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ESTIMATING THE DISCRETE GEOMETRIC

LUSTERNIK–SCHNIRELMANN CATEGORY

Brian Green — Nicholas A. Scoville — Mimi Tsuruga

Abstract. Let K be a simplicial complex and suppose that K collapses

onto L. Define n to be 1 less than the minimum number of collapsible sets

it takes to cover L. Then the discrete geometric Lusternik–Schnirelmann
category of K is the smallest n taken over all such L. In this paper, we

give an algorithm which yields an upper bound for the discrete geometric

category. We show our algorithm is correct and give several bounds for the
discrete geometric category of well-known simplicial complexes. We show

that the discrete geometric category of the dunce cap is 2, implying that

the dunce cap is “further” from being collapsible than Bing’s house whose
discrete geometric category is 1.

1. Introduction

The goal of this paper is to introduce a computational algorithm to give

bounds on the discrete geometric Lusternik–Schnirelmann (LS) category or just

discrete geometric category of a simplicial complex. The discrete geometric cat-

egory was introduced in [1] as a discrete analogue of the classical LS category for

topological spaces [9]. Its main properties are summarized in Section 2. Our no-

tion of the discrete geometric category is based on collapsibility, which has been

used to study simple homotopy type [7]. See Definition 2.1 for the definition of
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collapsibility. Let f : K → R be a discrete Morse function in the sense of R. For-

man [12], [13]. It was shown in [1] that the discrete geometric category of K

bounds from below the number of critical points of f . There is much interest in

the relationship between discrete Morse theory and collapsibility. For example,

R. Ayala et al. [3] have used the collapse number of a 2-dimensional complex

to study certain classes of discrete Morse functions. In addition, B. Benedetti

and F.H. Lutz recently introduced so-called random discrete Morse theory [5].

They propose obtaining a discrete Morse vector by collapsing a complex until

it contains no more free faces, removing a top dimensional face, and repeating.

While this approach uses discrete Morse functions to provide an indicator of the

complexity of a simplicial complex, we provide an alternative measure of the com-

plexity of a simplicial complex by considering the minimum number of collapsible

subcomplexes it takes to cover the complex. After introducing the discrete geo-

metric category and reviewing its basic properties, we propose an algorithm to

determine an upper bound for any finite type simplicial complex. We show that

the algorithm yields an upper bound by constructing a collapsible cover and

discuss some experiments for several well-known simplicial complexes. It imme-

diately follows that our algorithm provides computational upper bounds for the

topological complexity of a space. Recently there has been a renewed interest in

Lusternik–Schnirelmann type invariants because of the work on M. Farber and

others in topological complexity and robot motion planning [10], [11]. Since the

discrete geometric category bounds above the (classical) category of the geomet-

ric realization of a space, certain upper bounds for topological complexity easily

follow. These are summarized in Corollary 4.3.

Recall that a topological space is contractible if it has the homotopy type

of a point. A simplicial complex which is collapsible always has a contractible

geometric realization (Proposition 2.3) but the converse is not true. It is well

known that Bing’s house with two rooms [6] and the dunce cap [22] provide

examples of complexes with contractible geometric realization, but which are

not collapsible. In Proposition 4.6, we show that the discrete geometric category

of the dunce cap is 2, while the discrete geometric category of Bing’s house is

only 1, and hence the dunce cap is in a certain sense further from being collapsible

than Bing’s house. This raises the question as to the existence of contractible

simplicial complexes with arbitrarily large discrete geometric category.

2. Simplicial complexes and discrete geometric category

We begin by reviewing the basic terms used throughout this paper. We

work with simplicial complexes because of the relative ease of implementing our

algorithm, although there seems to be no reason in theory why our results will

not carry over to the setting of a regular CW complex. All simplicial complexes



Estimating the Discrete Geometric Lusternik–Schnirelmann Category 105

are assumed to be connected. Let [n] = {1, . . . , n}. An abstract (finite type)

simplicial complex K on [n] is a collection of subsets of [n] such that

(1) If σ ∈ K and τ ⊆ σ, then τ ∈ K.

(2) {i} ∈ K for every i ∈ [n].

An element σ ∈ K of cardinality i+ 1 is called an i-dimensional face or an i-face

of K. The dimension of K, denoted dim(K), is the maximum dimension over

all its faces. If σ, τ ∈ K with τ ⊆ σ, then τ is a face of σ and σ is a coface

of τ . We also say that τ is a proper face of σ if dim(σ) = dim(τ) + 1. If τ ⊆ σ

and n = dim(σ) − dim(τ), we say that τ is of codimension n with respect to

σ. A face of K that is not contained in any other face is called a facet of K.

A (closed)subcomplex L of K, denoted L ⊆ K, is a subset L of K such that

L is also a simplicial complex. Denote by σ the smallest simplicial complex

containing σ. For any a0, a1, . . . , ai ∈ [n], define a0a1 . . . ai = {a0, a1, . . . , ai}.
We are careful to use the term simplex for an element σ of K and the term

complex for a subcomplex L of K. The boundary of σ, denoted bd(σ), is the

collection of all its faces. Define cbd(σ) = {τ ∈ bd(σ) : τ is a proper face of σ}.
Clearly if dim(σ) = n, then |cbd(σ)| = n+ 1.

Definition 2.1. If K contains a pair of simplices σ, τ such that τ is a proper

face of σ and τ has no other cofaces, then K − {σ, τ} is a simplicial complex

called an elementary (simplicial) collapse of K. The simplicial complex K is

said to collapse onto L if L can be obtained from K through a finite series of

elementary collapses, denoted K ↘ L. If K collapses onto L, we also say that L

expands to K, denoted L↗ K. The pair {σ, τ} is said to be a free pair, a term

we will use to denote a pair that can either be collapsed or expanded with respect

to K. In the case where L = {v} is a single point, we say that K is collapsible.

The following is immediate from the definition of a free pair. It will be used

to prove our algorithm is correct.

Lemma 2.2. Let L be a simplicial complex with σ a simplex of L and τ ∈
cbd(σ). Then K := L− {σ, τ} ↗ L if and only if cbd(σ)− τ ⊆ K.

If K is a simplicial complex, let |K| denote its geometric realization. Since

an elementary collapse corresponds to a deformation retraction, we have the

following proposition.

Proposition 2.3 ([16, Proposition 6.14]). If K and L have the same simple

homotopy type, then |K| and |L| have the same homotopy type. In particular, if

K is collapsible, then |K| is contractible.

Definition 2.4. Let L ⊆ K be a subcomplex. We say that L has discrete

geometric pre-category less than or equal to n in K, denoted d̃gcatK(L) ≤ n,



106 B. Green — N.A. Scoville — M. Tsuruga

if there exists n + 1 closed subcomplexes {U0, . . . , Un}, Ui ⊆ K for 0 ≤ i ≤ n,

each of which is collapsible such that L ⊆
n⋃

i=0

Ui. If d̃gcatK(L) 6< n, then

d̃gcatK(L) := n.

Definition 2.5. The discrete geometric category of L in K is defined by

dgcatK(L) := min{d̃gcatK(L′) : L collapses to L′}.

We write dgcat(K) := dgcatK(K).

Remark 2.6. A word is in order concerning our definition. The need to

define the pre-category of a complex is in order to guarantee that an elementary

collapse does not decrease the discrete category.

Example 2.7. Let K = K6, the complete graph on 6 vertices. In other

words, the 0-dimensional simplices ofK consist of 6 vertices and the 1-dimensional

simplices of K consist of all possible combinations of pairs of distinct 0-simplices.

A collapsible cover of K is shown below using the three colors red, green, and

blue in Figure 1. Hence d̃gcatK(L) ≤ 2. By Proposition 3.1 (see below), we have

that d15/(6− 1)e − 1 = 2 ≤ dgcat(K). We conclude that dgcat(K) = 2.

Figure 1. 3 collapsible sets distinguished by line type which cover K6

Remark 2.8. In general, if G is any 1-dimensional complex or graph, then

the discrete geometric category coincides with the arboricity [14] of G. Nash–

Williams has computed this invariant for all graphs [18]. In particular, ifG = Kn,

the complete graph on n nodes, then dgcat(Kn) = dn/2e−1. We will make note

of this fact in Table 1.

We note the relationship between the classical LS category and discrete geo-

metric category.

Proposition 2.9 ([1, Corollary 12]). Let K be a simplicial complex. Then

cat(|K|) ≤ dgcat(K).
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Note that Example 2.7 provides an example of strict inequality for the above

Proposition, as cat(|K6|) = 1 < dgcat(K6) = 2.

3. Combinatorial lower bound

Let K be a simplicial complex of dimension n or n + 1, and Hi(K) the ith

(unreduced) simplicial homology group of K. Let cKi denote the number of

simplices of K of dimension i. Recall that the Euler characteristic of K is

defined by X (K) =
∑
i

(−1)icKi . If βK
i denotes the ith Betti number of K, it

is easy to show that X (K) =
∑
i

(−1)iβK
i [19, Theorem 1.31]. Let E(cK) :=

cK0 + cK2 + . . .+ cKn and O(cK) := cK1 + cK3 + . . .+ cKn±1.

Proposition 3.1. Let K be a simplicial complex of dimension n with ci
the number of simplices of K of dimension i, 0 ≤ i ≤ n. If E(cK) − 1 ≥
O(cK), then d(E(cK)− 1)/O(cK)e− 1 ≤ dgcat(K). If E(cK)− 1 ≤ O(cK), then

dO(cK)/(E(cK)− 1)e − 1 ≤ dgcat(K).

Proof. We only show the first inequality, as the other one is similar. Let U

be a collapsible subcomplex of K. Since Hi(U) = 0 for all i ≥ 1 whenever U is

collapsible [15, Corollary 2.3.5], it follows that any collapsible set must satisfy

X (U) = 1 =
∑
i

(−1)iβU
i =

∑
i

(−1)icUi .

Rearranging this equation yields O(cU ) = E(cU )− 1.

Now since E(cK)− 1 ≥ O(cK), the largest amount of odd-dimensional sim-

plices in any collapsible cover is at most E(cU ) − 1 = O(cK). Thus in order to

satisfy this equation, we need at least d(E(cK)− 1)/O(cK)e collapsible sets, and

d(E(cK)− 1)/O(cK)e − 1 ≤ d̃gcat(K).

If K ↘ K ′ is any elementary collapse, then⌈
E(cK)− 1

O(cK)

⌉
− 1 ≤

⌈
E(cK)− 1− 1

O(cK)− 1

⌉
− 1 ≤ d̃gcatK(K ′).

Thus d(E(cK)− 1)/O(cK)e − 1 ≤ dgcat(K). �

4. Algorithm

Let K be a simplicial complex. Let H be a graph encoding the incidence

relations of the simplices of K; every node of H is a simplex of K and there is

an edge between two simplices σ, τ whenever τ is a proper face of σ. This graph

H is called the Hasse diagram of K [21]. By abuse of language, we will not

distinguish between a simplex and a node of H representing the simplex. Let

H(i) be the nodes of H corresponding to the i-simplices of K. We refer to H(i)

as level i. Each node of H is equipped with an on/off switch consisting of three

colors: red, green, and black. A node colored red means that it is not in the



108 B. Green — N.A. Scoville — M. Tsuruga

cover U nor the current collapsing set U , a node colored green means that it is

in the current collapsible set U , and a node colored black means that it is in the

cover U . Note that if a node is colored green or black, its red switch must be off.

This fact will be used but not stated below. A node can be both black and green.

Let Hr denote the nodes of H colored red. If v ∈ H(i+ 1), let N i(v) be the set

of all green nodes on level i connected to v by an edge in H (i.e. a neighbour

of v); then N i(v) = {u ∈ H(i) : u is green, u is a proper face of v}. Define the

expansion set in row i + 1 by E(i + 1) = {v ∈ H(i + 1) : |N i(v)| = i + 1};
E(i + 1) collects all (i + 1)-simplices σ such that all but one of its proper faces

cbd(σ) are colored green. The critical expansion set in row i + 1 is defined by

CE(i + 1) = {v ∈ E(i + 1) : v is red}. The paper [5] by Benedetti and Lutz

serves as inspiration for our algorithm.

Algorithm 4.1. Discrete geometric category upper bound.

Input: A non-empty connected simplicial complex K.

Output: A collapsible cover U of K.

(1) Set U = ∅ and build the Hasse diagram H of K. Color all nodes red.

(2) Set U = ∅.
(3) Pick a random red facet σ such that σ has maximum dimension over all

red facets. For every τ ⊆ σ of any dimension, color τ green.

(4) Initialize i = 0.

(5) If E(i + 1) = ∅, go to step 6. If CE(i + 1) = ∅, choose a random

v ∈ E(i+ 1). Otherwise, choose a random v ∈ CE(i+ 1). Color v (and

all τ ⊆ v) and its unique non-green proper face u on level i (and all

τ ⊆ u) green. Repeat step 5.

(6) Increment i = i+ 1. If i = dim(K), go to step 7. Otherwise go to step 5.

(7) Add all green nodes to U . Color every node in U black and turn off

green. Add U to U . If Hr = ∅, then terminate algorithm. Otherwise, go

to step 2.

The set U obtained in the above algorithm is a collapsible cover of K so that

dgcat(K) ≤ |U|−1. Since the complex induced by a facet of U is added in step 3,

it follows that it will take at most the number of facets of K iterations of the

algorithm to find a collapsible cover of K, and thus the algorithm will terminate.

The idea behind the algorithm is to determine whether or not an expansion

is possible from the information provided by the Hasse diagram. The algorithm

begins by picking a random top dimensional subcomplex, and begins to perform

elementary expansions by expanding along as many 0-simplices as possible, as

many 1-simplices as possible, etc. If all of the level i neighbours of a node on level

i + 1 are colored green except one neighbour, this means that all the boundary

elements of codimension 1 except one of the corresponding simplex are in the

set U , and hence we may perform an elementary expansion. A node with color



Estimating the Discrete Geometric Lusternik–Schnirelmann Category 109

red has not been added to the cover yet, so preference is given to expanding along

those nodes on level i+1 which are colored red. Since performing a finite number

of elementary expansions can be undone by performing elementary collapses in

reverse order, the subcomplex we obtain at the end of one full iteration of the

algorithm is collapsible. Formally, we have the following.

Proposition 4.2. Algorithm 4.1 returns a set of subcomplexes U0, . . . , Un of

a complex K such that each Ui is collapsible and
⋃
U = K.

Proof. We first show that any U obtained from Algorithm 4.1 is collapsible

by induction. According to step 3, U = σ which is clearly collapsible. Assume

that U is collapsible going into step 5. If E(i + 1) = ∅ and we end up in

step 7, then we are done. Otherwise, we end up back in step 5 so assume that

E(i + 1) 6= ∅ and choose a random u ∈ E(i + 1) or CE(i + 1). By definition of

these sets, |N i(u)| = i + 1 so that i + 1 boundary simplices of v of dimension i

are in U and the u found in step 5 is not in U . In other words, cbd(v)− u ⊆ U .

By Lemma 2.2, {u, v} is a free pair of U so that U ↗ U ∪{u, v} is an elementary

expansion. Thus U is collapsible. Now let σ ∈ K. Since σ is in a collapsible U

if and only if σ 6∈ Hr and the algorithm terminates only when Hr = ∅, it follows

that there exists U ∈ U such that σ ∈ U . Hence
⋃
U = K. �

Because the above algorithm gives an upper bound for the discrete geometric

category, Proposition 2.9 along with the well-known relations between classical

LS category and topological complexity yields the following:

Corollary 4.3. Let TC(X) denote the topological complexity of space X.

If K is a simplicial complex then:

(a) TC(|K|) ≤ 2 · dgcat(K)− 1 [10, Theorem 5],

(b) TC(|K|) ≤ dgcat(K ×K) [11, Lemma 9.2].

4.1. Analysis of 1-dimensional case. This section is devoted to analyzing

Algorithm 4.1 in the special case where K = G is a 1-dimensional connected

simplicial complex (i.e. a graph). We first note that each finding of a collapsible

set in Algorithm 4.1 is equivalent to an implementation of Prim’s algorithm to

find a minimum weighted spanning tree [2, p. 125]. Indeed, label any red edge −1

and any black edge 0. Then Algorithm 4.1 finds a spanning tree by choosing an

edge with minimum weight at each iteration of step 5, which is precisely Prim’s

algorithm. This guarantees that each collapsible cover adds the most uncovered

edges possible at that iteration. This fact will be used below. Let E(G) denote

the set of edges (facets) of G. Since a graph is collapsible if and only if it is

a tree, we use Ti to denote a collapsible set. For n ∈ Z>0, let H(n) denote the

nth harmonic number i.e. H(n) :=
n∑

i=1

1
n and set H(0) = 0. The following proof

is nearly identical to [8, Theorem 35.4], but we include it here for completeness.
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Proposition 4.4. Let G be a 1-dimensional connected simplicial complex.

Then Algorithm 4.1 is an H(|E(G)|)-approximation algorithm for dgcat(G). In

other words, if U is any set obtained in Algorithm 4.1, then

|U| ≤ H(|E(G)|) · dgcat(G).

Proof. Let U = {T0, . . . , Tn} be a collapsible cover of G obtained in Al-

gorithm 4.1. If an edge e ∈ E(Ti) appears for the first time in Ti so that

e 6∈ E(Tj), 0 ≤ j < i, define the weight of e by

ω(e) =
1

|E(Ti)− (E(T0) ∪ . . . ∪ E(Ti−1))|
.

Then |U| =
∑

e∈E(G)

ω(e). For an optimal cover U∗ of G, we have

∑
T∈U∗

∑
e∈E(T )

ω(e) ≥
∑

e∈E(G)

ω(e)

and hence

|U| ≤
∑
T∈U∗

∑
e∈E(T )

ω(e).

Now let T ⊆ G be any tree. Let ui := |E(T ) − (E(T0) ∪ E(T1) ∪ . . . ∪ E(Ti))|
with u−1 = |E(T )| and k the least index such that uk = 0. Clearly ui−1 ≥ ui
and ui−1 − ui edges of T are covered for the first time by Ti. Thus∑

e∈E(G)

ω(e) =

k∑
i=0

(ui−1 − ui) ·
1

|E(Ti)− (E(T0) ∪ E(T1) ∪ . . . ∪ E(Ti−1))|
.

Since the maximum amount of non-covered edges are covered by E(Ti) as noted

above, we have that

|E(Ti)− (E(T0) ∪ E(T1) ∪ . . . ∪ E(Ti))|

≥ |E(T )− (E(T0) ∪ E(T1) ∪ . . . ∪ E(Ti−1))| = ui−1.

We have∑
e∈E(G)

ω(e) =

k∑
i=0

(ui−1 − ui) ·
1

|E(Ti)− (E(T0) ∪ E(T1) ∪ . . . ∪ E(Ti−1))|

≤
k∑

i=0

(ui−1 − ui) ·
1

ui−1
=

k∑
i=0

ui−1∑
j=ui+1

1

ui−1

≤
k∑

i=0

ui−1∑
j=ui+1

1

j
=

k∑
i=0

( ui−1∑
j=1

1

j
−

ui∑
j=1

1

j

)

=

k∑
i=0

H(ui−1)−H(ui) = H(u−1)−H(uk) = H(|E(T )|).
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To complete the proof, we see that

|U| ≤
∑
T∈U∗

∑
e∈E(T )

ω(e) ≤
∑
T∈U∗

H(|E(t)|)

≤ |U∗| ·H(|E(t)|) = dgcat(G) ·H(|E(t)|). �

Remark 4.5. It is not always the case that Algorithm 4.1 adds the maximum

amount of facets in each element of the cover. Indeed, consider the simplicial

complex K on the set {1, 2, 3, 4} with all six 1-dimensional simplices and 2-

simplices given by {1, 2, 4} and {1, 3, 4}. Then step 3 of Algorithm 4.1 could

begin by adding facet {1, 2, 4} followed by 1-simplex {2, 3} in the very first

implementation of step 5. At this point, there are no free 1-dimensional faces,

so the Algorithm moves on to step 6. Now there are also no free 2-dimensional

faces, and we obtain one element in a cover of K, and this element contains

only one facet of K. However, had the algorithm chosen the 1-simplex {1, 3}
instead of {2, 3} in step 3, then {1, 3, 4} would have been a free face and thus

added to the cover when the Algorithm was searching for free 2-simplices. Hence,

the algorithm does not always produce the maximum number of facets in each

element of a cover.

4.2. Computations. In this section we present and discuss some exper-

iments we performed on polymake [20] using Algorithm 4.1 to estimate the

discrete geometric category of several well known simplicial complexes. Our

experiments were run on a quad-core Intel R© Xeon R© X3460, 2.8 GHz, with

16GB of RAM. A downloadable version of our program (1) is available and will

be available as part of the polymake distribution from version 2.14.

A summary of our results is listed below in Table 1. The lower bound in each

row is obtained by using a combination of Proposition 3.1 and other arguments

discussed below. The “best found” column lists the smallest value obtained by

running the polymake implementation of Algorithm 4.1.

Because the discrete geometric category depends on the particular simplicial

structure chosen, the list of facets for these complexes may be found in the

Simplicial Complex Library website (2). In particular, it should be noted that

we do not necessarily expect a complex with the topology of a sphere, such as

the 3-sphere with a knotted triangle, to have discrete geometric category of 1,

nor do we necessarily expect a complex with the topology of a ball, such as the

3-ball with a knotted hole, to have discrete geometric category of 0.

Our algorithm is accurate for many complexes. The problem of whether or

not a complex is collapsible is undecidable [17], so one does not expect to be able

(1) http://webpages.ursinus.edu/nscoville/research-papers.html

(2) http://infoshako.sk.tsukuba.ac.jp/∼hachi/math/library/index eng.html, access-

ed on February 12, 2015.
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theor

Complex K lower best dgcat(K)

bound found

Bing’s house with 2 rooms 1 1 1

Dunce hat 2 2 2

Lockeberg’s 4-polytope 1 1 1

Mani and Walkup’s 3-sphere 1 1 1

3-sphere with knotted triangle 1 1 1

Projective plane (RP 2) 2 2 2

Rudin’s 3-ball 0 0 0

3-ball with a knotted hole 0 2 ?

Non-PL 5-sphere 1 3 ?

Poincaré sphere 1 8 ?

K5 2 2 2

K10 4 4 4

K20 9 9 9

K50 24 24 25

K100 49 49 50

Table 1. Summary of experiments. The second column refers to the best,

i.e. smallest, value obtained in our experiments over many runs.

to compute the discrete geometric category in general. Our algorithm avoids the

pitfalls of the undecidability problem by simply claiming to provide an upper

bound.

1 3 2 1

4
8

2
5

7
2

6
3 3

1

Figure 2. A triangulation of the dunce cap

Bing’s house with two rooms [6] and the dunce cap have no free faces (and

hence are not collapsible) but have contractible geometric realization. Because
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these two complexes have no free faces, their discrete geometric category is

bounded below by 1. In addition, Proposition 2.3 implies that cat(|K|) ≤
dgcat(K), where cat is the classical LS category. Hence cat(|RP 2|) = 2 ≤
dgcat(RP 2). As mentioned in Remark 2.8, the actual discrete geometric cate-

gory for graphs was computed by Nash–Williams.

We now show that 2 ≤ dgcat(D) where D is the triangulation of the dunce

cap given below.

Call any edge of the edges 1 2, 1 3, or 2 3 formal and any facet containing

a formal edge formal.

Proposition 4.6. Let D be the dunce cap given by the triangulation above.

Then dgcat(D) = 2.

1 3 2 1

2 2

3 3

1

Figure 3. If U contains all three formal edges, then U cannot be collapsible.

Proof. By the table above, computational results have shown that dgcat(D)

≤ 2. Using the above labeling, we show by contradiction that dgcat(D) > 1,

which yields the result. Suppose that D = U ∪ V with U, V collapsible subcom-

plexes of D. We will utilize the fact discussed leading up to Proposition 3.1 that

a necessary condition for collapsibility is that a complex satisfy Euler’s formula

v+ f − 1 = e. Since D is composed of 9 formal facets, at least one of U, V must

contain 5 such formal facets, say U . We first claim that if U contains at least

three formal facets with 1 2, 1 3, and 2 3 in their boundary, then either U has

non-trivial homology or U = D.

The configuration satisfies 6 + 3 − 1 ≤ 9, which implies that the complex is

not contractible and hence not collapsible. In order to satisfy Euler’s equation

(again, a necessary condition for U to be collapsible), we must add at some point

add either a node or a face without adding an edge. Since a collapsible set needs

to be connected, the addition of any node will come with the addition of an edge.

Every addition of a face will add either a face and an edge, a face and 2 edges, or
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8

6

7

1 3 2 1

2 2

3 3

1

5

Figure 4. The minimum collection of facets of U are colored blue and the

minimum collection of facets of V are colored green. The addition of 6 8 7
to U or V containing the above blue and green facets, respectively, yields

a cycle which cannot be killed.

a face along with 2 edges and a node. In any case, at least one edge is added for

every other simplex so that v + f − 1 = e will never be satisfied unless U = D,

which is not collapsible.

Hence assume that none of the formal facets in U contain the edge 2 3 as the

other two cases are similar. Since U does not contain 2 3, V contains 2 3 8, 2 3 7,

and 2 3 5.

Furthermore, suppose that U contains 1 3 6, as a similar analysis shows that

if V contains 1 3 6, then one of U , V cannot be collapsible. If U also contains

1 2 8, then it is easy to see that with U and V containing at least the facets

mentioned above, the facet 6 7 8 will always create a cycle in U and in V . An

argument as above considering the need to satisfy Euler’s equation then shows

that the cycle cannot be killed without creating all of D.

Otherwise, V must contain 1 2 8. Then U contains 1 7 8 for otherwise the

addition of 7 8 would create a an unkillable cycle in V . So we must place 1 7 8

in V . But then facet 6 8 7 will create a cycle in both U and V , and again an

Euler equation argument shows this cannot be killed without creating D. This

homologically nontrivial cycle can easily been seen from Figure 3. Thus D cannot

be written as the union of two collapsible sets and 1 < dgcat(D). �

Remark 4.7. As an alternative to show that dgcat(D) ≤ 2, one could use

the discrete Lusternik–Schnirelmann theorem [1] which says that if f : K → R is

a discrete Morse function with m critical values, then dgcat(K) + 1 ≤ m. There

is a discrete Morse function g : D → R with exactly 3 critical values [4] so that by

the discrete LS theorem, dgcat(D) + 1 ≤ 3. As computed above, dgcat(D) = 2

so this provides an example of equality in the discrete LS theorem.
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Although the above evidence does not warrant a conjecture, Proposition 4.6

suggests that the existence of a contractible complex with discrete geometric

category any positive integer is worth investigating; that is, given a positive

integer n, does there exist a contractible simplicial complex A(n) such that

dgcat(A(n)) = n? Bing’s house with two rooms and the dunce cap answer the

question in the affirmative for n = 1 and n = 2, respectively.
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