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QUASILINEAR NONHOMOGENEOUS SCHRODINGER
EQUATION
WITH CRITICAL EXPONENTIAL GROWTH IN R”

MANASSES DE SOUZA — JOAO MARCOS DO O — TARCIANA SILVA

ABSTRACT. In this paper, using variational methods, we establish the ex-
istence and multiplicity of weak solutions for nonhomogeneous quasilinear
elliptic equations of the form

—Apu + a(@)|u|""2u = b(z)|[u|""2u + g(z) f(u) + b in R™,

where n > 2, Apu = div(|Vu|?"2Vu) is the n-Laplacian and ¢ is a pos-
itive parameter. Here the function g(z) may be unbounded in = and the
nonlinearity f(s) has critical growth in the sense of Trudinger—-Moser in-
equality, more precisely f(s) behaves like e20lsI™ T Ghen s - +o0 for
some ag > 0. Under some suitable assumptions and based on a Trudinger-
Moser type inequality, our results are proved by using Ekeland variational
principle, minimization and mountain-pass theorem.

1. Introduction

This paper is concerned with the existence and multiplicity of solutions for
nonhomogeneous quasilinear elliptic equations of the form

(1.1) —Apu A+ a(z)|u|"?u = b(z)|u|""*u + g(x) f(u) + eh  in R™,
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where n > 2, A,u = div(|]Vu|""2Vu) is the n-Laplacian, ¢ is a positive pa-
rameter, a,b,g: R™ — [0,400) and f: R — R are functions satisfying mild
conditions and h belongs to the dual of an appropriated subspace E of the
Sobolev space W1 m(R™). Here, we are interested when f(s) has the maximal
growth which allows to treat equation (1.1) variationally in E, in the sense that
[ 9(x)F(u)dz < oo if u € E, where F(s) = [ f(t)dt. In the so-called Sobolev
case 1 < p < n, the Sobolev embedding asserts that W1P(R") — L"(R")
for any 1 < r < p*, where p* = np/(n — p) is the critical Sobolev expo-
nent. Consequently, for this case, the maximal growth is naturally given by
the Sobolev exponent (cf. [26]). In the borderline case p = n, formally p* ~~ oo,
but WL(R™) o L°(R"). For this case, the maximal growth is motivated by
an inequality of Trudinger—-Moser type which ensures that W™ (R") is embed-

ded in an Orlicz space generated by the Young function ¢(s) ~ eonlsl™ "7 ag
|s|] = oo, where o, = nw}/_(?fl) and wy,_1 is the measure of the unit sphere

in R™ (cf. [1], [7], [8], [13], [21], [22], [25])-

Since (1.1) is of variational type, we can see that solutions of (1.1) correspond
to critical point of the associated energy functional and to obtain the existence
and multiplicity of solutions of (1.1) we will apply minimax methods, more
precisely, the Ekeland variational principle combined with minimization and the
mountain-pass theorem. For that we will assume suitable conditions on the
potential a(x) with which we will be able to consider a variational framework
based in the subspace E of W1 (R") given by

o {u € Whn (R ; / a(@)|ul" de < oo}

which is a Banach space when endowed with the norm

(12) full = ([ v +a<x>|u|”>dx)1/n.

Moreover, using the Clarkson’s first inequality (see [4, p. 95]) it follows that E
is uniformly convex, and thus reflexive.

Fixed h in the dual space E’ of E, we will look for u € E weak solution of
problem (1.1) in the following sense

/n[(|Vu|”*2Vqu+a(x)|u|”*2uv) —b(z) |[u|"2uv — g(z) f (u)v] dz—e(h,v) = 0,

for all v € E, where (-, -) denotes the duality pairing between E and its dual
space F’ with associated norm denoted by || - || 5.

In order to state our main results, let us introduce the assumptions that we
assume throughout this article:

(a1) The function a: R™ — [0, 4+00) is measurable and a € L (R™).

loc
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(a2) The infimum X; := inf{ [, (|Vu|" + a(z)|u|") dz : v € E and ||u||, = 1}
is positive.
Consider the space E endowed with the norm given in (1.2). Suppose that the
conditions (a1) — (az) are valid. It is easy to see that the following embedding
are continuous:

(1.3) E — W'(R™) — L*(R™) for all s € [n, +00).

We use the following notation: if 2 C R™ is open and s € [n, +00), we set
/(|Vu\" + a(z)|u|") dz
inf Q

vs(Q) = { ueWs " (2)\{0} </ |u|5dx)n/s
Q
00 if @ = 0.

if Q £ 0,

In order to obtain a compactness result, we shall consider the following assump-
tions:

(a3) Rlim vn(R™\ BR) = oo;
—00
(a4) There exist a function A(x) € Ly (R™), with A(x) > 1, and constants
B >1, ¢y, Ry > 0 such that
A(z) < co[1 + (a(x))/?], for all |z| > Ry.

We will prove in Lemma 2.4 that under assumptions (asg)—(a4), the space E is
compactly embedding into L*(R"™) for all s € [n, 4+00).

Concerning the function g(z), we assume that it is strictly positive and does
not have to be bounded in x provided that the growth of g(x) is controlled by
the growth of a(x). More precisely,

(g1) g: R™ — [0, +00) is continuous and there exist Ag, Ag > 0 such that
Ao < g(z) < AgA(z), for all x € R™.

We assume the following assumptions on the nonlinear term:
(f1) f: R — R is continuous and liII(l) f(s)st=" =o0.
S—

(f3) f has critical growth, that is, there exists cg > 0 such that

lim f(s)e_alsln/(nfl) _ 0 fOI" all a > o,
|s] =400 +oo for all o < a.
(f3) There is 4 > n such that
0 < uF(s) <sf(s), forallseR\{0}.
(f4) There exist constants Sy, My > 0 such that

0 < F(s) < My|f(s)], forall|s| > Sp.
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Concerning the function b(z), we assume that

(b1) b: R™ — [0, +00) is a measurable function such that ||b]|, < Sf., where
to := on/(o — 1) for some ¢ > 1 and Sy, is the best constant for the
Sobolev embedding E < L' (R™), that is,

A </n(Vu|”+a(a:)|u|”)dz>l/n.

u€E\{0} /to
/ lu|™ dx

Next we state our main results.

THEOREM 1.1. Suppose that (a1)—(a4), (g1), (f1)—(f3) and (by) are satisfied.
Then there exists €1 > 0 such that for each € € (0,e1), problem (1.1) possesses
a weak solution with negative energy.

THEOREM 1.2. Suppose that (a1)—(a4), (g1), (f1)—(f1) and (by) are satisfied.
Furthermore suppose that

(f5) there exists p > n such that
f(s) > Cpspfl, for all s > 0,

—n —n)/n n—1)(p—n)/n
c, > % Bn \? p—n (p—mn)/ ap (n=1)(p—n)/ |
)\O ﬁ -1 p Qi

Then there exists e2 > 0 such that for each e € (0,e2), problem (1.1) possesses

where

a second weak solution.

THEOREM 1.3. Suppose that h = 0 and (a;)—(a4), (g1), (f1)—(f5), (b1) are
satisfied. Then problem (1.1) possesses a nontrivial weak solution.

REMARK 1.4. We point out that the existence of solutions for the quasilinear
elliptic problem

~Apu+a(@)|u"?u = p(z,u), =R,

with n > 2 has been discussed recently under various conditions on the potential
a(x) and the nonlinearity p(x, s). For more details on this subject, we refer the
reader to the papers [2], [9], [11], [13], [14], [16], [17], [19], [27] and references
therein. It is worthwhile to remark that in these works different hypotheses
are assumed on a(x) in order to overcome the problem of “lack of compact-
ness”, typical of elliptic problems defined in unbounded domains and involving
nonlinearities in critical growth range. More precisely, in many papers it is usu-
ally assumed that the potential is continuous and uniformly positive, that is,
a(xz) > ap > 0 for any € R™. Furthermore it is assumed one of the following

conditions:
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(a) a(z) — 400 as |z| = +oo;
(b) [a(x)] ™! € LY (R™);
(¢) For any L > 0, the level set {& € R™ : a(z) < L} has finite Lebesgue

measure.

Each of these conditions guarantee that the space E = {u € WI"(R") :
Jgn a(z)|u]™ dz < oo} is compactly embedded in the Lebesgue space L*(R™)
for all s > n. Moreover, it is assumed that there exists ag > 0 such that

Ip(z,5)] < ci|s|™ ! 4 ca®u,(s), for all (z,s) € R" x R,
which implies that p(z, s) is bounded with respect to the variable x.

REMARK 1.5. Note that a sufficient condition for the hypothesis (a3) is that
Jim £(2, 0 (R"\ Br)) =0, forall L>0,
— 00

where Qp, = {z € R" : a(z) < L} and £() is the Lebesgue measure of 2. Thus,
)

the potentials satisfying (a)—(c) also satisfy the condition (a3). Consequently, the

—(c
condition (a3) improves (a)—(c). Should be stressed that our approach covers the
case when the potential a(x) may vanish and the nonlinear term admits general

growth and can be unbounded in variable x.

REMARK 1.6. In the semilinear case which corresponds to
(1.4) —Au+ a(z)u =p(x,u) in R"

such class of equations arise in various branches of mathematical physics and they
have been the subject of extensive study in recent years. Part of the interest is
due to the fact that solutions of (1.4) are related to the existence of solitary wave
solutions for nonlinear Schréodinger equations and Klein—Gordon equations (for
a discussion see for example [3]). Our work was motivated by some papers that
have appeared in the recent years concerning the study of (1.4) by using purely
variational approach since the seminal work of Rabinowitz [23]. In special should
be mentioned that the condition (a3) was already considered by B. Sirakov [24]
to study (1.4) when n > 3 and p(x, u) is superlinear and has subcritical growth
in the Sobolev sense. Our main purpose is to extend and complement the results
in [24] to consider critical growth in the Trudinger-Moser sense. Similar to
B. Sirakov [24, Proposition 3.1] we also prove here a compactness result for
the borderline case which is another important point of the present paper (cf.
Lemma 2.4).

The remaining part of this paper is organized as follows: In Section 2, we
have some technical results, and in particular, we prove the crucial fact that
the space F is compactly embedded in some Lebesgue spaces. In Section 3, we
introduce the variational framework and we study some geometric properties of
the functional . In Section 4 we obtain an estimate to the mountain pass level
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of I. In Section 5 we analyze the Palais-Smale compactness of functional I.
Theorems 1.1 and 1.2 are proved in Section 6. Finally Theorem 1.3 is proved in
Section 7.

2. Some preliminary results

In this section, we obtain some technical results which will be used in the
proof of main results. In [5] for n = 2 and [13] for n > 2 was proved the following
version of the Trudinger-Moser inequality to the whole R™:

LEMMA 2.1. Ifa >0 and u € WE"(R") then

(2.1) /n O, (u) de < oo,

where )
ne2 .
n/(n—1) a3|8|3n/(n_1)
Dy (s) := el — Z —
=0

Moreover, if 0 < o < o, [|Vulln < 1 and ||ull, < T, then there is a positive
constant C = C(a, T) such that

(2.2) / O, (u)de < C(a,T),
1/(n—1)
1

where o, == nw,_ and wy_1 1s the measure of the unit sphere in R™.

Let us consider the weighted Lebesgue space LZ(I) (R™) with the usual norm

1/s
||u||LSA(I)(]R") = (/]R A(x)u|9dx) .

LEMMA 2.2. Assume that (a;)—(az) and (ag) hold. Then E is continuously
embedding into L%, (R™) for s € [n, +00).

PROOF. By using (as) we get

(2.3) /RHA(QU)|u|s dzx = /£|>R0 A(x)|ul® dx + / Ax)|ul® dz

|z|<Ro
< Co/ [1+(a(x))1/ﬁ]|u‘5d$+ HA”L‘X’(BRD)/ |u|5d$
|z|>Ro z|<Ro
— o / (a()) A ul* dx
‘Z|>R0
e / ul* dz + (| All .~ (51, / ] de
|z|>Ro |z|<Ro

SCO/ (a(m))l/l?'u‘s dx + (Co =+ ||A||Loo(BRO))/ |u,‘9 dx
|z|>Ro R

<o [ (al)Plul* o+ o+ [ Al el
‘JE|>R0
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Using Holder’s inequality, we obtain

1/8
[ ey = [ (a<x>u|”) "8 da
|z|>Ro |z|>Ro

1/ B/(B-1) (B-1)/8
< </ a(w)|u”dm> (/ (|u5"/6> d:c) .
|z|> Ro |z|>Ro

Consequently,

(2.4) [ P de < Rl
|z|>Ro
From (2.3) and (2.4), we get

(2.5) [ A@lat do < el + Callal 2l (575G

Since (s —n/B)(B/(8 — 1)) > n, using (1.3), we conclude that
lulls, gy < Cullull® + Caflull™#|[ul**="/8 < Cjul|®.
This complete the proof of Lemma 2.2.
To obtain our compactness result we need the following lemma.

LEMMA 2.3. Let Q C R™ be an open subset. For each s € [n,+00) there exist
01 € (0,1) and C > 0 such that

(2.6) ve(Q) > C(vn ()01,
PRrOOF. Using the Gagliardo—Nirenberg inequality [18, Proposition 8.12] we

reach
lull? < Cllull =" Vuly",  for all u € Wy™(9),
where 1/s = (1 —0)/n and 6 € (0,1). Thus, by Lemma 2.2 there exists C > 0
such that
lully < Cllallg =" ], for all w € Wy (€2).
This together with the definition of v4(Q2) implies

[ 1w+ a@)al”

vs(Q) = inf R™ — > inf (|1|ul|)
uewy ™ (@)\{0} el wewy ™ (@\{0} Cllully ~""™ [lul|on
_Ly S O 1 i
C uewl™(@)\{0} Hu|| (- O jyllon C uewdm@)\{0} ||u||(1 o
1 NCE
_ = inf (”u ) _ *(Vn(Q))(l_e)-
C uewym@\{oy \ [lull ¢
Therefore, (2.6) holds and the lemma is proved. d

LEMMA 2.4. Suppose that (ai)—(as) hold. Then E is compactly embedded
into L*(R"™) and L% ,,(R™) for s € [n, +00).
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ProoF. Take (ur) C E a bounded sequence. Thus, up to a subsequence,
up, — u weakly in E.

Assertion 1. Up to a subsequence, up — wu strongly in L*(R") for s €
[n, +00).
Indeed, let ¢ € C>°(R"™, [0, 1]) be a function such that ||Vl < 1 and

0 if |z| <R,
p(z) = ,
1 if |z >R+ 1.
Thus,
(2.7) Jur = ulls = [[(1 = @) (up — u) + (up — u)]ls
< (T = @) (up — u)lls + [le(ur —u)|s
= [[(1 = @) (uk — W)l Ls(Briy) + llo(ur — w)||Ls ®r\BR)-

Since W™ (Bgy1) is compactly embedded into L*(Bg.1) for s € [n,o0), up to
a subsequence, we get

(2.8) 11 =) (ur — u)]
Now, by the definition of v,(R™ \ Bg), it follows that
/ (IV(e(ur = u))|" + a(@)|p(ur —u)|") dz
R"\Bgr
vs(R™\ Bpg)

L*(Bgri1) — 0.

(2.9) [lo(ur—w)llLs®r\Bg) <
Note that

le(ur —w)[|* = /Rn (Vo) (ur = w)[" + [o(V (ur, — uw)[" + a(@)[p(ur — u)|" da

< / lup — u|™ dz + / |V (up — uw)|™ + a(x)|ug, — u|™ de
< lue = ally, + llue — ul".
Consequently, using the continuous embedding E — W1 (R"), we get
lo(ue —u)[" < C,
which together with (2.9), (a3) and (2.6), implies

(2.10) llo(ur —w)]
From (2.7), (2.8) and (2.10) we conclude Assertion 1.

Ls(R"\ BR) — 0.

Assertion 2. Up to a subsequence, up — u strongly in Li‘(x)(R") for s €
[n, +00).

From (2.5), we have

/ A(x)ux, — ul* dz < Callur — ulls + Callur, — |l —u] 5715,
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Thus, as a consequence of Assertion 1 we get
A(z)|ug — u|® de — 0,
Rn

where we have used that (s —n/8)(8/(8 — 1)) > n. This completes the proof of
Lemma 2.4. g

LEMMA 2.5. Suppose that (a1)—(az), (a4), (g1) and (f;)—(f2) are satisfied.
Then

A(x)|u|i®y(u) dx < 0o, forallu e E, ¢ > n.
Rn
Moreover, if a(B/(8 — 1)) = D|ju||™ "=V < a,, there exists C > 0 such that
/ A()|ul1®q(u) de < C||ull?,  for all ¢ > n.

PROOF. By using (a4) we get

(2.11) /nA(w)|u\q<I>a(u)dx:/ A) |10 (u) da

|z|>Ro

+ /xlgRg A(x)|u|?®, (u) dx
c a(z))Y P |u|? u) dx
< O/WRO[H( ()4 10, (u) d

+ 1Al 2~ 5n) / 19, () de
|z|<Ro

n

c a(2))YP|ul u)dx + c1 ul?®, (u) dz.
so/lm%(()) l@a(wydoter [ Juf'®a(w)d

Taking s > 1 and s’ such that 1/s+1/s' =1land 1 < s < /(8 — 1), by Holder’s
inequality and Lemma 2.1 in [27], we obtain

1/s’ 1/s’
[ treatde <l ([ @atwy’ar) <t [ eawae)
n Rn Rn
Since E — L%°(R™), using (2.1) we get
1/s’
(2.12) / 1Dy, (1) d < C||u||q(/ o (5') dx) < .
Rn R™

Now, for each v € E with a(B/(8 — 1)) = D|jul|”/(»1) < a,, it follows by
(2.2) that there exists C' > 0 such that

/ D, (s'u)dr < C.
From (2.12), we obtain that

(2.13) / |1y, (u) d < Cull".
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Let 7 > 1 be sufficiently large and v > 1 such that 1/6+1/7+1/y = 1. By
Hoélder’s inequality, we have

/Iz|>R0 (a(@)"Pul®q (u) do < (/lac|>R0 a(z)|ul" dx)l/ﬁ

1/7 /v
. </ (|- n/)r dw) </ (B0 (1)) dm) _
|x‘>Ro ‘$‘>RO

Again using Lemma 2.1 in [27], we have

(2.14) / ) )

1/~
<M1l ([, o)

Since (¢ —n)/B > n, by (1.3) and (2.1), we obtain that

(2.15) / (a(2))Plu)1®, (u) de < oo.
|£L">R0

From (2.11), (2.12) and (2.15), we have

A()|uli®q(u) do < oo.
R”L

This completes the first part of the lemma.

B n/(n—1)
0‘<51> ] < o,

we can choose v > 3’ = /(8 — 1) such that ay™ =D ||ul|"/(»=1) < q,, and by
(2.2) we get

Now, when

/ O, (yu)dr < C.
|z[>Ro

Consequently, by (1.3) and (2.14), there exists C > 0 such that
(2.16) [ @)l u do < Clul,
‘£C|>R0
From (2.13) and (2.16) we conclude the proof. O

3. The variational framework

As we mentioned in the introduction, problem (1.1) has variational structure.
To apply the critical point theory, we define the functional I: F — R by

31 I(u) = %Hu”" - %/R b()|u|™ do — /]R o(2) F(u) dz — e(h, u).
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Using (f1) and (f2), given € > 0 for each o > ag and ¢ > n there exists C. > 0
such that

(3.2) £ ()] < e|s|" ™t + Cc|s]1®,(s), for all s € R.

Consequently, by the condition (g1), we have

(3.3) /n g(x)F(u) dz < ey A(z)u|™ dz + CeAg /Rn A(z) |[u|TT @, (u) da.

RN
Thus, using Lemma 2.2 jointly with Lemma 2.5, it follows that g(x)F(u) €
LY(R") for all u € E. Consequently, I is well defined. Moreover, by Proposition 1
in [16] and standard arguments (see for example [23]), one can see that I is of
class C' on E. A straightforward calculation shows that, for all v € E,

(I'(u), v)
= / (|Vu|"2VuVo+a(z)|u|"2uv —b(z) [u|*?uv — g(z) f (u)v) dz —e(h, v).

Hence, a critical point of I is a weak solution of (1.1) and reciprocally.
The geometric conditions of the mountain-pass theorem for the functional I
are established by next lemmas.

LEMMA 3.1. Suppose that (a1)—(az), (a4), (g1), (f1)—(f2) and (by) are satis-
fied. Then there exists €1 > 0 such that for each 0 < € < €1, there exists pc > 0
such that

I(u) >0 if |Jull = pe.

Moreover, p. can be chosen such that p. — 0 as e — 0.

PrROOF. By using (3.3), Lemma 2.2 and Hélder’s inequality, there exist
C4,C5 > 0 such that

1 S

w2 (5 - e ) ful - 2

n

101l fluell™

=y | A@)ul ™ ®o(u) dz — |k [lul
RVL

1 Sin .
(ecl b |b||g)||u||
n n

~Co [ Al o do = |l

Consequently, if |[u|| < p with ap™ (=1 < q,,, we deduce by Lemma 2.5 that

1 St_on n g+1
I(u) 2 { — = €C1 = == bllo | ull™ = Cllul| ™™ — el|Alle|lul

1 s5;n .
={(n—ecl— 2 |b||a)||u|| 1—c|u||q—e||h||E'}||u||.

n
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Since ¢ > n, we may choose € > 0 is sufficiently small and p > 0 such that

1 S
<n—dh—t°MU>W”—CM>O

n
Hence, we can find some p. > 0 such that I(u) > 0 if ||u|| = pe and even p. — 0
as e — 0. g

LEMMA 3.2. Suppose that (a1)—(az), (a4), (g1), (f1)—(f3) and (b1) are satis-
fied. Then there exists e € E with ||e|]| > pe such that

I(e) < inf I(u).

llull=p<

PRrROOF. Let u € C§°(R™) \ {0}, v > 0 with compact support K = supp(u).
By (f1) and (f3) there exist C,d > 0 such that

F(s) > Cs* —d, forallse|0,400).

By using (g1) and (b;), we obtain

I(tw) < =" - ow/ o)t do + d/ g(e) dx — te(h, )
n K K

t’l’L
<Dl - cutt [ wdo + ol g) ~ telhu),
K

for all ¢t > 0. Since p > n, we have I(tu) — —oo as t — oo. Setting e = tu with
t large enough, we get the conclusion. O

In order to find an appropriate ball to use minimization argument we need
the following result.

LEMMA 3.3. Suppose that (a1)—(az), (a4), (g1), (f1)—(f2) and (b1) are satis-
fied. Then if h # 0 there exist n > 0 and v € E with ||v|| = 1 such that I(tv) <0
for all 0 <t <n. In particular,

(3.4) —00 < cg= inf I(u)<0.
llull<n

PROOF. Let v € E be the unique solution of the problem
—A,v+a(z)|v]" ?v="h inR"™
Thus, when h # 0, we have (h,v) = ||v||™ > 0. For ¢ > 0,
%I(tv) =" Y| =t /Rn b(z)|v|™ — / g(x) f(tv)vdr — e(h,v).
Since f(0) = 0, by continuity, it follows that there exists 17 > 0 such that
iI(tv) <0 forall0<t<mn.

dt
Using that I(0) = 0, it must holds that I(tv) < 0, for all 0 < ¢t < 7. O
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4. Minimax level

In order to get a more precise information about the minimax level obtained
by the mountain-pass theorem, we prove the following lemma.

LEMMA 4.1. Suppose that rom(a1)-(az) hold. Then S, is attained by a non-
negative function u, € E\ {0}.

PROOF. Let (ug) be a minimizing sequence of non-negative functions (if

necessary, replace uy by |ug|) for S, in E, that is,

1/n
/ uglPdz =1 and (/ (Vusl™ + a(x)|uk")dm> s,
Then, (uy) is bounded in E and consequently
[orupde s [ jupde=1 and ) < liminf ] = S,.
Thus S, = ||up||. This completes the proof of the lemma. O

Let us consider the function ¥ : [0, +00) — R given by

_ /n(|VUpI" + a(z)|up|") dz —/ g(x)F(tuy) da.

n n

w(t)

LEMMA 4.2. Suppose that (g1) and (f5) hold. Then

1/B=1\"(a,\"""
o <3 (%) (&)

PRrROOF. By Lemma 4.1, it follows that

1/n
(4.1) Sy = </ (IVup|™ + a(x)|uy|™) dx) and / |up|? de =
R'n/
On the other hand (g1) and (f5) imply

v() < [ (Vul +a@ll) do— 020 [,
R™ Rn

n
By using (4.1) we get

" n gp N\ ™/ (p=n)
\Ij(t) < LS” — tp)\OCp < max LS” _ tPLQ’ — l _ 1 P
n P D >0 P

and, by (f5),

Therefore,
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COROLLARY 4.3. We suppose (a1) — (a4), (g1), (f1) — (f2), (f5) and (by).

Then .
1/8—=1\"(a,\""

I(t — —

I?za(i((up)<n< nﬂ) (ag)

if € > 0 is sufficiently small.

PrOOF. Since |e(h,u,)| < €|lh| g/ Sp, taking e sufficiently small and using
Lemma 4.2, the result follows. O

5. On Palais—Smale sequences

Tt is well known that the failure of the (PS) compactness condition creates
difficulties in studying this class of elliptic problems involving critical growth
and unbounded domains. In next several lemmas we will use and analyze the
compactness of Palais—Smale of I.

LEMMA 5.1. Suppose that (a1), (az), (b1) and (f3) are satisfied. Let (uy) C E
be an arbitrary Palais-Smale sequence of I at level ¢, that is,

(5.1) Iuk) =~ c and ||I'(ug)||r — 0.
Then

il <c. [ slimle=c md [ g@Fwa<c

PROOF. Let (ug) C E be a sequence satisfying (5.1), thus for any ¢ € E,
1 1
52 Ll - f/ b(a) fup|” do —/ g(@)F (i) d — e(h,up) — ¢
n n Jrn Rn

and

(5.3)

[ 192 Vuve + a@ul g
- ol ~ 900wl — el | 0,
Taking ¢ — uy, in (5.3), using (by) and (fs) we get
e+ 6) + el + (0= D) = (2 = 1)
[ @l - fuudas+ (1-2) [ b@)julds
> (%= 1)@=, bl

where 0 — 0 and e — 0. Consequently, ||ug|| < C and from (5.2) and (5.3),
we obtain

/ g(z)F(ug)dx < C and / ()| f (ug)uy| dx < C. 0

n
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Thanks to Lemma 2.1 in [8], we have

LEMMA 5.2. Let Q C R™ be a bounded domain and f: R — R a continuous
function. Then, for any sequence (uy) in L*(Q2) such that ux — u in L*(9),

@) () € ') and | gla)|flun)uc]de < O,
up to a subsequence, we have
9(x) flug) = g(z)f(u) in LYQ).

COROLLARY 5.3. Suppose that (a1)—(a4), (b1), (f1) and (f5) hold. If (uy) C E
is a sequence such that I(ug) — ¢ and || I'(ug)||gr — 0, then (ug) has a subse-
quence, still denoted by (uy) weakly convergent to a weak solution u € E of
problem (1.1). Moreover, when h # 0 is immediate that u # 0.

PrOOF. Using Lemmas 5.1 and 2.4, up to a subsequence, we have up — u
weakly in F, up, — u in L°(R") for all s € [n,+00) and ug(z) — u(zr) almost
everywhere in R™. Moreover, arguing as in [12, Lemma 4], we get

|Vug|" "2V, — |[Vu|""2Vu  weakly in (L™ ™~1(Bg))", for all R > 0.

Therefore, passing to the limit in (5.3) and using Lemma 5.2, we have
/ (|IVu|" " 2VuVe + a(z)u|"*up) dx

- / (o)l 2 dar / o) f(u)pdz — elh,p) = 0
RTL ]Rn

for all p € C°(RY). Since C§°(RY) is dense in E, then u is a weak solution
of (1.1). Moreover, when h # 0, we have immediately that u Z 0. O

LEMMA 5.4. Suppose that (ai;)—(as), (b1), (f1)—(f3) are satisfied. If (uy) is
a Palais—Smale sequence for I at any level with

o B 1 o (n—1)/n
5.4 lim inf e :
(5:4) i inf flue| < == 35

Then (uy) possesses a subsequence which converges strongly to a solution u
of (1.1).
Proor. Extracting a subsequence of (uy) if necessary, we can suppose that
liminf ||ug|| = Um ||lug].
k—o0 k—o0

By Lemma 5.1 and Corollary 5.3 we have that uy, — u in E, where u is a weak
solution of (1.1). Writing ux = u—+wy, it follows that wy — 0in E. Thus wx — 0
in L*(R") for s € [n,+00) and wy, — 0 in L (R™) for all s > 1. Arguing as

loc
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in [12, Lemma 4] we get Vug(x) — Vu(z) almost everywhere in R™. Thus, by
Brezis—Lieb Lemma (see [6]), we obtain

(5.5) lJur ™ = [lull™ + llwell™ + ok(1).

We claim that

(5.6) / g(z) f(ug)udx — g(x) f(u)udz.
-

In fact, since u € E, given 7 > 0, there exists ¢ € C§°(R™) such that ||p—ul| < 7.
We can see that

‘/ F(u de_/n g(x) f(wudz| <
“lelle [ gl - sl e+ | [ o)) ir|

Since [(I'(ug), (v — ¢))| < Tk|lu — ¢|| with 7, — 0, we get

[ s@ s - o)

[ s@ st —e)ds

(n—1)/n
<rellu— ol + [ Vel — o]l + < / (@) s dx) =gl
T Ol ™ = )+ bl — ]l < Cllu - ]l < Cr,

where C is independent of k and 7. Similarly, using that (I’ (u), (u —¢)) = 0, we
have

< CT.

[ s@s- ) ds
By Lemma 5.2, g(2) f(ux) — g(x)f(u) in L}

loc

(R™) and by the previous inequal-
ities, we conclude that

/n g(x) f(ug)udr — /n g(x) f(v)udz

and this shows the convergence (5.6) because 7 is arbitrary.

lim < 2CT
k—o00

From (5.5) and (5.6), we can write

(1 (). ) = (1)) + " = [ gonf(unu do + ou(1),
that is,
sl = [ aorf(unyun do -+ ou()
From (f1)—(f2), given € > 0, therﬂi ’eXIStS C¢ > 0 such that

‘/ S (ug)wg dx

<6A0/’ Al " ] de

+CeAg A(x)|ug|" @ agre(ur )| wg| de.
]Rn



QUASILINEAR NONHOMOGENEOUS SCHRODINGER EQUATION 631
By Hoélder’s inequality, Lemma 2.2 and Lemma 2.1 in [27], we have

-1 -1
| A@enl el d < il oy ol ey

< Cflug|"! lwkllzn @)
and
[ A @t ]

. (n=1)/n Un
< ( A gD dx) ( A(@) B e ()] ] dx)
R™ Rn

1/n
scuukn"( / A<x>¢ao+e<nuk>|wk|"dx) .

Since for € > 0 sufficiently small we have

n/(n—1)
(e +e)<"(ﬁ_€)) luxl|/ "D < 4, and PP WEZE
B—e—1 B

arguing as in Lemma 2.5, we obtain for s sufficiently large

A(2) Doyt (nug) jwi | de
RTL

€/B(B—¢)
< sl + Callonl* ([ Junfnme-iean) T
RTL
Therefore, by Lemma (2.4) we get

/n g(x) f (ug)wy, dx — 0.

Consequently, ||wg|] — 0 and the result follows. O
Similar to N. Lam and G. Lu [19], we have the following:

LEMMA 5.5. Suppose that (a1)—(a4) and (f1)—(f4) are satisfied. Let (uy) C E
be a Palais—-Smale sequence for I with ur — u weakly in E, then
/ g(x)F(ug) de — g(x)F(u) dx.
n R‘VL
ProOF. By Lemma 5.2, we have that for all R > 0,
[ s@fdn~ [ g
Br Br
Thus, there exists [(x) € L'(Bgr) such that g(z)f(ur(z)) < I(z) almost every-
where in Bpg.
Let B = {z € Bgr : ur(x) € [0,S50] for all k € N}. Then, using (fy) we can
conclude that

9(@)F (ur(w)) < 19l (5r) sup F(uk()) + Mog(z) f (ur ()
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almost everywhere in Br. By Generalized Lebesgue dominated convergence
theorem we obtain

/ 9(x)F(ug) dv — g(x)F(u) dx.
Br Br

In order to prove

[ s@r@) > [ g@rwad

R

it is sufficient to show that given § > 0, there exists R > 0 such that
/ g(x)F(ug)de <6 and / g(z)F(u)dz <.
R"\Br R\ Br

To prove it we recall the following facts from our assumptions on the nonlinearity:
there exist C,Cy > 0 such that for (z,s) € R™ x [0, 4+00),

9(x)F(s) <CrA(z)|s|" + Cag(x) f(s),
9(2)F(s) <Cr1A(2)[s]" + CoA(z)[s[Pa(s),

/n g(x) f(ug)ug de < C  and / g(x)F(ug) dx < C.

n

(5.7)

Now, for each K > 0 we have for any |s| < K,

§(@)F(s) < CLAR)ls]" + CoA@)]s]a(s)
400 i i/(n—
§ oi|g|nil (n=1)+1
= CiAll" + o) 3
Jj=n—1

too Oéj ‘K|nj/(n—1)+1—n

< CA(z)|s|" (1 + )

) < C(a, K)A(x)]s|™.

1l
j=n—1 J:
So we get
/ g(x)F(ug) de < C’(a,K)/ A(x)|ug|™ do
{z€R™M\BR:|ux|<K} {z€R™\Br:|ux|<K}
<2"1C(a, K) / A@) | — u|" da
{z€R"\Br:|ux|<K}

+ 2100, K) / A()[u]" dz.
{z€R"\Br:|uy|<K}

Now, using Lemma 2.4 and noticing that u; — u weakly in F, we can choose
R > 0 such that

)
/ g(x)F(ug) de < =.
{2€R"\ By : |ux| <K} 3
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Next, we have

(@) Fluy) dz < Cy / AQ@)|un" dz
R™\Br

e / 9(%) f(ug) dz
{z€R™\ BR:|uk|>K}
< C1 CQ

<2 [ A@rtar s 2 [ g ds
K Jeo s, K Jon

G &

K K Jgn

Thus since ||ug|| is bounded and by (5.7), we can choose K such that

c 2

< — .
SK 3

/{IER"\BR:|uk|>K}

< ="+ 9(@) f (ur)uk de.

/ o) F(ug) da
{z€eR™"\Bgr:|uk|>K}

Combining all the above estimates, we have

/n g(z)F(ug) de — g(z)F(u) dz,

R’!L
which completes the proof. O

6. Proof of Theorems 1.1 and 1.2

First, we will prove the existence of a local minimum type solution.

PROPOSITION 6.1. Under the assumptions (a1)—(aq), (g1), (f1)—(f3) and (b1),
there exists €1 > 0 such that for each ¢ with 0 < € < €1, equation (1.1) has
a mainimum, type solution ug with I(ug) = co < 0, where ¢q is defined in (3.4).

PROOF. Let p. be as in Lemma 3.1. We can choose €1 > 0 sufficiently small
such that

(n=1)/n
—1{ap
pe < ﬂﬂn <2‘0> , foralle € (0,e1).
Since B,_ is a complete metric space with the metric given by norm of E, convex
and the functional I is of class C! and bounded below on Ppa, by Ekeland’s
variational principle there is a sequence (uy) in Eps such that
I(ug) — co = | i”n<f I(u) and |I'(ug)||g — 0.
ul[<pe
Observing that

pn \ ag

by Lemma 5.4 it follows that there is a subsequence of (ug) which converges

(n—1)/n
-1/,
el < pe < 2 () ,

strongly to a solution wug of (1.1). Therefore, I(ug) = c¢o < 0. O

The proof of the existence of the second solution of (1.1) follows by a standard
“mountain-pass” procedure.
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PROPOSITION 6.2. Under the assumptions (a1)—(a4), (g1), (f1)—(f5) and (b1),
if 0 < & < &1 problem (1.1) has a mountain-pass type solution wups.

PrOOF. From Lemma 3.1 and Lemma 3.2, I satisfies the hypothesis of the
mountain-pass theorem except possibly the Palais-Smale condition. Thus, using
the mountain-pass theorem without the Palais-Smale condition (see [20]), there
is a sequence (vg) in E satisfying

I(Uk) —cpr >0 and ”I/(Uk)HE’ — 0,

where ¢y is the mountain-pass level. Now, by Corollary 5.3, the sequence (vg)
converges weakly to a solution uys of (1.1). O

Since vy — uyps weakly in E and up — ug strongly in F we can not conclude
that uy; and ug are distinct. This will be the goal of the next result.

PROPOSITION 6.3. There exists €5 > 0 such that for each € with 0 < € < &5,
the solutions of (1.1) obtained in Propositions 6.1 and 7?7 are distinct.

PROOF. By Propositions 6.1 and 6.2, there are sequences (uy) and (vg) in E
such that

(6.1) up — ug in E, I(up) = ¢o <0, 11" (ur)|| 2 = 0,
(62) Vv — Uy in E, I(Uk) — C)M > O, ||II(Uk)||E/ — 0.

Now, suppose by contradiction that ug = uas.

Setting
Uk

*lvklhin

Uo

Wi, and wo =

i flogff1n
we get [|wgll1, = 1 and wr — wp in WH(R™). Since the norm is lower semi-
continuous with respect to weak convergence, it follows that kl'l)n;o logll1,n >
[lwoll1,n > 0. Thus, we have two possibilities:

(i) llwoll1n =1, or

(i) flwoll1,n < 1.

If (i) happens, then lim |vg
k—o0

1,n = |luoll1,n and consequently vy — wug
in WHn(R™). Thus, there exists £ € W1 (R") such that |vg(z)| < ¢(z) almost

everywhere in R™ (see [16, Proposition 1]). By (3.2), we have
l9(@) f (vi)vr| < CLA@)I]" + CoA(x)]¢] " D4 ()

almost everywhere in R™, which is integrable. Then, by Lebesgue dominated
convergence theorem we conclude that

/n g(x) f(ve)vr de — g(x) f(ug)ug d.

Rn
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Similarly,
[ s@stwiuds [ g@)fuyunds

R?L
Since

(' (ug), ug) = [|ugl|™ — /Rn 9(@) f (ur)ur, dv — e(h, ug) — 0,

'o)o) =Nl = [ g@)f(on)und o) 0,
Rn
we conclude that
lim [Jog[|" = lim [Jug|™ = [Juol".
k—o0 k— o0

Therefore, I(vy) — I(ug) = co and this is a contradiction with (6.1)—(6.2).
Now, suppose that (ii) happens. Since we can take p. — 0 as € — 0, we have
that ¢g — 0 as ¢ — 0. Thus, there exists £ > 0 such that

1 ,871 n o n—1
maxl(tup) <cog+— ( ) <n> , forall e € (0,¢).

np Qo
Therefore,
’/l,@ n/(n—1) a
o < n
(5 - 1) [n(enr — I(uo))]/ (=1
and
n/(n—1)
’I’Lﬁ n/(n— 1) Ay n/(n—1) "
6.3) ag| —— -9
69 ao(507) I < s

for some & > 0. Since v — ug weakly in F, using Lemma 2.4, we obtain

/ x)|vg|™ dx —>/ x)|uo|" dz.
RTL

Thus, it follows by Lemma 5.5 that
Tn)

1
< ear — (o) — / a(@) (ol — Juol") dz < ear — I(uo),

1 . 1.
= lim [Jog[[7,,(1 = [lwollY ) = — lim ([[og]l,, —
n k—oo n k—oo

where we have used the fact that

/a(x)|u0|”dx§/ a(z)|vg|" de.
n ]Rn

Thus, for k sufficiently large, we have
||U Hn/(n 1) < 1
[n(ear = I(uo))]H/ =1 = (1 — Jlwoll7 ,) /(=1
Consequently, by (6.3) we get

n(IB_e) n/(n—l)H H"/” 1) an 4
B—e-1 o = [woll7,,)1/ (=)

(040+€)<
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for some 6 > 0 and e > 0 sufficiently small. Now, using (3.2) we get

04 | [ s~ w)

<e [ A@I o= ol + Co [ Ao on) o .
n R’V‘L
By Holder’s inequality and Lemma 2.2, we have

-1 —1
. A(x) oo — ug| d < ||Uk||zz(m)(Rn)H’Uk —uollLr &)
< Ok Hlox — oLy, @)

Hence, using Lemma 2.4 we get
/ A(z)|og "ok — ug| dz — 0.
Moreover, using Lemma 2.1 in [27], we have

A(2) | og| 9P g e (Vr ) [0r — o
R‘n,

< ([ Awpro=n) (m)/n( [ A @l = ol "

1/n
<C||vkq</ A(2) Doy te(nug) v, — ug|™ dx) .
RTL

Since

On

-0
1= flwoll? )t/ (=)

n(B —e) n/(n=1) n/(n—1
5_6_1) ||Un||1,n

for some § > 0 and € > 0 sufficiently small. Similarly as in the proof of Lemma 2.5

(040+€)<

) <
—(

and using Theorem 1.1 in [15], we obtain for s sufficiently large that

A(2) oyt (nvg) v — uo|™ dz < Crllvg, — uollps
R"L

€/B(B—¢)
+ Csllug — u0||"/ﬁ(/ [, — | A= (B=e)/e dx) .
Rn

For e > 0 sufficiently small we have (8n —n)(8—¢)/e > n. Hence, by Lemma 2.4
and by the previous inequalities, we have

/ g(x) f(vg)(vg —uo)dz — 0 and b(x) k| 2ok (vg — uo) dx — 0.
n R‘VL
From these convergence and since (I'(vy), (v — ug)) — 0, we conclude that

(6.5) / |Vor|" 2 Vug (Voy, — Vug) dz —l—/ a(x)|vg|" 2ok (vg — ug) dz — 0.

n
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Moreover, since v — ug weakly in E, we get

/ |Vuo "2 Vo (Voy, — Vug) dz — 0,
(6.6) "
/ a(x)|uo|™ 2uo (v — ug) dz — 0.

Using the inequality (|z|"2z — |y|""2y)(z —y) > 227 "]z — y|" for all z,y € R™,
we obtain

(6.7) / |Vur, — Vug|™ dx +/ a(x)|vx — ug|™ dz
n Rﬂ,

<Cy / (|Vor|" 2 Vg, — |[Vuo|"2Vug) (Vg — Vaug) dx
Rn

+ Cg/ a(x)(Jug|™ vk — |uo|™ 2uo) (vi, — ug) d.
From (6.5)—(6.7), we obtain vy — wg strongly in E. Thus I(vx) — I(ug) = co,
which contradicts (6.1) and (6.2). Therefore ug # ups. O
7. Proof of Theorem 1.3

By Lemmas 3.1 and 3.2, I satisfies the hypothesis of the mountain-pass
theorem except possibly the Palais—-Smale condition. Thus, using the mountain-
pass theorem without the Palais—Smale condition (see [20]), there is a sequence
(vg) in F satisfying

I(’Uk) — CM and HI/(’Uk)HE/ — 07

where ¢y is the mountain-pass level. Now, by Corollary 5.3, the sequence (vg)
converges weakly to a solution wups of (1.1).

Let us show that uj, is nontrivial. Assume, by contradiction, that u,; = 0.
Hence, by Lemma 5.5 we have

/ g(x)F(vg) dx — 0.
This together with (5.2) implies that
(7.1) [log™ = near

and hence given £ > 0, we have ||v||"™ < nepr + €, for k sufficiently large. Since

n n—1
oo b5 (2)
n\ fn Qo

and choosing ¢ > 0 sufficiently small, we obtain

n/(n-1)
. )
(a0 +¢) (555_1> g™/ =Y < .
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Consequently, arguing as in Lemma 2.5, we obtain for s sufficiently large that
[ Ayl iz

e/B(B—e¢)
< Culolg + Calla 2 ([ oG )
Rn
Since

‘/ ’g(x)f(vk)vkd:c gsAO/ ’A(x)|vk|”dx+C’s AO/ A(x)|vg|" @ oy te (Vi) da,

R™

we obtain, by compact embedding E — L*(R™) for s € [n,+00) and by the
previous inequalities that

/n g(z) f(vk)vg dx — 0.

Therefore, by (5.3) with ¢ = v, we achieve ||vg|| — 0, which contradicts (7.1)
because ¢y > 0. Hence, ujs is nontrivial and the proof of our result is complete.
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