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GEOMETRIC PROOF OF STRONG STABLE/UNSTABLE
MANIFOLDS WITH APPLICATION

TO THE RESTRICTED THREE BODY PROBLEM

Maciej J. Capiński — Anna Wasieczko-Zając

Abstract. We present a method for establishing strong stable/unstable
manifolds of fixed points for maps and ODEs. The method is based on
cone conditions, suitably formulated to allow for application in computer
assisted proofs. In the case of ODEs, assumptions follow from estimates
on the vector field, and it is not necessary to integrate the system. We
apply our method to the restricted three body problem and show that for
a given choice of the mass parameter, there exists a homoclinic orbit along
matching strong stable/unstable manifolds of one of the libration points.

1. Introduction

In this paper we give a geometric method for establishing strong stable/un-
stable invariant manifolds of fixed points. The method is based on a graph trans-
form type approach. Its assumptions are founded on suitably defined cone condi-
tions, which can be verified using rigorous (interval arithmetic based), computer–
assisted numerics.

Our approach is in a similar spirit to a number of previous results. The pa-
pers [17], [18] by Gidea and Zgliczyński introduced a topological tool referred to
as “covering relations” or “correctly aligned windows”. The tool can be applied
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to obtain computer assisted proofs of symbolic dynamics in dynamical systems.
A paper [30] by Zgliczyński extends the method by adding suitable cone condi-
tions. With such additional assumptions one can establish existence of hyperbolic
fixed points and their associated stable and unstable manifolds. The method has
also been adapted by Zgliczyński, Simó and Capiński for proofs of normally hy-
perbolic invariant manifolds [6], [9], [10]. The above methods have been used and
applied to a number of systems including the restricted three body problem [7],
[8], [26], [27] rotating Hénon map [6], [10], driven logistic map [9], forced damped
pendulum [29], and proofs of slow manifolds [19]. All these results rely on suit-
able definitions of covering relations and cone conditions. The result presented
in this paper deals with fixed points, and is closely related to [30]. The main
difference is that our result can be used to establish strong (un)stable manifolds,
which could be submanifolds of the full (un)stable manifold. Our method can
also be applied to saddle–center fixed points, which is not possible using [30],
since it relies on hyperbolicity. Finally, our method does not rely on covering
relations, which reduces the number of assumptions by half and simplifies their
verification.

There are a number of alternative approaches for computer assisted proofs of
invariant manifolds. These involve solving an appropriate fixed point equation in
a functional setting. Amongst these methods it is notable to mention the work of
Cabre, de la Llave, and Fontich [3]–[5]. Our approach is different. It follows from
a topological argument performed in the state space of the system, instead of
considering the problem in a functional setting. The assumptions of our theorem
are simpler to verify, but at the cost of obtaining less accurate bounds on the
manifold enclosure.

As an example of an application of our method we consider the planar cir-
cular restricted three body problem. We use the method to establish a rigorous
enclosure of an unstable manifold of a libration fixed point of the problem. Using
continuity based arguments, we also prove that the fixed point has a homoclinic
orbit, for a suitably chosen parameter of the system. The example considered by
us has first appeared in the work by Llibre, Martinez and Simó [21], where ex-
istence of such homoclinic connections has been demonstrated numerically. We
validate their results using rigorous, interval based, computer assisted numerics.

To the best of our knowledge, our result is amongst the first computer assisted
proofs of nontransversal homoclinic orbits for ODEs. The only other result
known to us is the work of Szczelina and Zgliczyński [22], where a homoclinic
orbit is proved for a two dimensional ODE. We note that the considered by us
homoclinic connection in the restricted three body problem has not been proved
up till this point. The only proof is the result of Llibre, Martinez and Simó [21],
where an analytic argument is given for a sufficiently small mass parameter.
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Their method can not be applied though for a concrete given parameter, which
is what we do in this paper.

Establishing of homoclinic connections between invariant objects can be used
in the study of stability of a system. Combined with Melnikov type arguments,
these can be used in proofs of Arnold diffusion [2] type dynamics. A broad
selection of papers has used this approach, including the work of Delshams,
Huguet, de la Llave, Seara or Treschev [13]–[16], [24], [25] amongst many others.
Such approach has also been applied in [11], in the setting of the planar elliptic
restricted three body problem. It used the homoclinic connections from [21]
for the Melnikov method. The result though was not fully rigorous, and relied
on numerical computation of Melnikov integrals. The rigorous enclosure of the
homoclinic orbit established in this paper can be a starting point for a rigorous
validation of this computation. This would lead to a proof of Arnold diffusion
type dynamics in the elliptic restricted three body problem. We plan to perform
such validation in forthcoming work.

The paper is organized as follows. Section 2 contains preliminaries. In Sec-
tion 3 we state our results. In Section 4 we present auxiliary results concerning
cone conditions, which are then used in the proofs of our main results in Sec-
tion 5. Our results are written for maps. In Section 6 we show how they can
be applied for ODEs. Section 7 contains an application of our method, and con-
tains a proof of existence of a homoclinic orbit to the libration point L1 in the
restricted three body problem. Sections 8, 8 and Appendix A contain closing
remarks, acknowledgements and the appendix, respectively.

2. Preliminaries

2.1. Notations. Throughout the paper, all norms that appear are standard
Euclidean norms. We use a notation B(x, r) to denote a ball of radius r centered
at x. If we want to emphasize that a ball is in Rk, then we add a subscript and
write Bk(x, r). We use a short hand notation Bk = Bk(0, 1) for a unit ball in
Rk centered at zero. For a set A ⊂ Rk we use A to denote its closure and ∂A for
its boundary. For a point p = (x, y) we use a notation πxp and πyp to denote
projections onto x and y coordinates, respectively.

2.2. Computer assisted proofs. Most computations performed on a com-
puter are burdened with error. Even very simple operations on real numbers
(such as adding, multiplying or dividing) can result in round off errors. To make
computer assisted computations fully rigorous, one can employ interval arith-
metic, where instead of real numbers one deals with intervals. Any operation is
made rigorous by appropriate rounding, which ensures an enclosure of the true
result.
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Interval arithmetic can also be used to treat basic functions (such as sin, cos

or exponent). It can be extended to perform linear algebra on interval vectors and
interval matrices. One can thus design algorithms which give rigorous enclosures
for multiplying matrices, inverting a matrix, computing eigenvectors or solving
linear equations.

The interval arithmetic approach can also be extended to treat functions
f : Rn → Rm. One can implement algorithms which compute interval enclosures
for images of the function f , for its derivative and for higher order derivatives.

The interval arithmetic approach can also be used for the integration of
ODEs. One can implement interval arithmetic based integrators, which allow
for the computation of enclosures of the images of points along of a flow of an
ODE. One can extend such integrators to include the computation of high order
derivatives of a time shift map along the flow, or even to compute high order
derivatives for Poincaré maps [28].

All above mentioned tasks can be performed using a single C++ library “Com-
puter Assisted Proofs in Dynamics” (CAPD for short). The package is freely
available at http://capd.ii.uj.edu.pl. All the computer assisted proofs from
this paper have been performed using CAPD.

2.3. Interval Newton method. Let X be a subset of Rn. We shall denote
by [X] an interval enclosure of the set X, that is, a set

[X] =

n∏
i=1

[ai, bi] ⊂ Rn,

such that X ⊂ [X].
Let f : Rn → Rn be a C1 function and U ⊂ Rn. We shall denote by [Df(U)]

the interval enclosure of a Jacobian matrix on the set U . This means that
[Df(U)] is an interval matrix defined as

[Df(U)] =

{
A ∈ Rn×n|Aij ∈

[
inf
x∈U

dfi
dxj

(x), sup
x∈U

dfi
dxj

(x)

]
for all i, j = 1, . . . , n

}
.

Theorem 2.1 (Interval Newton method, [1]). Let f : Rn → Rn be a C1

function and X =
n∏
i=1

[ai, bi] with ai < bi. If [Df(X)] is invertible and there

exists an x0 in X such that

N(x0, X) := x0 − [Df(X)]−1f(x0) ⊂ X,

then there exists a unique point x∗ ∈ X such that f(x∗) = 0.

2.4. Restricted three body problem. The problem is defined as follows:
two main bodies rotate in the plane about their common center of mass on
circular orbits under mutual gravitational influence. A third body moves in the
same plane of motion as the two main bodies, attracted by their gravitation, but
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not influencing their motion. The problem is to describe the motion of the third
body.

Usually, the two rotating bodies are referred to as the primaries. The third
body can be regarded as a satellite or a spaceship of negligible mass.

We use a rotating system of coordinates centred at the center of mass. The
plane X, Y rotates with the primaries. The primaries are on the X axis, the Y
axis is perpendicular to the X axis and contained in the plane of rotation.

Figure 1. Rotating system of coordinates with origin at the center of mass.
The sun has the mass 1−µ and is fixed at P1 = (µ, 0). The planet has the
mass µ is fixed at P2 = (µ− 1, 0). The third massless particle moves in the
XY plane.

We rescale the masses µ1 and µ2 of the primaries so that they satisfy the
relation µ1+µ2 = 1. After such rescaling the distance between the primaries is 1.
(See Szebehelly [23], section 1.5). We refer to the larger of the two primaries as
the “sun” and to the smaller as the “planet”. We use a convention in which in the
rotating coordinates the sun is located to the right of the origin at P1 = (µ, 0),
and the planet is located to the left at P2 = (µ− 1, 0).

The equations of motion of the third body are

Ẍ − 2Ẏ = ΩX , Ÿ + 2Ẋ = ΩY ,

where

Ω =
1

2
(X2 + Y 2) +

1− µ
r1

+
µ

r2
,

and r1, r2 denote the distances from the third body to the larger and the smaller
primary, respectively (see Figure 1)

r21 = (X − µ)2 + Y 2, r22 = (X − µ+ 1)2 + Y 2.

These equations have an integral of motion [23] called the Jacobi integral

C = 2Ω− (Ẋ2 + Ẏ 2).
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The equations of motion take Hamiltonian form if we consider positions X,
Y and momenta PX = Ẋ − Y , PY = Ẏ +X. The Hamiltonian is

(2.1) H =
1

2
(P 2
X + P 2

Y ) + Y PX −XPY −
1− µ
r1
− µ

r2
,

with the vector field given by

F = J∇H,

J =

(
0 id

−id 0

)
, id =

(
1 0

0 1

)
.

The Hamiltonian and the Jacobi integral are simply related by H = −C/2.
Due to the Hamiltonian integral, the dimensionality of the space can be

reduced by one. Trajectories of the system stay on the energy surface M given
by H(X,Y, PX , PY ) = h =constant. Equivalently, M is the level surface

(2.2) M ≡ {C(X,Y, Ẋ, Ẏ ) = c = −2h}

of the Jacobi integral.
The problem has a reversing symmetry defined by

(2.3) S(X,Y, PX , PY ) = (X,−Y,−PX , PY ).

Using a notation x = (X,−Y,−PX , PY ) for the coordinates, and φt(x) for the
flow of the vector field

ẋ = J∇H(x),

the system has the property

(2.4) S(φt(x)) = φ−t(S(x)).

The problem has five equilibrium points (see [23]). Three of them, denoted
L1, L2 and L3, lie on the X-axis and are usually called the ‘collinear’ equilibrium
points (see Figure 1). Notice that we denote L1 the interior collinear point,
located between the primaries.

The Jacobian of the vector field at L1 has two real and two purely imaginary
eigenvalues. It possesses a one dimensional unstable manifold. By (2.4), the one
dimensional stable manifold is S-symmetric to the unstable manifold.

3. Statement of main results

Our paper contains two results. The first is a method for establishing strong
invariant manifolds for fixed points. The method is based on cone conditions,
and is tailor made for rigorous (interval based) computer assisted implementa-
tion. The second result is an application of the method to prove a homoclinic
connection of a libration fixed point in the restricted three body problem.
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3.1. Establishing strong invariant manifolds. Let N = Bu ×Bs and

f : N → Ru × Rs

be a C1 function. We assume that there exists a fixed point for f in the interior
of N . For simplicity we assume that the fixed point is at zero. This assumption
can easily be relaxed (see Remark 3.12).

Our method can be applied to establish strong stable and strong unstable
manifolds defined as follows:

Definition 3.1. Let U be a neighbourhood of zero and let λ < 1. A set
W s
λ,U ⊂ U consisting of all points p ∈ U satisfying:

(a) fn(p) ∈ U for any n ∈ N;
(b) there exists a constant C > 0 (which can depend on p), such that, for

all n ≥ 0,

(3.1) ‖fn(p)‖ ≤ Cλn;

is called a strong stable manifold, with contraction rate λ, in U .

Definition 3.2. Let U ⊂ Ru × Rs be a set and let p ∈ U . We say that
a sequence (p0, p−1, p−2, . . .) is a backward trajectory of p in U if p0 = p and for
any i < 0, pi ∈ U and pi+1 = f(pi).

Definition 3.3. Let U be a neighbourhood of zero and let λ > 1. A set
Wu
λ,U ⊂ U consisting of all points p ∈ U satisfying:

(a) there exists a backward trajectory (p0, p−1, p−2, . . .) of p in U ;
(b) for any backward trajectory (p0, p−1, p−2, . . .) of p in U there exists a con-

stant C > 0 (which can depend on the backward trajectory), such that
for all n ≤ 0

(3.2) ‖pn‖ ≤ Cλn;

is called a strong unstable manifold, with expansion rate λ, in U .

Example 3.4. Let f1(x, y) = (x/2, y/3). The stable manifold with contrac-
tion rate 1/2 in R2 is equal to R2 and the stable manifold with contraction rate
1/3 in R2 is {0}×R. Similarly, for f2(x, y) = (2x, 3y) the unstable manifold with
expansion rate 2 in R2 is R2 and the unstable manifold with expansion rate 3

in R2 is {0} × R.

Let αh, αv ∈ (0, 1) and let Qh, Qv : Ru × Rs → R be defined as

Qh(x, y) = αh‖x‖2 − ‖y‖2(3.3)

Qv(x, y) = ‖x‖2 − αv‖y‖2.(3.4)
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Definition 3.5. Let α, β,m > 0 and let Q(x, y) = α‖x‖2 − β‖y‖2. We say
that f satisfies cone conditions for (Q,m) in N if for any p1 6= p2, p1, p2 ∈ N ,
holds

Q(f(p1)− f(p2)) > mQ(p1 − p2).

The following theorems are the main results of our paper.

Theorem 3.6. Assume that mv > mh > 0 and mv > 1. Let ru =
√

1− αv
and U = Bu(0, ru)×Bs. If f satisfies cone conditions for (Qh,mh) and (Qv,mv)

in N, then there exists a function wu : Bu(0, ru)→ Bs, such that

Wu√
mv,N

∩ U = {(x,wu(x)) | x ∈ Bu(0, ru)}.

Moreover, wu is Lipschitz with a constant Lu =
√
αh.

Theorem 3.7. Assume that mv > mh > 0 and mh < 1. Let rs =
√

1− αh
and U = Bu×Bs(0, rs). If f satisfies cone conditions for (Qh,mh) and (Qv,mv)

in N , then there exists a function ws : Bs(0, r
s)→ Bu, such that

W s√
mh,N

∩ U = {(ws(y), y) | y ∈ Bs(0, rs)}.

Moreover, ws is Lipschitz with a constant Ls =
√
αv.

The proofs of Theorems 3.6, 3.7 are given in Section 5.

Remark 3.8. Let us assume that the fixed point has a stable manifold.
Theorem 3.7 can be used to establish a lower dimensional manifold (which is a sub
manifold of the full stable manifold), that is associated with some prescribed
contraction rate. For instance, f1 from Example 3.4 has such a lower dimensional
stable manifold that is associated with contraction rate λ = 1/3.

Similarly, Theorem 3.6 can be used to establish lower dimensional subman-
ifolds of an unstable manifold, that are associated with prescribed expansion
rates. The f2 from Example 3.4 has such a lower dimensional unstable manifold
that is associated with expansion rate λ = 3.

Theorems 3.6, 3.7 are formulated for maps. In Section 6 we show mirror
results for flows (see Theorems 6.3, 6.4). We emphasize that these results do not
require rigorous integration, but follows directly from appropriate bounds on the
vector field.

Let us point out that assumptions of Theorems 3.6, 3.7 can easily be verified
using the following lemma.

Lemma 3.9. Let α, β,m > 0 and let Q(x, y) = α‖x‖2 − β‖y‖2. Assume that
for any B ∈ [Df(N)], the quadratic form

V (q) = Q(Bq)−mQ(q)

is positive definite, then f satisfies cone conditions for (Q,m) in N .
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Proof. The proof is given in Appendix A. �

There are a number of algorithms that can be used to verify if a matrix is
positive definite. This can also be done using interval arithmetic.

Let us finish the section with simple examples, which provide some intuition
for the results.

Example 3.10. Let a, b ∈ R, a > b > 0, and let f : N → R2 be a linear map

f(x, y) = (ax, by),

then f satisfies cone conditions for (Qh,mh) and (Qv,mv) for any mh,mv ∈
(b2, a2). Let us note that we do not need to assume that a > 1 or that b < 1.
Moreover, fε = f + εg satisfies cone conditions, provided that g is differentiable
and ε is small enough.

Example 3.11. Let a, b ∈ R, a > 1 > b > 0 and let R : R2 3 θ → R(θ) ∈ R2

be a rotation. Consider f : R4 → R4, of the form

f(ξ, θ, η) = (aξ,R(θ), bη).

For coordinates x1, y1 chosen as x1 = ξ, y1 = (θ, η), assumptions of Theorem 3.6
are satisfied for any αh, αv ∈ (0, 1) and anymh,mv ∈ (1, a2) satisfyingmv > mh.

On the other hand, for coordinates x2, y2 chosen as x2 = (ξ, θ), y2 = η, as-
sumptions of Theorem 3.7 are satisfied for any αh, αv ∈ (0, 1) and any mh,mv ∈
(b2, 1) satisfying mv > mh

We thus see that we can apply Theorems 3.6 and 3.7 by swapping the roles
of some of the coordinates.

The assumptions still hold for fε = f + εg, whenever g is differentiable and
ε is small enough.

We conclude this section with a remark that the fixed point does not need
to be centered at zero in order to apply our method.

Remark 3.12. The proofs of Theorems 3.6 and 3.7 are conducted under the
assumption that the fixed point is at zero. In many applications though it can
be difficult to establish the fixed point analytically. In computer assisted proofs
the enclosure of a fixed point can be obtained using the interval Newton theorem
(Theorem 2.1). Assuming that we know that the fixed point is contained in a set
B ⊂ Ru+s, it is sufficient to verify cone conditions on a set N ′ = N +B.

3.2. Establishing existence of homoclinic orbits in the restricted
three body problem. In the work by Llibre, Martinez and Simó [21] it is
shown that for suitably chosen family of parameters µ ∈ {µ∗k}∞k=2, µ

∗
k+1 < µ∗k,

the unstable and stable manifolds of Lµ
∗
k

1 coincide, leading to a homoclinic orbit.
The paper [21] contains numerical evidence of such homoclinic orbits for the
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first number of the larger of these parameters µ∗k, and gives an analytic proof for
sufficiently small µ∗k.

The aim of this section is to show that using our method it is possible to
obtain rigorous enclosures of the stable and unstable manifolds, and to validate
the existence of homoclinic orbits for the large values of µ∗k. We focus on the
largest of the parameters µ∗2 ≈ 0.004253863522 and prove that

µ∗2 ∈ 0.004253863522 + 10−10[−1, 1].

The established homoclinic connection is depicted in Figure 2.

-0.5

 0

 0.5

-1 -0.5  0  0.5  1

Y

X

µ

L1

1-µ

Figure 2. Homoclinic orbit in green, the masses in red, and the fixed point
L1 in blue.

Remark 3.13. Our estimate on the parameter for which we have a homo-
clinic orbit to L

µ∗
2

1 is very tight. This is thanks to the fact that our method
for establishing invariant manifolds produces very tight rigorous bounds. This
demonstrates that it is a tool that can successfully be applied for nontrivial
problems.

Remark 3.14. Our paper focuses on µ∗2 since it is the largest parameter,
hence furthest away from the analytic proof of [21]. Using our method one can
obtain a proof also for other parameters. As the parameters become smaller
though, the proof becomes more challenging numerically.

4. Cones and horizontal discs

In this section we give some auxiliary results, which are then used in the
proofs of Theorems 3.6, 3.7 in Section 5.

We start with some simple facts which follow straight from (3.3)–(3.4). We
formulate this as a remark, and give the proof in the appendix.

Remark 4.1.

(a) If ‖x‖ ≤ 1 and Qh(x, y) ≥ αh − 1, then ‖y‖ ≤ 1.
(b) If ‖y‖ ≤ 1 and Qv(x, y) ≤ 1− αv then ‖x‖ ≤ 1.
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(c) If Qh(x, y) ≥ αh − 1 and Qv(x, y) ≤ 1− αv then (x, y) ∈ N .
(d) If ‖y‖ ≤ a then Qh(x, y) ≥ −a2.

Proof. The proof is given in Appendix A. �

We now give two technical lemmas.

Lemma 4.2. Assume that (q0, q−1, . . .) is a backward trajectory in {Qh ≥
0}∩N . If f satisfies cone conditions for (Qv,mv), then for C =

√
2(1− αvαh)−1

and any k ≤ 0

‖qk‖ ≤ C(
√
mv)

k.

Proof. The proof is given in Appendix A. �

Lemma 4.3. Assume that for a q0 ∈ N , for all k ≥ 0, fk(q0) ∈ {Qv ≤ 0}∩N .
If f satisfies cone conditions for (Qh,mh), then for C =

√
2(1− αvαh)−1 and

any k ≥ 0

‖fk(q0)‖ ≤ C(
√
mh)k.

Proof. The proof is given in Appendix A. �

We now introduce a notion of a horizontal disc. Horizontal discs will be the
building blocks in our construction of the invariant manifolds.

Definition 4.4. Let Q(x, y) = α‖x‖2 − β‖y‖2 for α, β > 0. Let h : Bu →
Ru+s be a continuous mapping. We say that h is a Q-horizontal disc if

Q(h(x1)− h(x2)) > 0 for any x1 6= x2,(4.1)

πxh(0) = 0.(4.2)

Figure 3. A Q-horizontal disc h in red. For any point x1 ∈ Bu the disc h
lies within the interior of a cone attached at h(x1).

Definition 4.5. We say that a Q-horizontal disc is in N if h(Bu) ⊂ N .

Definition 4.6. Let c > 0. We say that a Q-horizontal disc has radius c if

(4.3) Q(h(∂Bu)) = c,

Let Q(x, y) = α‖x‖2 − β‖y‖2 for α, β > 0. The following lemmas are conse-
quences of Definition 4.4.
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Figure 4. A Q-horizontal disc h with radius c (in red). The image of ∂Bu

is contained in the set {Q = c}.

Lemma 4.7. If h is a Q-horizontal disc, then πx◦h is bijective onto its image.

Proof. Take any x1, x2 ∈ Bu and suppose that πx(h(x1)) = πx(h(x2)).
Then

Q(h(x1)− h(x2)) = −β||πy(h(x1))− πy(h(x2))||2 ≤ 0.

The condition (4.1) implies that x1 = x2. It means that πx ◦ h is injective, and
as a consequence it is bijective onto its image. �

Lemma 4.8. If h is a Q-horizontal disc of radius c, then for any x∗ ∈
Bu(0,

√
c/α), there exists a unique x such that πxh(x) = x∗.

Proof. By definition, h is continuous. By Lemma 4.7, πxh : Bu → Ru is
injective. This means that πxh(Bu) is homeomorphic to a ball in Ru.

For any x ∈ ∂Bu

c = Q(h(x)) = α‖πxh(x)‖2 − β‖πyh(x)‖2 ≤ α‖πxh(x)‖2,

hence ‖πxh(x)‖ ≥
√
c/α. This means that ∂[πxh(Bu)]∩Bu(0,

√
c/α) = ∅, hence

either

πxh(Bu) ∩Bu
(

0,

√
c

α

)
= ∅,

or

(4.4) Bu

(
0,

√
c

α

)
⊂ πxh(Bu).

Since πxh(0) = 0 ∈ Bu(0,
√
c/α), we see that (4.4) must be the case. From (4.4),

by continuity of h,

Bu

(
0,

√
c

α

)
⊂ πxh(Bu).

We have thus shown that for any x∗ there exists an x such that πxh(x) = x∗.
Such point needs to be unique since for x1 6= x2
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0 <
1

α
Q(h(x1)− h(x2))

= ‖πxh(x1)− πxh(x2)‖2 − β

α
‖πyh(x1)− πyh(x2)‖2

≤ ‖πxh(x1)− πxh(x2)‖2. �

Let Q(x, y) = α‖x‖2 − β‖y‖2 for α, β > 0, and let c∗ > 0. In the following
arguments we shall consider the function φ : Ru × Rs → Ru × Rs

(4.5) φ(u, s) =


(
u

√
1

α
(c∗ + β‖s‖2), s

)
if ‖u‖ ≤ 1,(

u

[
1

‖u‖

(√
1

α
(c∗ + β‖s‖2)− 1) + 1

]
, s

)
if ‖u‖ > 1,

which will be used as a suitable change of coordinates. (Note that φ is continu-
ous.) The choice of φ is motivated by the fact that {φ(u, s) : ‖u‖≤1}={Q≤c∗}.
Thus, we can say that φ “straightens out” {Q ≤ c∗} (see Figure 5). We now give
a technical lemma.

Figure 5. The change of coordinates φ applied to a Q-horizontal disc h
and to f ◦ h.

Lemma 4.9. If s1, s2 ∈ Rs and u ∈ Ru then Q(φ(u, s1)− φ(u, s2)) ≤ 0.

Proof. For a, b > 0, x→
√
b+ a‖x‖2 is Lipschitz with constant

√
a, thus

(4.6)
‖πx(φ(u, s1)− φ(u, s2))‖ ≤

√
β

α
‖s1 − s2‖,

‖πy(φ(u, s1)− φ(u, s2))‖ = ‖s1 − s2‖.

This gives that for any s1, s2

(4.7) Q(φ(u, s1)− φ(u, s2)) ≤ α
(√

β

α
‖s1 − s2‖

)2

− β‖s1 − s2‖2 = 0,

as required. �
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The following lemma is a key result that will be used in our construction of
the manifolds.

Lemma 4.10. Let Q(x, y) = α‖x‖2 − β‖y‖2 for α, β > 0. Let h : Bu → N

be a Q-horizontal disc in N of radius c > 0. Let m > 0. If f satisfies cone
conditions for (Q,m), then for any c∗ ∈ (0,mc] there exists a Q-horizontal disc
h∗ : Bu → Ru+s of radius c∗, such that

(4.8) h∗(Bu) = f ◦ h(Bu) ∩ {Q ≤ c∗},

and

(4.9) πuφ
−1(h∗(u)) = u.

Figure 6. Q-horizontal disc h∗ with radius c∗ = mc obtained as an inter-
section of an image under f of a Q-horizontal disc h of radius c, and the
set {Q ≤ c∗} (see Lemma 4.10).

Proof. Let hλ(x) := (πxh(x), λπyh(x)) and let us define the function

H : [0, 1]×Bu → [0, 1]× Ru,

H(λ, x) = (λ, πuφ
−1(f(hλ(x)))).

We will show that H is an open map. Observe that hλ are Q-horizontal discs
in N . Let x1, x2 ∈ Bu and x1 6= x2. By the fact that f satisfies cone con-
ditions, Q(f(hλ(x1)) − f(hλ(x2))) > 0, and by Lemma 4.9 we cannot have
πuφ

−1(f(hλ(x1))) = πuφ
−1(f(hλ(x1))). Hence H is injective. By definition,

H is also continuous, thus it is an open map.
We consider the set [0, 1] × Ru, with topology induced by R × Ru. Let

A = [0, 1] × Bu. Note that A is open in [0, 1] × Ru, that clA = [0, 1] × Bu and
∂A = [0, 1]× ∂Bu. Since H is an open map, H(A)∩ clA is open in clA. We will
show that H(A) ∩ clA is also closed in clA.

Take any x ∈ ∂Bu. Since Q(hλ(x)) ≥ Q(h(x)) = c, by the fact that f
satisfies cone conditions for (Q,m)

Q(f(hλ(x))) > mQ(hλ(x)) ≥ mc ≥ c∗.
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Hence πuφ−1(f(hλ(∂Bu))) ∩Bu = ∅, which means that for all λ ∈ [0, 1]

(4.10) H(∂A) ∩ clA = H([0, 1]× ∂Bu) ∩ clA = ∅.

We thus see that H(A) ∩ clA is closed in clA.
Since H(A) ∩ clA is both open and closed in clA, we either have

H(A) ∩ clA = clA,

or

(4.11) H(A) ∩ clA = ∅.

Since hλ=0(0) = 0, f(0) = 0 and φ−1(0) = 0,

H(0, 0) = (0, πuφ
−1(f(hλ=0(0)))) = (0, 0) ∈ A.

We see that we can not have (4.11), hence clA ⊂ H(A). This in particular
implies that {1} ×Bu ⊂ H({1} ×Bu), hence

(4.12) Bu ⊂ πuφ−1(f(h(Bu))).

From (4.12) we see that for any u ∈ Bu there exists an x = x(u) ∈ Bu, such that

(4.13) u = πuφ
−1(f(h(x(u)))).

We now define

(4.14) h∗(u) = f(h(x(u))).

Note that from (4.13) and (4.14) follows (4.9).
For h∗ to be well defined we need to show that the choice of x(u) is unique.

Assume that for x1 6= x2 we have

φ−1(f(h(x1))) = (u, s1), φ−1(f(h(x2))) = (u, s2)

with s1 6= s2. From Lemma 4.9 we know that Q(φ(u, s1)−φ(u, s2)) ≤ 0. On the
other hand,

Q(φ(u, s1)− φ(u, s2)) = Q(f(h(x1))− f(h(x2)))(4.15)

> mQ(h(x1)− h(x2)) > 0.

We obtain a contradiction, hence we must have s1 = s2. This shows that h∗ is
well defined.

We need to show that h∗ is a Q-horizontal disc of radius c∗. We first show
(4.1). Observe that (4.13) implies that x(u1) 6= x(u2) for any u1 6= u2. From
(4.14) and by the fact that f satisfies cone conditions for (Q,m)

Q(h∗(x1)− h∗(x2)) = Q(f(h(x(u1)))− f(h(x(u2))))

> mQ(h(x(u1))− h(x(u2))) > 0.
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Now we prove (4.2). From (4.9), φ−1(h∗(0)) = (0, s), for some s ∈ Rs. This
gives

πxh
∗(0) = 0

√
1

α
(c∗ + β‖s‖2) = 0.

Now we prove that Q(h∗(∂Bu)) = c∗. Assume that u ∈ ∂Bu. By (4.9) we know
that φ−1(h∗(u)) = (u, s) for some s ∈ Rs. Since ‖u‖ = 1

Q(h∗(u)) = Q(φ(u, s)) = Q

(
u

√
1

α
(c∗ + β‖s‖2), s

)
= α

∥∥∥∥u
√

1

α
(c∗ + β‖s‖2)

∥∥∥∥2 − β‖s‖2 = c∗.

The fact that (4.8) holds, follows from our construction of h∗. �

Lemma 4.11. Assume that h is a Qh-horizontal disc in N . Assume also
that h is a Qv-horizontal disc of radius c = 1 − αv and that h(0) = 0. Assume
that f satisfies cone conditions for (Qh,mh) and (Qv,mv), where mv > 1 and
mh > 0. Let h∗ be the Qv-horizontal disc of radius c∗ = c from Lemma 4.10.
Then h∗(0) = 0, and h∗ is a Qh-horizontal disc in N .

Proof. Since h∗ is a Qv horizontal disc, πxh∗(0) = 0. For any x 6= 0

‖πxf ◦h(x)‖2 ≥ Qv(f ◦h(x)) = Qv(f ◦h(x)−f ◦h(0)) > mvQv(h(x)−h(0)) > 0.

Since by (4.8) h∗(0) = f ◦ h(x0) for some x0 ∈ Bu, and since πxh∗(0) = 0, we
see that x0 = 0. This gives

h∗(0) = f ◦ h(0) = f(0) = 0.

Since for any x1 6= x2, x1, x2 ∈ Bu

Qh(f(h(x1))− f(h(x2))) > mhQh(h(x1)− h(x2)) > 0,

hence by (4.8), h∗ is a Qh-horizontal disc.
We need to show that h∗ is contained in N. Observe that since h∗ is a Qh-

horizontal disc and since αh ∈ (0, 1)

(4.16) Qh(h∗(x)) = Qh(h∗(x)− h∗(0)) ≥ 0 > αh − 1.

Since h∗ is a Qv-horizontal disc of radius c∗ = c = 1− αv

(4.17) Qv(h
∗(x)) ≤ 1− αv.

The fact that h∗(x) is contained in N follows from (4.16), (4.17) and point (c)
from Remark 4.1. �

Lemma 4.12. Assume that 0 < mh,mv and mh < 1. Assume that h is
a Qv-horizontal disc of radius c ≤ 1 − αv in N and that Qh(h(Bu)) ≥ αh − 1.
Assume also that f satisfies cone conditions for (Qh,mh) and (Qv,mv). Let h∗
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Figure 7. Qh-horizontal disc h∗ obtained from h in terms of Lemma 4.11.

be the Qv-horizontal disc of radius c∗ = min{mvc, c} from Lemma 4.10. Then
Qh(h∗(Bu)) ≥ αh − 1 and h∗ is a Qv-horizontal disc in N .

Proof. Since αh ∈ (0, 1), mh ∈ (0, 1) and f satisfies cone conditions for
(Qh,mh), for any x ∈ Bu

Qh(f ◦ h(x)) ≥ mhQh(h(x)) ≥ mh(αh − 1) ≥ αh − 1,

which by (4.8) proves that Qh(h∗(Bu)) ≥ αh − 1.
The fact that h∗ is in N follows from the facts that Qh(h∗(Bu)) ≥ αh − 1

and Qv(h
∗(Bu)) ≤ c∗ = min{mvc, c} ≤ c ≤ 1 − αv, combined with point (c)

from Remark 4.1. �

Figure 8. Qh-horizontal disc h∗ obtained from h in terms of Lemma 4.12.

5. Construction of the stable and unstable manifolds

In this section we give proofs of Theorems 3.6 and 3.7.

Proof of Theorem 3.6. We start by considering two points q∗, q∗∗ ∈
Wu√

mv,N
, with backward trajectories (q∗0 , q

∗
−1, . . .) and (q∗∗0 , q∗∗−1, . . .).
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We will show that:

(5.1) πxq
∗ = πxq

∗∗ =⇒ q∗ = q∗∗.

Since q∗, q∗∗ ∈Wu√
mv,N

, for any k ≤ 0

(5.2) ‖q∗k‖ ≤ C(
√
mv)

k, ‖q∗∗k ‖ ≤ C(
√
mv)

k.

On the other hand, since Qh(q∗ − q∗∗) = −‖πy(q∗ − q∗∗)‖2 ≤ 0, by (Qh,mh)

cone conditions we see that for any k < 0

0 ≥ Qh(q∗ − q∗∗) = Qh(q∗0 − q∗∗0 ) = Qh(f(q∗−1)− f(q∗∗−1))(5.3)

≥ mhQh(q∗−1 − q∗∗−1) ≥ . . . ≥ m|k|h Qh(q∗k − q∗∗k ).

This implies that for k ≤ 0

(5.4) ‖q∗k − q∗∗k ‖2 ≥ |Qh(q∗k − q∗∗k )| ≥ mk
h|Qh(q∗ − q∗∗)| ≥ 0.

Since mv > mh, (5.2) and (5.4) implies that q∗ = q∗∗, which proves (5.1).
We now move to the construction of the function wu from Theorem 3.6. Let

us define a mapping h0 : Bu → N , as h0(x) = (x
√

1− αv, 0). Then h0 is a Qh-
horizontal disc in N and Qv-horizontal disk of radius c = 1− αv. Moreover, for
any x ∈ Bu

Qh(h0(x)) = αh||x
√

1− αv||2 ≥ 0 > αh − 1,

which means that the assumptions of Lemma 4.11 are satisfied. Applying induc-
tively Lemma 4.11, we obtain a sequence of Qh-horizontal discs in N , that are
also Qv-horizontal discs of radius c, which we shall denote as hi, for i = 0, 1, . . .

These horizontal discs are given by hi+1 = h∗i in terms of Lemma 4.10.
We will show that for any x∗ ∈ Bu(0, ru) there exists a unique point q∗ such

that πxq∗ = x∗, which lies in Wu√
mv,N

. By Lemma 4.8, for any i ≥ 0 there exists
a point p∗i ∈ hi(Bu) such that πxp∗i = x∗. Since N is compact, there exists
a convergent subsequence p∗il to a point q∗(x∗)

(5.5) lim
l→∞

p∗il = q∗(x∗),

with πxq∗(x∗) = x∗. We will show that such point is unique, and that it lies in
Wu√

mv,N
. Such point will be the candidate for wu(x∗) = πyq

∗(x∗).
We start by showing that there exists a backward trajectory (q∗0 , q

∗
−1, . . .)

in N ∩ {Qh ≥ 0} reaching q∗(x∗). It is sufficient to show that for any n ≥ 0

there exists a q∗−n such that fk(q∗−n) ∈ N ∩ {Qh ≥ 0} for k = 0, . . . , n and
fn(q∗−n) = q∗(x∗). Let i ≥ n. Since

p∗i ∈ hi(Bu) = f(hi−1(Bu)) ∩ {Qv ≤ c},

we see that p∗i = f(p∗i,−1), with p∗i,−1 ∈ hi−1(Bu). Since hi−1 is a Qh-horizontal
disc and since hi−1(0) = 0, we have p∗i,−1 ∈ hi−1(Bu) ⊂ {Qh ≥ 0}. Similarly,



Geometric Proof of Strong Stable/Unstable Manifolds 381

since
p∗i−1 ∈ hi−1(Bu) = f(hi−2(Bu)) ∩ {Qv ≤ c},

we obtain a point p∗i,−2 ∈ hi−2(Bu) ⊂ {Qh ≥ 0} such that f(p∗i,−2) = p∗i,−1.
Proceeding inductively we obtain a point p∗i,−n such that fk(p∗i,−n) ∈ N ∩{Qh ≥
0} and fn(p∗i,−n) = p∗i . Consider now the subsequence p∗il,−n, in terms of l, where
il is the subsequence form (5.5). Since N ∩ {Qh ≥ 0} is compact, there exists
a convergent subsequence p∗ilm ,−n to a point q∗−n such that lim

m→∞
p∗ilm ,−n = q∗−n.

Observing that

fk(q∗−n) = lim
m→∞

fk(p∗ilm ,−n) ∈ N,

fn(q∗−n) = lim
m→∞

fn(p∗ilm ,−n) = lim
m→∞

p∗ilm = q∗(x∗),

we achieve our goal of proving the existence of q∗−n. Thus, there exists a backward
trajectory in N ∩ {Qh ≥ 0} reaching q∗(x∗).

Since q∗(x∗) has a backward trajectory in N ∩ {Qh ≥ 0}, by Lemma 4.2 we
see that q∗(x∗) ∈Wu√

mv,N
.

We now show that the point q∗(x∗) from (5.5) is unique. If we take another
point q∗∗(x∗), then both points q∗(x∗) and q∗∗(x∗) are in Wu√

mv,N
and thus by

(5.1) they must coincide. This means that wu(x∗) = πyq
∗(x∗) is well defined.

From our construction, for any x∗1, x∗2 ∈ Bu(0, ru) we have

q∗(x∗1) = lim
k→∞

p∗1,k, and q∗(x∗2) = lim
k→∞

p∗2,k,

for sequences p∗1,k, p
∗
2,k ∈ hk(Bu). Thus

Qh(q∗(x∗1)− q∗(x∗2)) = lim
k→∞

Qh(p∗1,k − p∗2,k) ≥ 0.

This implies that

αh||x∗1 − x∗2||2 − ||wu(x∗1)− wu(x∗2)||2 = Qh(q∗(x∗1)− q∗(x∗2)) ≥ 0,

which proves that wu is Lipschitz with constant L =
√
αh. �

Remark 5.1. In the proof the constant C from Theorem 3.6 was established
via Lemma 4.2. In Lemma 4.2 we see that C =

√
2(1− αvαh)−1 depends only

on the coefficients of the cones αh, αv.

Proof of Theorem 3.7. Let us fix y0 such that ||y0|| ≤
√

1− αh. We
define a mapping h0 : Bu → N , as h0(x) = (x

√
1− αv(1− ‖y0‖2), y0). Then

h0 is a Qv-horizontal disk in N of radius c = 1 − αv > 0. By point (d) from
Remark 4.1, for any x ∈ Bu

Qh(x, y0) ≥ −(
√

1− αh)2 = αh − 1,

which means that assumptions of Lemma 4.12 are satisfied. Applying inductively
Lemma 4.12, we obtain a sequence of Qv-horizontal discs, which we shall denote
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as hi, for i = 0, 1, . . . These horizontal disks are given by hi+1 = h∗i in terms of
Lemma 4.10. The hi are also Qh-horizontal discs for i > 0.

By construction, we know that πxhi(0) = 0. Let x∗i be a point such that
f i(h0(x∗i )) = hi(0). Since f satisfies cone conditions for (Qv,mv), for any point
q such that Qv(f(q)) ≤ 0, we must have Qv(q) ≤ 0. This means that since
Qv(hi(0)) ≤ 0, we also have Qv(fk(h0(x∗i ))) ≤ 0 for k = 0, . . . , i. Since Bu is
compact, there exists a convergent subsequence x∗im to some x∗ ∈ Bu. It means
that there exists an x∗ ∈ Bu such that

(5.6) f i(h0(x∗)) ∈ {Qv ≤ 0} ∩N for all i ≥ 0.

The point x∗ is a candidate for ws(y0).
We now check that ws(y0) is well defined. Suppose that

(5.7) f i(h0(x∗∗)) ∈ {Qv ≤ 0} ∩N for all i ≥ 0.

From Lemma 4.3 we know that for C > 0,

(5.8) ‖f i(h0(x∗))‖ ≤ C(
√
mh)i, ‖f i(h0(x∗∗))‖ ≤ C(

√
mh)i.

On the other hand,

‖f i(h0(x∗))− f i(h0(x∗∗))‖2 ≥ Qv(f i(h0(x∗))− f i(h0(x∗∗)))

≥ mi
vQh(h0(x∗)− h0(x∗∗)) ≥ 0.

Since mh < mv above inequality and (5.8) imply that h0(x∗) = h0(x∗∗).
The same argument can be used to show that any two points p∗ 6= p∗∗ on

the strong stable manifold W s√
mh

must satisfy

(5.9) Qv(p
∗ − p∗∗) ≤ 0,

since if this were not the case, we would have

‖f i(p∗)− f i(p∗∗)‖2 ≥ Qv(f i(p∗)− f i(p∗∗)) > mi−1
v Qh(f(p∗)− f(x∗∗)) > 0,

contradicting contraction at the rate
√
mh.

Observe that by (5.8), ws parameterizes the stable manifold.
It left to show that ws is Lipschitz with a constant L =

√
αv. By (5.9)

0 ≥ Qv((ws(y1), y1)− (ws(y2), y2)),

hence ||ws(y1)− ws(y2)||2 ≤ αv||y1 − y2||, as required. �

Remark 5.2. In the proof, the constant C from Theorem 3.7 was established
via Lemma 4.3. In Lemma 4.3 we see that C =

√
2(1− αvαh)−1 depends only

on the coefficients of the cones αh, αv.
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6. Establishing manifolds of ODEs

In this section we consider an ODE

(6.1) p′ = F (p),

with F of class C1, satisfying: for all p ∈ N

(6.2) ‖F (p)‖ ≤ µ, ‖DF (p)‖ ≤ L,

and for any p1, p2 ∈ N

(6.3) ‖DF (p1)−DF (p2)‖ ≤M‖p1 − p2‖.

Let φt(p) stand for the flow induced by (6.1). We assume that zero is a fixed
point.

Definition 6.1. Let U be a neighbourhood of zero and let λ > 0. We say
that a set Wu

λ,U consisting of all points p satisfying:

(a) φt(p) ∈ U for all t ≤ 0;

(b) there exists a constant C > 0 (which can depend on p), such that for all
t ≤ 0,

‖φt(p)‖ ≤ Cetλ;

is a strong unstable manifold with expansion rate λ in U .

Definition 6.2. Let U be a neighborhood of zero and let λ < 0. We say
that a set W s

λ,U consisting of all points p satisfying:

(a) φt(p) ∈ U for all t ≥ 0;

(b) there exists a constant C > 0 (which can depend on p), such that for all
t ≥ 0,

(6.4) ‖φt(p)‖ ≤ Cetλ;

is a strong stable manifold with contraction rate λ in U .

Let us assume that

[DF (N)] ⊂
(

A ε1
ε2 B

)
,

where A, B, ε1 and ε2 are interval matrices. Let Qh and Qv be as defined in
(3.3)–(3.4). Assume that we have two constants ch, cv ∈ R such that for any
A ∈ A, B ∈ B, ε1 ∈ ε1 and ε2 ∈ ε2

xT
(
A− 1

2

(
‖ε1‖+

1

αh
‖ε2‖

)
Id

)
x > ch‖x‖2,(6.5)

xT
(
A− 1

2
(‖ε1‖+ αv‖ε2‖)Id

)
x > cv‖x‖2,(6.6)

yT
(
B +

1

2
(‖ε2‖+ αh‖ε1‖)Id

)
y < ch‖y‖2,(6.7)
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yT
(
B +

1

2

(
‖ε2‖+

1

αv
‖ε1‖

)
Id

)
y < cv‖y‖2.(6.8)

Theorem 6.3. Let ru =
√

1− αv and U = Bu(0, ru) × Bs. If cv > ch and
cv > 0, then there exists a function wu : Bu(0, ru)→ Bs, such that

Wu
cv,N ∩ U = {(x,wu(x)) | x ∈ Bu(0, ru)}.

Moreover, wu is Lipschitz with a constant Lu =
√
αh.

Theorem 6.4. Let rs =
√

1− αh and U = Bu × Bs(0, rs). If ch < cv and
ch < 0, then there exists a function ws : Bs(0, r

s)→ Bu, such that

W s
ch,N

∩ U = {(ws(y), y) | y ∈ Bs(0, rs)}.

Moreover, ws is Lipschitz with a constant Ls =
√
αv.

Remark 6.5. Let us note that the assumptions of Theorems 6.3 and 6.4 fol-
low directly from the estimates on the vector field. There is no need to integrate
the ODE to verify them.

We need some auxiliary results before we give proofs of the theorems at the
end of the section. We start with a technical lemma.

Lemma 6.6. Assume that the vector field satisfies the conditions (6.2) and
(6.3). Then for

g1(p1, p2, t) = φt(p1)− φt(p2)− (p1 − p2),

g2(p1, p2, t) = F (φt(p1))− F (φt(p2))− (F (p1)− F (p2)),

we have the following estimates:

‖g1(p1, p2, t)‖ ≤ (e|t|L − 1)‖p1 − p2‖,(6.9)

‖g2(p1, p2, t)‖ ≤ (L(eL|t| − 1) + |t|eL|t|µM)‖p1 − p2‖.(6.10)

Proof. The proof is given in Appendix A. �

The following lemma will be the key for the proof of Theorems 6.3 and 6.4.

Lemma 6.7. Let Q(x, y) = α‖x‖2 − β‖y‖2 with α, β > 0. Assume that for
c ∈ R and any A ∈ A, B ∈ B, ε1 ∈ ε1 and ε2 ∈ ε2 holds:

xT
(
A− 1

2

(
‖ε1‖+

β

α
‖ε2‖

)
Id

)
x > c‖x‖2,(6.11)

yT
(
B +

1

2

(
‖ε2‖+

α

β
‖ε1‖

)
Id

)
y < c‖y‖2.(6.12)

Then for sufficiently small t > 0, the map φt satisfies cone conditions in N for
(Q,m = 1 + t2c).
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Remark 6.8. Conditions (6.11), (6.12) hold when the two matrixes

A− 1

2

(
‖ε1‖+

β

α
‖ε2‖+ 2c

)
Id, −B +

1

2

(
− ‖ε2‖ −

α

β
‖ε1‖+ 2c

)
Id,

are strictly positive definite. The same approach can be used to verify (6.5)–(6.8).

Proof of Lemma 6.7. Let g1 and g2 be the functions defined in Lemma
6.6. Let Q denote the (u + s) × (u + s) matrix associated with Q, that is,
Q(p) = pTQp, and let

C =

∫ 1

0

DF ((1− t)p2 + tp1) dt ∈ [DF (N)].

We can compute
d

dt
Q(φt(p1)− φt(p2)) = (φ′t(p1)− φ′t(p2))TQ(φt(p1)− φt(p2))(6.13)

+ (φt(p1)− φt(p2))TQ(φ′t(p1)− φ′t(p2))

= (F (φt(p1))− F (φt(p2)))TQ(φt(p1)− φt(p2))

+ (φt(p1)− φt(p2))TQ(F (φt(p1))− F (φt(p2)))

= (F (p1)− F (p2) + g2(p1, p2, t))
TQ(p1 − p2 + g1(p1, p2, t))

+ (p1 − p2 + g1(p1, p2, t))
TQ(F (p1)− F (p2) + g2(p1, p2, t))

= (p1 − p2)T (CTQ+QC)(p1 − p2) + g3(p1, p2, t),

where by (6.9)–(6.10) we see that for any p1, p2 ∈ N and |t| ≤ 1

‖g3(p1, p2, t)‖ ≤ bt‖p1 − p2‖2,

for a constant b dependent on µ, L, M , α and β. Since C ∈ [DF (N)], it is of
the form

C =

(
A ε1
ε2 B

)
,

with A ∈ A, B ∈ B, ε1 ∈ ε1 and ε2 ∈ ε2. Using the fact that

xT εiy ≥ −‖εi‖‖x‖‖y‖ ≥ −
1

2
‖εi‖(xTx+ yT y) for i = 1, 2

for p = (x, y) 6= 0 we can compute

pTQCp =αxTAx+ αxT ε1y − βyT ε2x− βyTBy(6.14)

≥αxTAx− α1

2
‖ε1‖(xTx+ yT y)

− β 1

2
‖ε2‖(xTx+ yT y)− βyTBy

=αxT
(
A− 1

2
(‖ε1‖+

β

α
‖ε2‖)Id

)
x

− βyT
(
B +

1

2
(‖ε2‖+

α

β
‖ε1‖)Id

)
y
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>αc‖x‖2 − βc‖y‖2 = cpTQp.

Similarly, it follows that for p 6= 0

(6.15) pTCTQp > cpTQp.

Combining (6.13)–(6.15), taking p1 6= p2, for some ξ ∈ [−t, t] (which depends on
p1, p2 and t),

Q(φt(p1) − φt(p2)) = Q(φt(p1)− φt(p2))|t=0 + t
d

ds
Q(φs(p1)− φs(p2))|s=ξ

=Q(p1 − p2) + t(p1 − p2)T (CTQ+QC)(p1 − p2) + tg3(p1, p2, ξ)

> (1 + 2tc)Q(p1 − p2) + tg3(p1, p2, ξ).

Since ‖tg3(p1, p2, ξ)‖ ≤ bt2‖p1 − p2‖2, we see that for sufficiently small |t|

Q(φt(p1)− φt(p2)) ≥ (1 + 2tc)Q(p1 − p2),

as required. �

We are now ready to prove Theorems 6.3 and 6.4.

Proof of Theorem 6.3. From Lemma 6.7 it follows that there exists a τ∗

such that for any τ ∈ (0, τ∗) the time shift along the trajectory map φτ satisfies
cone conditions for (Qh,mh) and (Qv,mv), with

mh = mh(τ) = 1 + τ2ch, mv = mv(τ) = 1 + τ2cv.

We can choose τ∗ small enough so that mh(τ) > 0, for τ ∈ (0, τ∗). Also,
since cv > 0, we see that mv(τ) > 1. By Theorem 3.6, there exists a strong
unstable manifold for φτ , such that Wu√

mv(τ),N
∩ U is a graph of a function

wu,τ : Bu(0, r)→ Bs.
We will now show that for τ1, τ2 ∈ (0, τ∗) we have wu,τ1 = wu,τ2 . Assume

that τ1 < τ2. Let us fix x ∈ Bu(0, r) and define p1 = wu,τ1(x), p2 = wu,τ2(x).
We will show that p1 = p2. In our argument we will use the fact that

(6.16) 1 ≤
(

1 +
b

a

)a/2
≤ (1 + b)1/2 for a ∈ (0, 1], and b > 0.

Let n ∈ N be fixed. Since τ1 < τ2, there exists a k ∈ N, k > n and δ ∈ [0, τ1),
such that nτ2 = kτ1 − δ. From (6.16), by taking b = 2cvτ1 and a = n/k, it
follows that (

1 + 2cv
k

n
τ1

)−n/2
≥ (1 + 2cvτ1)−k/2,

which gives

(
√
mv(τ2))−n = (1 + 2cvτ2)−n/2 ≥

(
1 + 2cv

k

n
τ1

)−n/2
≥ (1 + 2cvτ1)−k/2 = (

√
mv(τ1))−k.
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From this estimate we see that

‖(φτ2)−n(p1)‖ = ‖φ−nτ2(p1)‖ = ‖φδ ◦ φ−kτ1(p1)‖

≤ eLδ‖φ−kτ1(p1)‖ ≤ eLτ1C
√
mv(τ1)

−k
≤ eLτ1C

√
mv(τ2)

−n
,

which means that p1 is on the strong unstable manifold for the map φτ2 , hence
p1 = p2, as required.

Since the strong unstable manifold for the time shift maps φτ is independent
of the choice of τ , we see that it coincides with a strong unstable manifold for
the flow φt. What remains is to prove that the expansion rate for this manifold
is cv.

For τ ∈ (0, τ∗) the map φτ satisfies cone conditions for (Qh,mh(τ)) and
(Qv,mv(τ)) (where Qh and Qv are the same for all τ), hence by Remark 5.1,

‖(φτ )−n(p)‖ ≤ C
√
mv(τ)

−n
,

for C which is independent of τ . Let t < 0. The expansion rate condition follows
from computing

‖φt(p)‖ = ‖(φ|t|/n)−n(p)‖ ≤ C(
√
mv(|t|/n))−n(6.17)

= C

(
1 +

2

n
|t|cv

)−n/2
n→+∞−−−−−→Cetcv ,

as required. �

Proof of Theorem 6.4. The result follows from combining Lemma 6.7
with Theorem 3.7, and mirror arguments to the proof of Theorem 6.3. �

7. Proof of a homoclinic connection in the restricted
three body problem

7.1. A suitable change of coordinates. To verify the assumptions of
Theorem 6.3 close to L1 we consider the PCR3BP in suitable local coordinates.
These are introduced below in two steps. The first step takes the linearized vector
field into a Jordan form, through a linear change of coordinates. The second step
involves a nonlinear change of coordinates, which further “straightens out” the
unstable coordinate.

We now discuss the linear change of coordinates. The libration point is of
the form

Lµ1 = (xµL1
, 0, 0, xµL1

).
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The Jacobian of the vector field has an unstable eigenvalue, which we denote
as λ. We consider the following linear change of coordinates ([20], Section 2.1)

(7.1) Cµ =


2λ
s1

−2λ
s1

0 2v
s2

λ2−2c2−1
s1

λ2−2c2−1
s1

−v2−2c2−1
s2

0
λ2+2c2+1

s1
λ2+2c2+1

s1
−v2+2c2+1

s2
0

λ3+(1−2c2)λ
s1

−λ3−(1−2c2)λ
s1

0 −v3+(1−2c2)v
s2


where

c2 =
1

γ3

(
µ+

(1− µ)γ3

(1− γ)3

)
, s1 =

√
2λ((4 + 3c2)λ2 + 4 + 5c2 − 6c22),

γ = xµL1
+ 1− µ, s2 =

√
v((4 + 3c2)v2 − 4− 5c2 + 6c22,

that puts the linear terms of the vector field at Lµ1 into the Jordan form
λ 0 0 0

0 −λ 0 0

0 0 0 v

0 0 −v 0

 .

We note that in the above, for sake of keeping the notations short, we have
omitted the dependence of parameters on µ. In fact, for different µ, each nonzero
entry of Cµ is different.

Using the notation x = (X,Y, PX , PY ) for the original coordinates of the
problem, we introduce local coordinates v at Lµ1 as x = Lµ1 + Cµv. In coordi-
nates v, the vector field is

F̃ (v) = (Cµ)−1F (Lµ1 + Cµv),

and the Jacobian of the vector field at zero is

DF̃ (0) = diag (Ah, Ac),

with

Ah =

(
λ 0

0 −λ

)
and Ac =

(
0 v

−v 0

)
.

The matrix Ah represents the linearized hyperbolic dynamics, and Ac represents
the center rotation at the fixed point.

The second step is to consider a nonlinear change of coordinates. To do so
let us consider an equation

(7.2) F̃ (K(x)) = R(x)DK(x),

where K : R → R4 and R : R → R are analytic. We refer to (7.2) as the co-
homology equation. The graph of K parametrizes the unstable manifold at the
fixed point. An approximate solution of K and R can be found numerically (for
details see [5]). We use a polynomial K, which is an approximate, numerically
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obtained solution of (7.2), and use it to define the following nonlinear change of
coordinates ψ = (ψ0, ψ1, ψ2, ψ3) : R4 → R4, where

(7.3)
ψ0(x, y1, y2, y3) = K0(x)− (y1K

′
1(x) + y2K

′
2(x) + y3K

′
3(x)),

ψi(x, y1, y2, y3) = Ki(x) + yiK
′
0(x) for i = 1, 2, 3.

Note that since the graph ofK approximates the unstable manifold, ψ(x, 0) =

K(x) gives points close to the unstable manifold of the fixed point. The intuitive
idea behind (7.6) is to arrange the coordinates so that ψ (x, y1, y2, y3)−K(x) is
orthogonal to K ′(x) (see Figure 9).

Figure 9. The unstable manifold in coordinates q =(x, y1, y2, y3) (left),
and in coordinates v (right).

Combining the linear and nonlinear changes of coordinates gives the total
change Φ: R4 → R4 from coordinates q = (x, y1, y2, y3), defined as

(7.4) x = Φµ(q) := Cµψ(q).

The vector field in coordinates q is

(7.5) F̂ (q) = D(Φµ)−1(Φµ(q))F (Φµ(q)).

Remark 7.1. In our application, the nonlinear change of coordinates is not
strictly necessary. Even without it we can obtain our result, but with smaller
accuracy. We decided to add the nonlinear change in order to demonstrate that
such techniques are possible. Also, with a nonlinear change of coordinates some
more careful consideration is needed when computing the derivative of the vector
field in local coordinates. This is discussed in section 7.2.

7.2. Enclosure of the unstable manifold. In order to obtain an enclo-
sure of the unstable manifold in coordinates q we apply Theorem 6.3 to establish
the existence of the manifold.

Let us first specify our change of coordinates Φµ (see (7.4)). The linear part
Cµ of Φµ is given by (7.1). We consider an interval of parameters

µ = 0.004253863522 + 10−10[−1, 1],
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and for any µ ∈ µ take the same nonlinear change ψ (see (7.6)), withK chosen as

(7.6)

K0(x) = x,

K1(x) = −0.4426997319120566x2 + 0.2117307906593041x3,

K2(x) = 0.7204702544171099x2 − 0.2077414984788253x3,

K3(x) = 0.6096754412253178x2 − 1.6248371332133488x3.

The first step is to obtain an enclosure of the fixed point in local coordinates q
(see (7.4)). We do this by applying the interval Newton method (Theorem 2.1).
In order to do this we have to compute the derivative of the local vector field
(7.5) as follows. Since D((Φµ)−1)(Φµ(q)) = (DΦµ(q))−1, we see that

DΦµ(q)F̂ (q) = F (Φµ(q)).

Differentiating on both sides gives

D2Φµ(q)F̂ (q) +DΦµ(q)DF̂ (q) = DF (Φµ(q))DΦµ(q),

hence

(7.7) DF̂ (q) = (DΦµ(q))−1(DF (Φµ(q))DΦµ(q)−D2Φµ(q)F̂ (q)).

The main advantage of this approach is that we do not need to invert Φµ to
apply (7.7). Using (7.7) and Theorem 2.1 we can establish that for all µ ∈ µ the
fixed point is in a set which we denote as B.

The second step is to verify assumptions of Theorem 3.6 using Lemma 6.7.
In order to do so we choose αh, αv, and take

(7.8) N = B + [0, ru]× [−ru
√
αh, ru

√
αh]3.

To obtain a good enclosure we subdivide the set N , and compute the derivative
on smaller subsets. Numerical results are listed in section 7.4. The unstable
manifold expressed in local coordinates q passes through (see Figure 10)

(7.9) U = B + {
√

1− αv} × [−
√
αh,
√
αh]3.

Figure 10. The unstable manifold expressed in local coordinates (in red)
passes through a box U (in green). The enclosure B of a fixed point is
a small blue box around 0.
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7.3. Proof of existence of a homoclinic connection. Let Uµ be a set
which contains a point on the unstable manifold of Lµ1 . Assume that for any
µ ∈ µ the Poincaré map

(7.10) Pµ : Uµ → {y = 0}, Pµ(x) := φτ(x)(x),

where τ(x) = inf{t | t > 0, φt(x) ∈ {y = 0}}, is well defined.

Lemma 7.2. Assume that µ = [µleft, µright]. If

πpxPµleft
(x) < 0, for any x ∈ Uµleft

,(7.11)

πpxPµright
(x) > 0, for any x ∈ Uµright

,(7.12)

then there exists a µ ∈ (µleft, µright), for which we have a homoclinic orbit to Lµ1 .

Proof. Let xµ be any point from the intersection of Uµ with Wu(Lµ1 ). If

(7.13) Pµ(xµ) = (x, 0, 0, py),

for some x, py (which depend on µ), then the point Pµ(xµ) is S-symmetric (see
(2.3)), and by (2.4)

S(φt(Pµ(xµ))) = φ−t(S(Pµ(xµ))) = φ−t(Pµ(xµ))
t→+∞−−−−−→Lµ1 .

This means that Pµ(xµ) lies on a homoclinic orbit to Lµ1 .
We need to prove that there exists a parameter µ ∈ µ, for which Pµ(xµ) would

be of the form (7.13). By definition of Pµ (7.10), we know that πyPµ(xµ) = 0.
It is therefore sufficient to show that for some µ ∈ (µleft, µright)

πpxPµ(xµ) = 0.

Let g : [µleft, µright] → R be defined as g(µ) = πpxPµ(xµ). By (7.11)–(7.12) we
see that g(µleft) < 0 < g(µright). By continuity of the flow with respect to the
parameters of the vector field, we know that g is continuous, hence existence of
µ for which g(µ) = 0 follows from the Bolzano theorem.

For a given µ ∈ µ we can obtain the enclosure Uµ using the method de-
scribed in section 7.2. In fact, the method can be applied not only for a single
parameter µ ∈ µ, but for an interval of parameters. Conditions (7.11)–(7.12)
can be verified by integrating the system numerically, using a rigorous, interval
arithmetic based integrator. Such tool is available as a part of the CAPD (1)
library. The package can compute Poincaré maps Pµ on prescribed parameter
intervals. As the Poincaré map is computed, at the same time it is verified that
it is well defined.

(1) Computer Assisted Proofs in Dynamics http://capd.ii.uj.edu.pl.
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7.4. Computer assisted bounds. Let us first take

µleft = 0.004253863522− 10−10.

In local coordinates q, the enclosure B for the fixed point is

B = 10−15


[−1.137, 1.169]

[−0.426, 0.394]

[−0.181, 0.181]

[−0.180, 0.308]

 .

For the enclosure N of the unstable manifold (7.8) in coordinates q we take

αh = 10−8, αv = 10−4, ru = 10−7.

The enclosure (displayed with rough rounding, which ensures true enclosure) of
the derivative of the vector field in local coordinates is

[DF̂ (N)]

=


[2.80038,2.80039] 10-6[-0.0065,1.281] 10-9[-1.469,1.468] 10-7[-6.752,0.032]

10-98.521[-1,1] [-2.80039,-2.80038] 10-6[-0.0015,1.01] 10-7[-5.352,0.032]

10-96.035[-1,1] 10-7[-6.752,0.0320] 10-7[-2.659,0.0044] [2.25179,2.25180]

10-94.053[-1,1] 10-9[-1.468,1.469] [-2.25180,-2.25179] 10-7[-0.0044,2.66]

 .

To apply Theorem 6.3 we take cv = 2.8 (which looking at [DF̂ (N)] is clearly
close to its unstable eigenvalue) and ch = 1 (here we arbitrarily chose a number
from (0, cv)), and verify conditions (6.5)–(6.8).

The set U defined in (7.9), when transported to the original coordinates is
equal to (displayed with rough rounding, which ensures true enclosure)

Uµleft
= Lµleft

1 + 10−8


[4.007, 4.008]

[−1.934,−1.931]

[13.15, 13.16]

[−1.407,−1.402]

 .

This shows that we enclose the unstable manifold very close to the fixed point.
After propagating the set Uµ

left
to the section {y = 0} we obtain an estimate

on the image by the Poincaré map

[
Pµ

left

(
Uµ

left

)]
=


0.8270258829 + 10−10[−1, 1]

0

−10−8[7.501, 2.915]

0.9251225636 + 10−10[−1, 1]

 .

The important result is that on the third coordinate we have values smaller than
zero, which verifies (7.11).
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For µright = 0.004253863522 + 10−10, up to the rounding used to present the
result in this paper, the estimates on B and [DF̂ (N)] are indistinguishable from
the ones for µleft. The important fact though is that

[
Pµ

right

(
Uµ

right

)]
=


0.82702588075 + 10−10 [−1, 1]

0

10−8[2.825, 7.421],

0.9251225623 + 10−10 [−1, 1]

 ,

is positive on the third coordinate, which ensures (7.12).
To verify that Pµ is well defined for all µ ∈ µ, similar computations, but

with lesser accuracy, were performed.
The computer assisted proof takes 4.27 seconds, on a single core Intel i7

processor, with 1.90GHz. Majority of this time was spent on verifying that Pµ
is well defined for all µ ∈ µ. In order to do so, the parameter interval was
subdivided into 20 fragments µ = µ1 ∪ . . . ∪ µ20, and each time we needed to
integrate from Uµi

to the section {y = 0}, for i = 1, . . . , 20, which was time
consuming.

8. Closing remarks

The paper presents a new method for establishing of strong (un)stable man-
ifolds for fixed points. The method can be applied for computer assisted proofs.
We have shown an application of our method in the context of the planar circular
restricted three body problem, proving that there exists a homoclinic orbit to
the libration point L1 for a suitably chosen mass parameter. Our method pro-
duced a tight enclosure of the manifold and also a tight enclosure for the mass
parameter for which the manifold leads to a homoclinic connection.
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Appendix A

Proof of Lemma 3.9. For any q∗, q∗∗ ∈ N

d

dt
f((1− t)q∗∗ + tq∗) = Df((1− t)q∗∗ + tq∗)(q∗ − q∗∗),

hence

f(q∗)− f(q∗∗) =

∫ 1

0

Df((1− t)q∗∗ + tq∗) dt(q∗ − q∗∗).

Since

B =

∫ 1

0

Df((1− t)q∗∗ + tq∗) dt ∈ [Df(N)],

we see that for q∗ 6= q∗∗

Q(f(q∗)− f(q∗∗))−mQ(q∗ − q∗∗) = Q(B(q∗ − q∗∗))−mQ(q∗ − q∗∗) > 0,

as required. �

Proof of Remark 4.1. (a) If ‖x‖ ≤ 1 and Qh(x, y) ≥ αh − 1, then

αh − ‖y‖2 ≥ αh‖x‖2 − ‖y‖2 = Qh(x, y) ≥ αh − 1,

hence ‖y‖ ≤ 1.

(b) If ‖y‖ ≤ 1 and Qv(x, y) ≤ 1− αv, then

‖x‖2 − αv ≤ ‖x‖2 − αv‖y‖2 = Qv(x, y) ≤ 1− αv,

hence ‖x‖ ≤ 1.

(c) Assume that Qh(x, y) ≥ αh − 1 and Qv(x, y) ≤ 1 − αv. If ||x|| ≤ 1 or
||y|| ≤ 1 then from points (a) and (b) of the Remark 4.1, we get (x, y) ∈ N .
Suppose that ||x|| > 1 and ||y|| > 1. From the assumptions,αh‖x‖2 − ‖y‖2 ≥ αh − 1,

‖x‖2 − αv‖y‖2 ≤ 1− αv.

Thus, rearranging the above inequalities gives
||x||2 − 1

||y||2 − 1
≥ 1

αh
> 1,

||x||2 − 1

||y||2 − 1
≤ αv < 1,

which is a contradiction. This implies that (x, y) ∈ N .
(d) If ‖y‖ ≤ a, then

Qh(x, y) = αh‖x‖2 − ‖y‖2 ≥ αh‖x‖2 − a2 ≥ −a2,

as required. �
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Proof of Lemma 4.2. Let us write qk = (xk, yk). Since Qh(xk, yk) ≥ 0,

(A.1) ‖xk‖2 ≥ αh‖xk‖2 ≥ ‖yk‖2.

Let us observe that

Qv(xk, yk) = ‖xk‖2 − αv‖yk‖2 ≥ αh‖xk‖2 − ‖yk‖2 = Qh(xk, yk) ≥ 0,

which implies that qk ∈ {Qv ≥ 0}. From (Qv,mv) cone conditions follows that
for k ≤ 0,

Qv(qk) = Qv(f(qk−1)− f(0)) ≥ mvQv(qk−1 − 0) = mvQv(qk−1) ≥ 0.

This implies that for any k ≤ 0,

(A.2) Qv(q0) ≥ m|k|v Qv(qk).

Since αh, αv ∈ (0, 1), by (A.1),

Qv(qk) = ‖xk‖2 − αv‖yk‖2 ≥ (1− αvαh)‖xk‖2 ≥ (1− αvαh)‖yk‖2,

hence from (A.2), for any k ≤ 0,

(A.3) ‖xk‖2 + ‖yk‖2 ≤ 2(1− αvαh)−1Qv(qk) ≤ 2(1− αvαh)−1mk
vQv(q0).

Since Qv(q0) = ‖x0‖2 − αv‖y0‖2 ≤ ‖x0‖2 ≤ 1, (A.3) gives

‖qk‖ =
√
‖xk‖2 + ‖yk‖2 ≤

√
2(1− αvαh)−1

√
mv

k
,

as required. �

Proof of Lemma 4.3. The proof follows along the same lines as the proof
of Lemma 4.2.

Let us use the notation (xk, yk) = fk(q0). Since (xk, yk) ∈ {Qv ≤ 0}

(A.4) ‖xk‖2 ≤ αv‖yk‖2 ≤ ‖yk‖2.

Let us observe that

Qh(x, y) =αh‖x‖2 − ‖y‖2 ≤ αh(‖x‖2 − ‖y‖2)

≤αh(‖x‖2 − αv‖y‖2) = αhQv(x, y) ≤ 0,

which implies that fk(q0) ∈ {Qh ≤ 0}. From (Qh,mh) cone conditions follows
that for k ≥ 0,

(A.5) 0 ≥ Qh(fk(q0)) ≥ mk
hQh(q0).

Since αh, αv ∈ (0, 1), by (A.4) and (A.5),

(1− αhαv)‖xk‖2 ≤ (1− αhαv)‖yk‖2(A.6)

≤ ‖yk‖2 − αh‖xk‖2 = −Qh(fk(q0)) ≤ mk
h|Qh(q0)|.

Since

(A.7) |Qh(q0)| = ‖y0‖2 − αh‖x0‖2 ≤ ‖y0‖2 ≤ 1,
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combining (A.6) and (A.7),

‖fk(q0)‖2 = ‖xk‖2 + ‖yk‖2 ≤ 2(1− αhαv)−1mk
h|Qh(q0)| ≤ 2(1− αhαv)−1mk

h,

as required. �

Proof of Lemma 6.6. The proof of Lemma 6.6 is based on the Gronwall
lemma. We start by writing out its statement.

Lemma A.1 (Gronwall lemma, [12]). If u, v, c ≥ 0 on [0, t], c is differentiable,
and

v(t) ≤ c(t) +

∫ t

0

u(s)v(s) ds

then

v(t) ≤ c(0) exp

(∫ t

0

u(s) ds

)
+

∫ t

0

c′(s)

[
exp

(∫ t

s

u(τ) dτ

)]
ds.

We are now ready to give the proof of Lemma 6.6. We start by proving
(6.9) for t > 0. Let us fix p1 6= p2 and consider v(t) = ‖g1(p1, p2, t)‖. Since
g1(p1, p2, 0) = 0,

v(t) =

∥∥∥∥∫ t

0

d

ds
g1(p1, p2, s) ds

∥∥∥∥
=

∥∥∥∥∫ t

0

F (φs(p1))− F (φs(p2)) ds

∥∥∥∥
≤
∫ t

0

L‖φs(p1)− φs(p2)− (p1 − p2)‖ ds+

∫ t

0

L‖p1 − p2‖ dt.

Taking c(t) = tL‖p1 − p2‖ and u(t) = L, by Lemma A.1,

v(t) ≤
∫ t

0

L‖p1 − p2‖
[

exp

(∫ t

s

Ldτ

)]
ds = L‖p1 − p2‖

1

L
(etL − 1),

which concludes the proof of (6.9) for t > 0. For negative times, the proof follows
by taking v(t) = g(p1, p2,−t), with t > 0, and performing mirror computations.

We now prove (6.10) for t > 0. We first observe that by our assumptions
(6.2) and (6.3) on the vector field F it follows that for s > 0,

‖φs(p1)− φs(p2)‖ ≤ ‖p1 − p2‖eLs,(A.8)

‖DF (φs(p1))−DF (φs(p2))‖ ≤M‖φs(p1)− φs(p2)‖,(A.9)

‖[DF (φs(p1))−DF (φs(p2))]F (φs(p2))‖(A.10)

≤ µ‖DF (φs(p1))−DF (φs(p2))‖.
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We take v(t) = ‖g2(p1, p2, t)‖, and compute (using (A.8)–(A.10) in the second
inequality)

v(t) =

∥∥∥∥∫ t

0

d

ds
(F (φs(p1))− F (φs(p2)))− (F (p1)− F (p2)) ds

∥∥∥∥
=

∥∥∥∥∫ t

0

DF (φs(p1))F (φs(p1))−DF (φs(p2))F (φs(p2)) ds

∥∥∥∥
≤
∫ t

0

‖DF (φs(p1))F (φs(p1))−DF (φs(p1))F (φs(p2))‖ ds

+

∫ t

0

‖DF (φs(p1))F (φs(p2))−DF (φs(p2))F (φs(p2))‖ ds

≤
∫ t

0

L‖F (φs(p1))− F (φs(p2))‖ ds+

∫ t

0

µMeLs‖p1 − p2‖ ds

≤
∫ t

0

Lv(s)ds+

∫ t

0

L‖F (p1)− F (p2)‖ ds+

∫ t

0

µMeLs‖p1 − p2‖ ds

≤
∫ t

0

Lv(s) ds+

∫ t

0

(L2 + µMeLs)‖p1 − p2‖ ds.

Taking c(t) =
∫ t
0
(L2 + µMeLs)‖p1 − p2‖ ds and u(t) = L, by Lemma A.1,

v(t) ≤
∫ t

0

(L2 + µMeLs)‖p1 − p2‖
[

exp

(∫ t

s

Ldτ

)]
ds

= (L(eLt − 1) + teLtµM)‖p1 − p2‖.

This concludes the proof of (6.10) for t > 0. For negative times, we take v(t) =

‖g(p1, p2,−t)‖, with t > 0, and perform mirror computations. �
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