFFERENTIAL SYSTEMS

WITH PARAMETERS

Fanglei Wang — Jifeng Chu — Stefan Siegmund

Abstract. In this paper we consider the existence of periodic solutions of

one-parameter and two-parameter families of second order singular differ-
ential equations.

1. Introduction

We say that a vector valued function f : R×D → RN , D ⊆ RN , is singular

if for a non-empty subset Ω ⊂ ∂D and any x0 ∈ Ω

lim
x→x0

‖f(t, x)‖ =∞, uniformly in t ∈ R.

Equivalently, we say that the differential equation

(1.1) ẍ+ a(t)x = f(t, x) + e(t)

is singular if the nonlinear term f is singular, where a, e ∈ C(R,RN ) are T -pe-

riodic functions, f : R ×D → RN is continuous for some D ⊆ RN and periodic

in t with period T .
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During the last two decades, the existence of nontrivial periodic solutions of

(1.1) has been studied by many researchers in the nonsingular case as well as

in the singular case. See [2], [11], [12], [15], [16], [18], [23] for the scalar case

and [3], [4], [6], [7], [17] for the higher dimensional case. Usually, the proof is

based on either the method of upper and lower solutions [1], [10], [15], fixed

point theorems [6], [7], [16]–[18], alternative principle of Leray–Schauder [3], [11]

or topological degree theory [23], [26].

On the other hand, second-order nonlinear differential equations or systems

with parameters have also been studied by some researchers. See, for example

[8], [13], [19]–[22], [25] and the references therein. Based on a fixed point theorem

in cones, under different combinations of superlinearity and sublinearity of the

function f , Graef, Kong and Wang in [8] studied the existence, multiplicity, and

nonexistence results for positive solutions of the following scalar nonsingular

periodic boundary value problemÿ − ρ2y + λg(t)f(y) = 0,

y(0) = y(2π), ẏ(0) = ẏ(2π),
(1.2)

for different parameter values λ ∈ R+ = (0,∞). Later, Wang in [21] extended the

similar idea to the singular periodic systems. For systems with two parameters,

one nice result was proved in [22] by Wu and Wang. They studied the existence

of periodic solutions of the following system with two parametersü+ a1(t)u = λb1(t)f1(u, v),

v̈ + a2(t)v = µb2(t)f2(u, v),
(1.3)

where (λ, µ) ∈ (R+)2 and ai, bi, fi, i = 1, 2, satisfy some additional conditions

(see [22, conditions (H1)–(H5)]). By employing fixed point index theory, they

show that there exist three nonempty subsets of (R+)2: Γ, ∆1, ∆2 such that

(R+)2 = Γ ∪∆1 ∪∆2 and (1.3) has at least two positive periodic solutions for

(λ, µ) ∈ ∆1, one positive periodic solution for (λ, µ) ∈ Γ and no positive periodic

solutions for (λ, µ) ∈ ∆2. Note that the results in [22] can only be applied to

the nonsingular case. Yang in [24] established the existence results for 2m-order

differential systems with two parameters.

Motivated by these recent developments, in this paper, we investigate the

existence and multiplicity of T -periodic solutions of the following special case of

system (1.3), ẍ+ a1(t)x = λf1(x, y),

ÿ + a2(t)y = µf2(x, y),
(1.4)

where λ, µ ∈ R+. However, we consider (1.4) in the singular case, which is the

main difference between our results and those in the literature.
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In this paper, we always assume that the following condition is satisfied:

(H1) The function ai is continuous, positive, T -periodic and the linear equa-

tion ẍ+ ai(t)x = 0 has a positive Green’s function Gi(t, s), i.e.

Gi(t, s) > 0 for all (t, s) ∈ [0, T ]× [0, T ], i = 1, 2.

When (H1) holds, it is obvious that [16, Section 2] (x, y) is a T -periodic solution

of (1.4) if and only if

(1.5)

x(t) = λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds,

y(t) = µ

∫ T

0

G2(t, s)f2(x(s), y(s)) ds.

Torres in [16] has found sufficient conditions for (H1) to be satisfied. In fact,

if ai(t) = k2, then (H1) holds if k ∈ (0, π/T ). If ai(t) is not a constant, then

(H1) is valid if the Lp norm of ai(t) is bounded from above by a constant, which

depends on p and T (see [16]). When (H1) is satisfied, for i = 1, 2, we denote

(1.6) mi = min
0≤s,t≤T

Gi(t, s), Mi = max
0≤s,t≤T

Gi(t, s), δi = mi/Mi.

Obviously, Mi > mi > 0 and 0 < δi < 1.

The paper is organized as follows. In Section 2, under (H1) and two addi-

tional conditions (see (H2) and (H3) in next section), we establish the existence

and multiplicity results of (1.4) in the case λ = µ. The proof is based on a vector

version of Krasnosel’skĭı’s fixed point theorem (Lemma 2.1). Note that we only

assume that f1 is singular along the x-axis and f2 is singular along the y-axis

(see condition (H3) in next section). However, in the literature, it was assumed

that both f1 and f2 are singular at the origin (see [3], [4], [6], [7], [17] and the

references therein). Therefore, we can deal with systems which are not covered

in the literature (see Example 2.2).

Finally, in Section 3, we establish the existence results for the system (1.4)

when (1.4) presents a repulsive singularity at the origin, which means that

(1.7) lim
(x,y)→(0,0)

fi(x, y) = +∞, i = 1, 2.

We show that there exists a bounded and continuous curve Γ separating (R+)2

into two disjoint subsets Θ1 and Θ2 such that (1.4) has at least two positive

periodic solutions for (λ, µ) ∈ Θ1, one positive periodic solution for (λ, µ) ∈ Γ,

and no positive periodic solution for (λ, µ) ∈ Θ2. The proof is based on a well-

known fixed point theorem in cones (Lemma 3.1), together with the method of

upper and lower solutions. Compared with the results in [22], we deal with the

singular case.
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2. Existence results of (1.4) with λ = µ

For the convenience to state the results, we rewrite (1.4) with λ = µ as the

following system ẍ+ a1(t)x = λf1(x, y),

ÿ + a2(t)y = λf2(x, y).
(2.1)

In this section, we establish the existence results of (2.1) under (H1) and the

following two conditions:

(H2) f1(x, y) is nondecreasing in x, nonincreasing in y, and f2(x, y) is nonin-

creasing in x, nondecreasing in y for x, y > 0;

(H3) f1 : {(x, y) ∈ R2 : y > 0} → R+ and f2 : {(x, y) ∈ R : x > 0} → R+ are

continuous and

lim
y→0+

f1(x, y) = +∞, for all x ∈ R,

lim
x→0+

f2(x, y) = +∞, for all y ∈ R.

The proof is based on the following vector version of Krasnosel’skĭı’s fixed

point theorem, which was proved by Precup [14]. First we recall some notations.

Let (X, | · |) be a normed vector space and K1,K2 ⊂ X be two cones. We use

the symbol � and ≺ to denote the partial order relations and the strict order

relations induced by Ki, i = 1, 2, in X and K = K1 ×K2 in X2. In particular,

in X2, the symbol � (≺) will have the following meaning: u � (≺) v (u, v ∈ X2)

if ui � (≺) vi, i = 1, 2.

Lemma 2.1. [14, Theorem 2.1] Let (X, | · |) be a normed vector space, K1,

K2 ⊂ X be two cones, K = K1 ×K2, r,R ∈ R2
+ with 0 < ri < Ri for i = 1, 2,

Kr,R := {u = (u1, u2) ∈ K : ri ≤ |ui| ≤ Ri, i = 1, 2} and A = (A1, A2) be

a compact map. Assume that for each i ∈ {1, 2}, one of the following conditions

is satisfied in Kr,R,

(a) Ai(u) � ui if |ui| = ri, and Ai(u) � ui if |ui| = Ri,

(b) Ai(u) � ui if |ui| = ri, and Ai(u) � ui if |ui| = Ri.

Then A has a fixed point u in K with ri ≤ |ui| ≤ Ri.

To apply Lemma 2.1, let us denote E the Banach space C[0, T ]×C[0, T ] and

define the cone as K = K1 ×K2 with

K1 = {x(t) ∈ C[0, T ] : x(t) ≥ δ1|x|∞}, K2 = {y(t) ∈ C[0, T ] : y(t) ≥ δ2|y|∞},

where δ1, δ2 are given as in (1.6) and | · |∞ is the usual max-norm in C[0, T ]. For

0 < ri < Ri, i = 1, 2, let

Kr,R := {(x(t), y(t)) ∈ K : r1 ≤ |x|∞ ≤ R1, r2 ≤ |y|∞ ≤ R2}.
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Define the operator A = (A1, A2) : K → E, where

Ai(x, y)(t) = λ

∫ T

0

Gi(t, s)fi(x(s), y(s)) ds, 0 ≤ t ≤ T, i = 1, 2.

Because of (1.5), we know that (x, y) is a T -periodic solution of (2.1) if and only

if A(x, y) = (x, y).

Lemma 2.2. Assume that (H1) and (H2) hold. Then for 0 < ri < Ri,

i = 1, 2, the operator A : Kr,R → K is completely continuous.

Proof. We refer the reader to [21, Lemma 3.2] for details of this standard

proof. �

Theorem 2.3. Assume that (H1)–(H3) hold. Suppose further that

(fsub) lim
s→+∞

f1(s, δ2s)/s = 0, lim
s→+∞

f2(δ1s, s)/s = 0.

Then (2.1) has at least one positive T -periodic solution for any λ > 0.

Proof. Since (H2) holds, then for any λ > 0, there exists a r > 0 such that

f1(x, y) ≥ Γy, f2(x, y) ≥ Γx, for 0 < x ≤ r,

where Γ is chosen such that ΓλT max{m1δ2,m2δ1} > 1. We choose r1 = r2 = r.

Let x ∈ K1 with |x|∞ = r, then

A1(x, y)(t) =λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds ≥ λm1

∫ T

0

f1(x(s), y(s)) ds

≥λm1Γ

∫ T

0

y(s) ds ≥ λm1ΓTδ2r > r ≥ x(t),

namely, A1(x, y)(t) � x(t), if |x|∞ = r. In the similar way, if y ∈ K2 with

|y|∞ = r, then A2(x, y)(t) � y(t).

On the other hand, using the condition (fsub), there exists a constant R̂ > 0

such that

f1(s, δ2s) ≤ εs, f2(δ1s, s) ≤ εs, for s ≥ R̂,

where ε satisfies ελT max{M1,M2} < min{δ1, δ2}.
We choose R1 = R2 = max{R̂/min{δ1, δ2}, 2r + 1} = R. Let x ∈ K1 with

|x|∞ = R, then

A1(x, y)(t) =λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds

≤λ
∫ T

0

G1(t, s)f1(R, δ2R) ds ≤ λM1

∫ T

0

εR ds ≤ δ1R ≤ x(t),

namely, A1(x, y)(t) � x(t), if |x|∞ = R. Similarly, if y ∈ K2 with |y|∞ = R,

then A2(x, y)(t) � y(t).
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Now it follows from Lemma 2.1 that A has a fixed point (x, y) ∈ Kr,R.

Therefore, for any λ > 0, (2.1) has at least one positive T -periodic solution

(x, y) with r ≤ |x|∞ ≤ R, r ≤ |y|∞ ≤ R. �

Theorem 2.4. Assume that (H1)–(H3) hold. Suppose further that:

(fsup) lim
s→+∞

f1(δ1s, s)/s = +∞, lim
s→+∞

f2(s, δ2s)/s = +∞.

Then (2.1) has at least two positive T -periodic solutions for any λ > 0 sufficiently

small.

Proof. Let us fix a positive constant R̂ > r. If |x|∞ = R̂, then we have

A1(x, y)(t) =λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds ≤ λ
∫ T

0

G1(t, s)f1(R̂, δ2R̂) ds

≤λM1Tf1(R̂, δ2R̂) ≤ 1

2
δ1R < δ1R ≤ x(t),

for sufficiently small λ, namely, A1(x, y)(t) ≺ x(t), if |x|∞ = R̂. In the similar

way, if |y|∞ = R̂, then A2(x, y)(t) ≺ y(t). Therefore, it follows from Lemma 2.1

that the operator A has a fixed point (x, y) ∈ Kr,R̂ for sufficiently small λ, which

means that (2.1) has a positive T -periodic solution (x, y) with r ≤ |x|∞ < R̂,

r ≤ |y|∞ < R̂.

On the other hand, using the condition (fsup), there exists a R > 2R̂ such

that

f1(δ1s, s) ≥ Λs, f2(s, δ2s) ≥ Λs, for s ≥ R,

where Λ satisfies ΛλT max{m1,m2} > 1.

For convenience, choose R1 = R2 = R. If |x|∞ = R, then we have

A1(x, y)(t) =λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds ≥ λm1

∫ T

0

f1(δ1R,R) ds

≥λm1

∫ T

0

ΛRds ≥ λm1ΛTR > R ≥ x(t),

namely, A1(x, y)(t) � x(t), if |x|∞ = R. In the similar way, if |y|∞ = R, we have

A2(x, y)(t) � y(t), if |y|∞ = R.

Now it follows from Lemma 2.1 that A has another fixed point (x, y) ∈ KR̂,R,

and therefore (2.1) has another positive periodic solution (x, y) with R̂ < |x|∞ ≤
R, R̂ < |y|∞ ≤ R. �

Example 2.5. Consider the following system:

(2.2)


ẍ+ a1(t)x = λ

(
y−α +

xν

1 + y

)
,

ÿ + a2(t)y = λ

(
x−β +

yγ

1 + x

)
,

with a1, a2 satisfying (H1) and α, β, γ, ν > 0. Then
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(a) if γ, ν < 2, then (2.2) has at least one positive T -periodic solution for all

λ > 0.

(b) if γ, ν > 2, then (2.2) has at least two positive T -periodic solutions for

each 0 < λ < λ1, here λ1 is some positive constant.

Proof. Let us take

f1(x, y) = y−α +
xν

1 + y
, f2(x, y) = x−β +

yγ

1 + x
.

Since α, β, γ, ν > 0, (H2) and (H3) are satisfied. By easy computations, one may

readily verify that (fsub) is satisfied if γ, ν < 2; and (fsup) is satisfied if γ, ν > 2.

Now the results follow from Theorems 2.3 and 2.4. �

3. Existence results for (1.4)

In this section, we establish the existence results for (1.4) under condi-

tion (H1) and the following three additional conditions:

(H4) fi(x, y) : (R+)2 → R+ is continuous and (1.7) holds, i = 1, 2.

(H5) fi(x, y) is superlinear growth at +∞, which means that,

fi,∞ = lim
|x|+|y|→+∞

fi(x, y)

|x|+ |y|
= +∞, i = 1, 2.

(H6) There exists a R > 0 such that

2

ρδ2
max
i=1,2

sup
(x,y):δR≤x+y≤R

fi(x, y) ≤ R,

where δ = {δ1, δ2} and ρ is given as in (3) below.

It follows from (H4) and (H5) that there exist constants ρi > 0 and ri > 0

such that

fi(x, y) ≥ ρ1(x+ y), for 0 < x+ y < r1,

fi(x, y) ≥ ρ2(x+ y), for x+ y > r2.

In addition, since fi(x, y)/(x+ y) is continuous on {(x, y) : r1 ≤ x+ y ≤ r2}, its

minimum exists and we denote

ρ3 = min
i=1,2

min
(x,y):r1≤x+y≤r2

fi(x, y)

x+ y
.

Let ρ = min{ρi : i = 1, 2, 3} > 0. Thus we have

fi(x, y) ≥ ρ(x+ y), for all (x, y) > (0, 0).

The proof of the main result in this section is based on the method of upper

and lower solutions, together with the following well-known fixed point theorem.

Lemma 3.1 ([9]). Let E be a Banach space, and K ⊂ E be a cone in E.

Assume that Ω1, Ω2 are open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let A : K ∩
(Ω2 \ Ω1)→ K be a completely continuous operator such that either



556 F. Wang — J. Chu — S. Siegmund

(a) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or

(b) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

To apply Lemma 3.1, we define the operator

Aλ,µ(x)(t) = (Aλ(x, y)(t), Aµ(x, y)(t))

by

Aλ(x, y)(t) = λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds,

Aµ(x, y)(t) = µ

∫ T

0

G2(t, s)f2(x(s), y(s)) ds.

We also use E to denote the Banach space C[0, T ]× C[0, T ] with the norm

‖(x, y)‖ = |x|∞ + |y|∞.

Define a cone K̃ ⊂ E as

K̃ = {(x(t), y(t)) ∈ E : x(t), y(t) ≥ 0 and x(t) + y(t) ≥ δ‖(x, y)‖}.

From a standard process, it is easy to prove that Aλ,µ : K̃ \ {−→0 } → K̃ is com-

pletely continuous.

Now we give the definitions of upper and lower solutions. The method of

upper and lower solutions is one of the most fruitful techniques in nonlinear

analysis. We refer the reader to [5] for details.

Definition 3.2. Let αi(t), βi(t) ∈ C2([0, T ],R), i = 1, 2. A function α(t) =

(α1(t), α2(t)) is a lower solution of (1.4) if α(t) satisfiesα̈1 + a1(t)α1 ≤ λf1(α1, α2),

α̈2 + a2(t)α2 ≤ µf2(α1, α2).

A function β(t) = (β1(t), β2(t)) is a upper solution of (1.4) if β(t) satisfiesβ̈1 + a1(t)β1 ≥ λf1(β1, β2),

β̈2 + a2(t)β2 ≥ µf2(β1, β2).

Lemma 3.3 ([5]). Let α(t) and β(t) be lower and upper solutions of (1.4) such

that α(t) ≤ β(t), for t ∈ [0, T ]. Then (1.4) has a solution (x(t), y(t)) satisfying

α(t) ≤ (x(t), y(t)) ≤ β(t).

Before stating the main result of this section, we first prove several lemmas.

Lemma 3.4. Assume that (H1), (H4), (H5) hold and Σ is a compact subset

of (R+)2. Then there exists a constant CΣ > 0 such that for all (λ, µ) ∈ Σ

and all possible positive T -periodic solutions (x, y) of (1.4) at (λ, µ), one has

‖(x, y)‖ ≤ CΣ.
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Proof. On the contrary, suppose that there exists a sequence {(xk, yk)}∞k=1

of positive T -periodic solutions of (1.4) at {(λk, µk)}∞k=1 such that {(λk, µk)}∞k=1

⊂ Σ for all k ∈ N and ‖(xk, yk)‖ → ∞.

Since Σ is compact, the sequence {(λk, µk)}∞k=1 ⊂ Σ has a convergent sub-

sequence which we denote without loss of generality still by {(λk, µk)}∞k=1 ⊂ Σ

such that

lim
k→∞

λk = λ∗, lim
k→∞

µk = µ∗.

We assume that λ∗ > 0 holds. Hence for k sufficiently large, we have λ∗ ≥
λ∗/2 > 0.

Since f1,∞ = +∞, there exists a constant R > 0 such that

f1(x, y) ≥ Lλ(x+ y), for all x+ y ≥ R,

where Lλ satisfies λ∗m1Lλδ/2 > 1. Furthermore, we have

max
t∈[0,T ]

|xk(t)| ≥ xk(t) =λk

∫ T

0

G1(t, s)f1(xk(s), yk(s)) ds

≥m1λkLλδ‖(xk, yk)‖ > λ∗

2
m1Lλδ‖(xk, yk)‖ > ‖(xk, yk)‖

for all k sufficiently large. This yields a contradiction. When µ∗ > 0, the

argument is the same using the fact f2,∞ = +∞. �

Lemma 3.5. Assume that (H1), (H4), (H5) hold and (1.4) has a positive

T -periodic solution at (λ, µ). Then (1.4) has a positive T -periodic solution at

(λ, µ) ∈ (R+)2 for all (λ, µ) ≤ (λ, µ).

Proof. Suppose that (x, y) is the fixed point of Aλ,µ. Then, for any (λ, µ) ≤
(λ, µ), we have

x(t) = λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds ≥ λ
∫ T

0

G1(t, s)f1(x(s), y(s)) ds,

y(t) = µ

∫ T

0

G2(t, s)f2(x(s), y(s)) ds ≥ µ
∫ T

0

G2(t, s)f2(x(s), y(s)) ds.

Therefore, (x(t), y(t)) and (0, 0) are the upper and lower solutions of Aλ,µ, re-

spectively. Furthermore, we can find a function (x, y) satisfying (0, 0) < (x, y) ≤
(x, y), which corresponds to the positive T -periodic solution of (1.4) at (λ, µ)

with 0 < λ ≤ λ, 0 < µ ≤ µ. �

Lemma 3.6. Assume that (H1), (H4), (H5) hold. Then there exists a (λ∗, µ∗)

> (0, 0) such that (1.4) has a positive T -periodic solution for all (λ, µ) ≤ (λ∗, µ∗).

Proof. Let β(t) = (β1(t), β2(t)) be the unique T -periodic solution ofẍ(t) + a1(t)x = 1,

ÿ(t) + a2(t)y = 1.
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Let Fi = max
t∈[0,T ]

fi(β(t)). It follows from (H4) that Fi > 0. Choosing (λ∗, µ∗) =

(1/F1, 1/F2), then we have

β̈1(t) + a1(t)β1 − λ∗f1(β(t)) = 1− λ∗f1(β(t)) ≥ 0,

β̈2(t) + a2(t)β2 − µ∗f2(β(t)) = 1− µ∗f2(β(t)) ≥ 0,

which implies that β(t) is an upper solution of (1.4) at (λ∗, µ∗). On the other

hand, (0, 0) ia a lower solution of (1.4). Thus (1.4) has a positive T -periodic

solution at (λ∗, µ∗). Now Lemma 3.5 implies the conclusion of Lemma 3.6. �

Define a set S by

S = {(λ, µ) ∈ (R+)2 : (1.4) has a positive T -periodic solution at (λ, µ)}.

It follows from Lemma 3.6 that S 6= ∅ and (S,≤) is a partially ordered set.

Lemma 3.7. Assume (H1), (H4) and (H5) hold. Then (S,≤) is bounded from

above.

Proof. By (H4) and (H5), there exists a ρ > 0 such that fi(x, y) ≥ ρ(x+y),

for all x, y ≥ 0. Let (λ, µ) ∈ S and (x(t), y(t)) be a positive T -periodic solution

of (1.4) at (λ, µ). Then we get

x(t) = λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds ≥ λm1Tρδ‖(x, y)‖.

Since x(t) ≤ |x|∞, |x|∞ 6= 0, we obtain λm1Tρδ ≤ 1, that is λ ≤ 1/(m1Tρδ). In

a similar way, we have µ ≤ 1/(m2Tρδ). Therefore S is bounded above by

(λ, µ) =

(
1

m1Tρδ
,

1

m2Tρδ

)
. �

Next we present three lemmas and omit their proofs because the proofs are

similar as in [19, Lemma 4.6–4.8].

Lemma 3.8. Assume that (H1), (H4) and (H5) hold. Then every chain in S

has a unique supremum in S.

Lemma 3.9. Assume that (H1), (H4) and (H5) hold. Then there exists λ̃ ∈
[λ∗, λ] such that (1.4) has a positive solution at (λ, 0) for all 0 < λ ≤ λ̃, no

solution at (λ, 0) for all λ > λ̃. Similarly, there exists µ̃ ∈ [µ∗, µ] such that (1.4)

has a positive solution at (0, µ) for all 0 < µ ≤ µ̃, no solution at (0, µ) for all

µ > µ̃.

Lemma 3.10. Assume that (H1), (H4) and (H5) hold. Then there exists

a continuous curve Γ separating (R+)2 into two disjoint subsets Θ1 and Θ2 such

that Θ1 is bounded and Θ2 is unbounded, (1.4) has at least one solution for

(λ, µ) ∈ Θ1 ∪ Γ and no solution for (λ, µ) ∈ Θ2. The function µ = µ(λ) is

nonincreasing, that is, if λ ≤ λ′ ≤ λ̃, then µ(λ) ≥ µ(λ′).
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Now we are in a position to state the main result of this section.

Theorem 3.11. Assume that (H1), (H4), (H5), (H6) hold. Then there exists

a bounded and continuous curve Γ separating (R+)2 into two disjoint subsets

Θ1 and Θ2 such that (1.4) has at least two positive T -periodic solutions for

(λ, µ) ∈ Θ1, one positive T -periodic solution for (λ, µ) ∈ Γ, and no positive

T -periodic solution for (λ, µ) ∈ Θ2. Moreover, let Γ+ ∪ Γ0 be the parametric

representation of Γ, where Γ+ : µ = µ(λ) > 0 and Γ0 : µ = µ(λ) = 0. Then on

Γ+ the function µ(λ) is continuous and nonincreasing in R+, that is, if λ1 ≤ λ2,

then µ(λ1) ≥ µ(λ2).

Proof. From the above lemmas, we only need to establish the existence of

the second positive T -periodic solution of the problem (1.4) for (λ, µ) ∈ Θ1. Let

(λ, µ) ∈ Θ1, then from Lemma 3.7 and 3.10, it is clear to see that λ < 1/(m1Tρδ),

µ < 1/(m2Tρδ). Set ΩR = {(x, y) ∈ E : ‖(x, y)‖ < R}, where R is given by

(H6). Then, for any (x, y) ∈ ∂ΩR ∩ K̃, we have

Aλ(x, y)(t) =λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds

<
1

m1Tρδ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds

≤ 1

m1Tρδ
M1TΦ1(R) ≤ 1

2
R =

1

2
‖(x, y)‖,

Aµ(x, y)(t) =µ

∫ T

0

G2(t, s)f2(x(s), y(s)) ds

<
1

m2Tρδ

∫ T

0

G2(t, s)f2(x(s), y(s)) ds

≤ 1

m2Tρδ
M2TΦ2(R) ≤ 1

2
R =

1

2
‖(x, y)‖,

where Φi(R) is defined as Φi(R) = max{fi(x, y) : δR ≤ x+ y ≤ R}. So, for any

(x, y) ∈ ∂ΩR ∩ K̃, we have ‖Aλ,µ(x, y)‖ < ‖(x, y)‖.
On the one hand, since lim

(x,y)→(0,0)+
fi(x, y) = +∞, there exists a constant r

with 0 < r < R such that fi(x, y) ≥ ηi(x + y), for 0 < x + y < r, where ηi > 0

satisfies η1λδTm1 > 1/2, η2µδTm2 > 1/2. Then, for any (x, y) ∈ ∂Ωr ∩ K̃, we

have

Aλ(x, y)(t) =λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds

≥λm1

∫ T

0

η1(x(s) + y(s)) ds ≥ λm1η1δT‖(x, y)‖ > 1

2
‖(x, y)‖,



560 F. Wang — J. Chu — S. Siegmund

Aµ(x, y)(t) =µ

∫ T

0

G2(t, s)f2(x(s), y(s)) ds

≥µm2

∫ T

0

η2(x(s) + y(s)) ds ≥ µm2η1δT‖(x, y)‖ > 1

2
‖(x, y)‖.

Therefore, for any (x, y) ∈ ∂Ωr ∩ K̃, we have ‖Aλ,µ(x, y) > ‖(x, y)‖. On the

other hand, it follows from (H5) that there exists a R̂ > 0 such that

fi(x, y) ≥ ϑi(x+ y), for all x+ y ≥ R̂,

where ϑi satisfies ϑ1λδm1T > 1/2 and ϑ2µδm2T > 1/2.

Let R = max{CΣ, δ
−1R̂, R} + 1, where CΣ is given by Lemma 3.5 with

Σ = Ω1 ∪ Γ. Then, for any (x, y) ∈ ∂ΩR ∩ K̃, we have

Aλ(x, y)(t) =λ

∫ T

0

G1(t, s)f1(x(s), y(s)) ds

≥λm1

∫ T

0

ϑ1(x(s) + y(s)) ds ≥ λm1ϑ1δT‖(x, y)‖ > 1

2
‖(x, y)‖,

Aµ(x, y)(t) =µ

∫ T

0

G2(t, s)f2(x(s), y(s)) ds

≥µm2

∫ T

0

ϑ2(x(s) + y(s)) ds ≥ µm2ϑ1δT‖(x, y)‖ > 1

2
‖(x, y)‖.

So, for any (x, y) ∈ ∂ΩR ∩ K̃, we have ‖Aλ,µ(x, y)‖ > ‖(x, y)‖. Therefore,

it follows from Lemma 3.1 that Aλ,µ has two fixed points (x1(t), y1(t)) and

(x2(t), y2(t)) for λ ∈ Θ1, moreover (x1(t), y1(t)) ∈ ΩR \ Ωr and (x2(t), y2(t)) ∈
ΩR \ ΩR. �

Example 3.12. Consider the following system

(3.1)


ẍ+ a1(t)x = λ

[
τ1

(x+ y)α1
+ (κ1(x+ y) + 1)β1

]
,

ÿ + a2(t)y = µ

[
τ2

(x+ y)α2
+ (κ2(x+ y) + 1)β2

]
.

Assume that a1, a2 satisfy (H1) and αi, τi, κi > 0, βi > 1, i = 1, 2. Then the

results of Theorem 3.11 hold for (3.1) if τi, κi are small enough and βi are large

enough, i = 1, 2.

Proof. Let us take

fi(x, y) =
τi

(x+ y)αi
+ (κi(x+ y) + 1)βi , i = 1, 2.

Since αi, τi, κi > 0, βi > 1, i = 1, 2, one may readily verify that (H4) and (H5)

are satisfied.
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Take ρ = min{κ1, κ2}. Now, for some constant R > 0, condition (H6)

becomes

(3.2)
2

ρδ2
sup

δR≤x+y≤R
fi(x, y) ≤ 2

ρδ2

(
τi

(δiR)αi
+ κβi

i (R+ 1)βi

)
≤ R, i = 1, 2.

Note that, if we chose κi, i = 1, 2 small enough and R large enough such that

κi < 1/(R+ 1) for i = 1, 2, then (3.2) hold since βi > 1, i = 1, 2. Now we have

the result. �
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