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FIXED POINTS OF PLANAR HOMEOMORPHISMS
OF THE FORM IDENTITY + CONTRACTION

GRZEGORZ GRAFF AND PIOTR NOWAK-PRZYGODZKI

ABSTRACT. Let f be a planar homeomorphism which has
the form Identity + Contraction. We prove the existence of a
fixed point of f under some geometrical condition on an orbit
of f. The paper improves the result of Aarao and Martelli and
provides an example which shows that, in the given setting,
the theorem cannot be made stronger.

1. Introduction. The purpose of this paper is to study the
existence of fixed points of maps F : U — R?2, where U is an
open subset of R?, F(zr) = z + K(z) and K is contraction, i.e.,
|IK(z)— K(y)|| < kljlz—yl|, 0 < k < 1. Each such map is an orientation
preserving homeomorphism, cf. [1]. On the other hand, it is known that
for orientation preserving homeomorphisms the presence of a periodic
orbit forces the existence of a fixed point, which is an equivalent of one
version of Brouwer’s lemma on translation arcs, cf. [2, 3-6]. In [1] a
stronger result is proved for the class of maps under consideration. Let
for the rest of the paper z,, = F"~1(z) and B(x,r) be a closed ball
centered at x with the radius r. The theorem of Aarao and Martelli
proved in [1] is the following:

Theorem 1.1. Assume that there is a finite sequence {x1,... ,Zpi1}
such that its convex hull C' is contained in U. Then there exists a point
y in C such that K (y) = 0 provided that there is a w € [Xy, Tp1] such
that:

(1.1) lw =[] < V1= k[ K (z1)]-

Aarao and Martelli suspected, cf. [1, page 21|, that the inequality
(1.1) is optimal, i.e., that there are maps without fixed points with
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orbits as closed as desired to the inequality. They gave the example of
fixed point free map with an orbit for which ||w — z4]| is about twice

as large as V1 — k2|| K (z1)]].

However, in this paper, we show that a better estimate may be
established. Namely, we prove a stronger theorem from which it follows
that Theorem 1.1 remains true if we replace the inequality (1.1) by
lw—z1|| < 1/k||K(z1)]|. We also provide an example showing that
this inequality cannot be improved.

2 Preliminary results and definitions. Below we formulate two
lemmas proved in [1] which will be used in the next section.

Lemma 2.1. Assume that the line segment [y,y + K (y)] intersects
the line segment [z, x + K (z)]. Then the angle between the two oriented
segments 1s acute.

Lemma 2.2. If for some 1 <i < j < n [x;,xip1] N [z),Tj41] # D,
then F has a fized point in the convexr hull of {x;,... ,xj+1}.

Let us now recall the notion of the winding number. Let F : [a,b] —
R? be a nonvanishing vector field such that F(a) = F(b), and let
v : [a,b) — R? be a positively oriented one-to-one parametrization of
S1 = {z e R2: |z = 1}. We define F : S* — S! by the formula:
F(z) = F(v™(z))/||F(v"(z))||. Then, by w(F), the winding number
of F, we understand deg (F), which is an integer number.

Geometrically, it is the algebraic sum of the angles, divided by 2,
described by vector F(t) when ¢ changes from a to b. For further details
the reader may consult [7].

The following well-known fact asserts the equality of the winding
numbers for two vector fields which have different directions in each
point.

Lemma 2.3 Let F and G be two nonvanishing continuous vector
fields, F,G : [a,b] — R? and F(a) = F(b), G(a) = G(b). Suppose that
F(z)/||F(z)|| # G(z)/||G(z)] for each x € [a,b], then w(F) = w(G).
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Definition 2.4. We say that a finite sequence of points in R?
(Vi,...,V,) forms a closed polygonal path P if the broken line made of
segments [Vi,Va),...,[Vi_1, Vi), [Va, V1] is homeomorphic to S1. We
accompany with P the set of vectors v; =V, 1 —V; fori=1,... ,n—1,
v, =V — Vnavn—i-l = V1.

Definition 2.5. Let (Vi,...,V,) form a closed polygonal path P. Put
Vps1 = Vi. We will call v : [0,2n] — R? the parametrization of P if
Y|12i—2,2i—1] is the linear parametrization of the segment [V;, Vi1 1] and
¥(t) = Vigq for t € [2i —1,2i], where i = 1,... ,n.

Definition 2.6. Let Vp,...,V, form a closed polygonal path P. We
define back vector field G : [0,2n] — R? in the following way. Let
1<1<n,

(i) when t € [2¢ — 2,27 — 1] set G(t) = —v;,
(ii) when t € [2i — 1,24] set G(¢) = —[(t — 27 + 1)vi+1 + (20 — t)v;].

Lemma 2.7. Let G be the back vector field; then w(G) = £1.

Proof. Vector field G never vanishes on P, is opposite to the direction
of edges and at each vertex turns the corner. It is easy to observe that
the algebraic sum of the angles described by G(t) for ¢ changing from
0 to 2n is £2m, see also [1]. Thus w(G) = £1. o

3. Main results. Let F(z) = z + K(z), where K is a contraction
with constant k& € (0,1) in an open set U of the plane, and let
r, = F"~1(z). The main results of the paper are formulated in the
two theorems below.

Theorem 3.1. Assume that there is a finite sequence {x1,... ,Zpt1}
such that its convezr hull C is contained in U, and let r = || K (z1)||/k.

If z, ¢ B(z1,7r) and [Ty, Tnt1] N B(x1,7) # O, then there exists a
point y in C such that K(y) =0.
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Theorem 3.2. Let {z1,...,2;} be a sequence such that its convex
hull is contained in U and z; € B(zy,r) for i = 1,...,l, where
r = |[|[K(z1)||/k. Assume that x1 is not a fized point of F, then for
eachi=1,...,1, there is:

(3.2) ey — 2| < |lz1 — F(z:)]].

Remark 3.3. Theorems 3.1 and 3.2 taken together give a stronger
result than Theorem 1.1. Theorem 1.1 can be reformulated in the
following way. Let us denote by p = v/1 — k2| K (z1)], as V1 — k2 < 1,
we have: z9 = 21 + K(z1) ¢ B(z1,p). Thus, the second element of
the sequence {zi,...,2,11} leaves B(z1,p). Assume that for some
n the segment [z,,x,t1] intersects this ball nonempty. According
to Theorem 3.2 some element of the sequence {z1,...2,+1} must be
outside a larger ball B(z1,7) (1/k > 1 > /1 — k2), so the condition
[Zn, Tnt1] N B(z1,p) # & obviously implies [z;, z;y1] N B(z1,7) # &,
where x; ¢ B(z,7r) for some i < n.

Proof of Theorem 3.1. Let n be the first natural number satisfying
the assumptions of the theorem. We will consider only such sequences
that [z;, zi11]N [z, z;41] = @ for 1 < i < j < n, otherwise the theorem
is valid by Lemma 2.2.

For convenience, let us take x; = 0, denote K(0) = u, and choose
the coordinate system in the plane in such a way that z2 = (0, |Ju]|).
Let 8 be the closest point to z, in the set [z, 2n4+1] N OB(0,r). The
proof consists of two cases in dependence on the location of 8. First
we prove an important lemma which will be used in both parts, then
in each case we first formulate and prove some lemmas and then give
the proof of the case.

Lemma 3.4. For every z in the interior of B(0,r) we have K (z)u >
0; equivalently, the angle between K(z) and u is acute. This result is
still true if z € 0B(0,r), provided K(z) # 0.
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Proof. Because K is a contraction and x; = 0 we have for z €
Int B(0,7):

1K () = ull < klle]l < Jull, o
1K (2) — ul® = K(2)* — 2K (2)u + u? < u?;

thus, 2K (z)u > K(z)?. For z € 9B(0,r) the inequality (3.3) does not
have to be sharp, but we assume that K (z) # 0 on the boundary. i

Corollary 3.5. If z = (z1,22) is in the interior of B(0,r) and
F(z) = (23, 24), then z2 < za.

Case 1. B € 0B(0,r) N {(z,y) € R? : y < |lu||}. We take the
closed polygonal path P formed by the points (z3, 23, ... ,Z,, 3), then
by Definition 2.4 there is: v; = x3 — T2,...,V,_1 = B — x,, and
Up = To — (.

Lemma needed in the proof of Case 1.
Lemma 3.6. The angle between vectors v,—1 and v, is acute.

Proof. Taking into account that Av, 1 = z,41 — 5, where A > 1
and v, 1 +v, —u =1z, —x, = —x, and that K is a contraction, we
obtain:

[Avn—1 = ull = | K (2n) = K(O)[| < kllvn—1 + v — ul.
Taking squares, we get:

N2 | - 2 v,_qu+ u?

< kzvi_l + k2v721 + k2u? + 2k%v,_1v, — 2k v, _1u — 2K 0,0,

which is equivalent to:
(3.4)
(N2 —E2)v2_ +2(k2 N vp_1ut(1-k*)u? < k202 +2k%v,_1v, —2k*v,u.

As g € B(0,r), r = ||u||/k and v, — u = 1 — f = —8 we have:

kllvn — ul] < fluf,
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which gives:
(3.5) —k%02 4+ 2k%v,u > u? (K - 1).
Notice that z,, ¢ B(0,r), thus:

kllvn—1 +on = ul[ > Jull,
or equivalently:

(3.6) k%02 _, + k*0? + 2k%v,_1v, — 2k*v,_1u — 2k%v,u

> u? — k*u®.
Now, adding to (3.4) the sides of (3.5) we obtain:

(3.7) (A2 — k)2 +2(k* = Nvp_1u < 2k%0,_1v,.

Adding sides of (3.5) to the inequality (3.6) we get:

(3.8) (v2_, — 20p_1u) + 201U, > 0.

By the above inequality we have two possibilities:

either vfl_l — 2v,_1u < 0, then 2v,_jv, > 0 which is what we need; or
U%A — 2v,_1u > 0 but then, as A > 1:

(A2 — k)2 4+ 2(k% = Nvp_1u > (A —k?)(v2_; — 2v,_1u) > 0,

and the needed inequality follows from (3.7). O

Proof of Case 1. Let v : [0,2n] — R? be the parametrization of the
closed polygonal path P formed by (z3,23,...,2,,3). We consider
two vector fields V, G : [0,2n] — R?, where V(t) = K(y(t)) and G(t) is
a back vector field. We show that, for each t € [0, 2n], the assumption
of Lemma 2.3 is satisfied; as a result, we will get by Lemmas 2.3 and
2.7 that w(V) = £1 which will prove this part of the theorem.

Along the edges of the polygonal path P, apart from [, 23], the angle
between V (t) and —G(t) is acute by Lemma 2.1.
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It is also acute in each vertex z3,... ,x,, because for i = 3,... ,n we
have: K(z;) = v;—1 and v;_5v; 1 > 0; thus, for each s € [0, 1] there is
K(mi)(svi,1 + (1 — S)Uifz) > 0.

In z,, i.e., for t € [0,1], by Lemma 3.4 the ending point of the vector
K(y(t)) = v1 lies in the half-plane defined by the inequality y > ||ul|
and G(t) changes from —wv, to —wv;, both located in the half-plane
defined by the inequality y < ||u]|.

The same situation we have for the points of the segment (3,z2).
Let L be the line parallel to y = ||u|| which crosses a given point
z € (B,x2). Then in z, by Lemma 3.4, K(y(t)) = K(z) is situated in
the upper half-plane bounded by L and G(t) = —v, = 8 — z2 in the
lower closed half-plane.

Finally in 3, by Lemma 3.6 (—v,—1)(—vy) > 0; on the other hand,
G(t) changes in § from —v,_1 to —vy, thus G(t)(—v,—1) > 0. As by
Lemma 2.1 K ((t))vn—1 > 0, we see that G(t) and K (v(¢)) for each ¢
have different directions.

This ends the proof of Case 1. a

Case 2. Let (rg,yg) denote the coordinates of 5. We assume now
that yg > ||ul| and zg < 0 (the similar arguments, by symmetry, apply
if g > 0).

Let o = [0,2,] N 0B(0,r). We denote by (24, ys) the coordinates of
a.

Lemmas needed in the proof of Case 2.

Lemma 3.7.

(*) Zp 75 0,
(%) Yo <yg and x4 <O0.

Proof. The fact (x) is a consequence of the reasoning given in (B)
with 8 = 3’. Denote by L the line which crosses points 0 and 3. We
prove the condition equivalent to (##): z, cannot be situated in the
upper closed half-plane bounded by L.
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To the contrary, assume that the assumption is not satisfied, which
means that z,, lies above L and on or above the line tangent to 0B(0, )
in 8. We consider two possible subcases.

(A) Let z,, be in the second open quadrant of the chosen coordinate
system. Let v = @ — Xy, Uy, = Tpa1 — Tn, and let v’ be the projection of
U, on the line containing segment [0,x,]. Observe that the vectors
u and v, directs different half planes determined by the line 0z,;
thus [[u — vn|| > |Jlu — v'|| > |lu — v||, where the last inequality
results from the fact that ||v|| < |[¢'|| and the angle between v and
u is greater than 7/2. On the other hand, as K is a contraction,
Ellzn|| > |lu — vnl|- Now, to obtain a contradiction, it is enough
to show that ||u — v| > k|z,]. As ||af] = r = 1/k||lul| we have:
kllzn|| = k(1/k|lul] + ||v]]), so the previous inequality is equivalent to
lu —vll > [lull + Kllvl| or u® = 2uv +v* > [Jull* + 2|jul|[Jv]|k + &[[v]|*.
This is satisfied if —cos ¢ > k, where ¢ is the angle between vectors u
and v, or equivalently cos ¢’ > k, for ¢’ the angle between u and —wv.
From the triangle Oz2p, where p = B(0,7) N {(z,y) € R? : y = ||u]|
and z < 0}, we find that cos¢ = k, where 9 is the angle between
vectors u and p — 0. Inequality ¢ > ¢’ ends the proof of subcase (A).

(B) Let x,, be in the closed first quadrant of the chosen coordinate
system (and on or above the line tangent to dB(0,r) in ). Let g’
be the projection of 8 on the line z = 0, define vectors: z = 8 — x,,
z = B — z,. Notice that vector 3 — 0 = tu, where t < 1/k. Thus
0 — z,|| = ||tw — Z||. The location of z,, implies that the projection of
vector z on the y-axis is equal to the projection of vector z on this axis,
but the projection of Z on the x-axis is shorter than the projection of
z on this axis. Taking into account that u is a vector which lies on the
y-axis, we get that: [ju—Z|| < |Ju—z||. The fact that K is a contraction
gives the following:

[l = 2] < [Ju = 2[| < [[K(0) = K(zn)|| = [|0 = zn|| < Kltu — 2[].

After taking squares, we get: u? — 2uz + 22 < k2t2u? — 2k%tuz + k222,
which is equivalent to:

(B*t? — D)u® + (k* — 1)2% + 2(1 — k*t)uz > 0.

On the other hand, k2t —1 < 0, k2 — 1 < 0 and 2(1 — K%t)uz < 0
because the angle between u and Z is greater than or equal to /2.
This leads to a contradiction. ]
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In the forthcoming lemmas we introduce the following notation. For
i € {1,2,...,i0}, z; € B(0,r) and for i € {ip + 1,50 + 2,...,n},
Z; ¢ B(Oa 7‘)'

Lemma 3.8. For each 2 < i < ig, there is:

[zi, 2it1] N[0, zn] = @.

Assume that ¢ is the minimal number in {2,...,4i9} such that
[zi, 2i41] N [0,2,] # @ (so z; is above the line determined by [0, z,]),
with this assumption we show two helpful facts.

Fact 3.9. If 2} is the projection of the point x; on the line determined
by the segment [0, z,,], then x} € [0, a].

Proof. Assume z; ¢ [0,a]; on the other hand, «; must lie on the
diameter determined by «. Let Z; be the projection of x; on the z-
axis in the direction determined by the direction of [0,«]. Let 0’ be
the orthogonal projection of 0 onto the line determined by the segment
[, Z;]. There are two perpendicular triangles: 00'Z; and 00'z; from
which we deduce that ||Z;|| > ||z;]|-

We move the vector K (z;) along the line 0'z; from z; to Z;. Ob-
serve that, by Lemma 3.4, during this movement K (z;) have still the
endpoint below the line determined by [0,a]. As a result K(z;) as
the vector with the starting point at Z; have the endpoint situated in
the second quadrant. Notice that K(0) lies on the y-axis, which im-
plies that z-coordinate of K (x;) — K(0) is equal to the z-coordinate of
K(x;). The above remarks give:

1K (i) = KO = [|Z:]].
Finally, we obtain:
1K (i) = KO = [|Zil] > kl|Z:]| = Klla].

Contradiction with the fact that K is a contraction. O
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FIGURE 1. Illustration to the proof of Lemma 3.8.

Define A = {(z,y) € R? : y < (ya/za)z}, A’ the complement of A.
Let us denote ¢’ = z} + K ().

Fact 3.10. =’ € A.

Proof. By Fact 3.9, z; € [0,a]. To the contrary assume that
a' e A Then ||K(z;) — K(z)|| = [[(zis1 — @) — (2" — )l =
(zip1 — ') — (x; —})|| > ||o; — ||, the last inequality results from the
fact that the angle between vectors (z;11 — 2') and (z; — z}) is greater
than m/2. We obtained the contradiction because K is a contraction.
O
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Proof of Lemma 3.8. Assume that for some i there is [z;,2;y1]
N[0,z,] # @. We remind the reader that u = K(0), v = a — z,,
Up = Tpt1 — T = K(x,). We have: ||z,|| = [|v]| + 7 = ||v|| + 1/k||ul|-
Thus:

(3.9) [lu — K ()| + [ K () — vall < K)|0 — 2| + K|z} — ]|
= kllznll = Ellvll + [l

On the other hand, consider vectors v,u,v,,K(z;) as having the
common starting point at 0, see Figure 1. By Fact 3.10 K (%) is situated
under the line determined by [0, z,]. Let z be the projection of K (x})
on [0, z,], and let ¥ be the projection of v,, on the line containing [0, z,].
Observe that [|]| > ||v||. There is:

Ju — K ()| + |1 K () — vall = [Ju— 2]l + ]|z — 9]
= [lu =zl + (][] + [|2]
> [lull + o]

This contradicts (3.9), which ends the proof of Lemma 3.8. O
Lemma 3.11. For each 2 < i < iy, there is: [z;,zi+1] N[, B] = @.

Proof. Assume [z;, z;11] N[, 8] # D. Let us take the point s € R?
such that we have the equality of the vectors x;41 — z; = xpy1 — s.
Then [ls — zn| = [(Znt1 = 2n) = (@41 = )| = [(@n2 — 20) -
(i1 — z;)|| = [|[K(xn) — K(z;)||. On the other hand, we will show
that ||z, — s|| > ||z, — z;||, which will give a contradiction to the fact
that K is a contraction.

For the sake of the proof of this fact, let us choose the coordinate
system in such a way that 0, the center, is situated in the point z,,
the z-axis is determined by the segment [z,, a], the y-axis is the line
perpendicular to the z-axis. There is:

(1) by Lemma 3.8 both coordinates of z; are positive (if z; has a
nonpositive y-coordinate, then [z;, ;1] N[0, z,] # @ for some j < i
which contradicts Lemma 3.8).

(2) By Lemma 3.8 [, ©;4+1] does not cross [0, z,,]. On the other hand,
if [x;, ;1] crosses the segment [z, 8], then by Lemma 2.2 the theorem
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is proved. As a consequence, we may assume that ;1 is in the triangle
az,f.

(3) The angle between segments [z, o] and [a, (] is greater than 7 /2;
thus, the coordinates of z;+1 (and all points in the triangle ax,,3) are
not greater than the respective coordinates of 8, which are not greater
than the coordinates of x;,41.

(4) Because vectors (z;4+1 — x;) and (z,41 — ) are equal, (3) implies
that the coordinates of s are not less than the respective coordinates
of ZLi.

(5) The distance of the point s from the center, i.e., from z,, is not
less than the distance of x; from the center, which ends the proof of
the fact that ||z, — s|| > ||z, — ;|| and the whole proof of Lemma 3.11.

Proof of Case 2. We cannot repeat literally the same reasoning as in
Case 1 because the direction of the back vector field may now be the
same as K (v(t)) on the segment [z,,5]. However, due to Lemmas 3.8
and 3.11, we have control over the behavior of F' in the area bounded
by the convex (Lemma 3.7) quadrangle Oa3zo. Namely, we know that
elements of the orbit of 0 may leave this area only in such a way that
the segment [z;,x;41] crosses [za,3]. This enables us to use slightly
modified back vector field to prove the theorem.

Let v1,... ,v, be the same as in Definition 2.6. We define modified
back function G for vi,...,v, in the following way: G(t) = G(t) for
t €[0,2n — 3], G(t) = —vy for t € [2n —2,2n]. For t € [2n — 3,2n — 2],
we define G as a counterclockwise deformation between vectors —Up_1
and —uv;. It is easy to see that w(G) = +1.

By Lemmas 3.8 and 3.11 we see that for some ¢ the segment [x;, Z;41]
crosses [r2,3]. Define p = max{2 < j < n: [zj,zj41] N [z2, 0] # D}
and let g = [zp, xpr1] N [z2, 5]

Now we define the closed polygonal path (g, Zp+1,.-- ,Zn_1,%n,3)
and consider:

(a) modified back function G for (9, Tpt1s-++ sTn_1,Zn,B), G :
[0,2n1] — R2, where ny =n —p + 2.

(b) 4, the parametrization of (g,Zpi1,...,%Zn—1,%n,0) and Vo
[0,2n1] — R?, given by the formula V (t) = K (5(t)).
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As in Case 1 we show that for each ¢ € [0,2n4] the assumption of
Lemma 2.3 is satisfied for V' and G, which will prove the theorem.

By the same reasons as in Case 1 we see that V) IV #
G(t)/[|G(@)|| for t € [0,2n, — 3].

On the segment (8, g], i.e., for t € [2n; —2,2n;]| by Lemma 3.4 there is:
V(t)u > 0 and G(t)u = —vyu < 0, which gives the desired conclusion.

Finally, in the point 3, i.e., for ¢t € [2ny — 3,2n; — 2], we consider two
cases.

If z,, is situated on or under the line y = yg, then by Lemma 3.4 both
vectors —v,_1 and —v; and so G (t) as a deformation between them lie
on or under the line y = yg, but, again by Lemma 3.4, the end of the
vector V(t) lies over this line.

If z, is situated over the line y = yg, then from the definition of g
and [ one easily deduces that vectors —v, 1 and —v; and so é(t) for
each t lie in the lower half-plane bounded by the line L which has the
direction of v, = g — 3, see Figure 2. On the other hand, the relations
V(t)u > 0 and V(t)vp,—1 > 0 imply that V(¢) is situated in the upper
half-plane bounded by L.

This ends the proof of Case 2 and the whole proof of Theorem 3.1.
O

Proof of Theorem 3.2. We use the notation from the proof of
Theorem 3.1, in particular z; = 0. Assume that the inequality
(3.2) does not hold. Let m be the first natural number such that
lZm || > ||Zm+1]|- Notice that the y-coordinate of x,, is less than that of
Zm+41 by Corollary 3.5. Let us take the ball B(0,r') with r' = ||z 1]
We define o = [0,z,] N OB(0,r"). Let 3’ = (xp,ys) be the closest
point to z,, in the set [Tm,Zm11] N OB(0,r'). Repeating the same
arguments as in Lemmas 3.8 and 3.11, we obtain that any [z;, z;41] for
i =2,...,m—1 does not cross the sum of segments [0, '] U [¢/, 5]
Thus, the sequence of segments [z;, z;41] must reach to x,, crossing the
horizontal line y = yg/ but this is impossible because, by Corollary 3.5,
y-coordinates of the elements of the orbit must increase. ]
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Ys

FIGURE 2. Illustration to the proof of Case 2.

4. Optimality of Theorem 3.1. In this final section we construct
an example of a family of planar discrete dynamical systems, F.(z) =
z+ I/I\E(x), where 1/'{\5(:3) is a contraction. Each F is fixed point free
and, for any arbitrary small § > 0, there is an £ = £(§) such that there

exists a point z1 whose orbit has an element which is closer than ¢ to
the ball B(x1, ||H:(z1)]||/k)-

For any e, which is much less than k, we define a broken line ABCD,
where A = (0,k — 3¢), B = (e,k — 3¢), C = (¢,—¢), D = (0, —¢).

Let g : [0,1] — [0,k] be given by the formula g(z) = kz. Notice
that the length of ABCD is equal to k. Define h. : [0,k] - ABCD
with h.(0) = A, he(k) = D as the function which bends [0, k] forming
ABCD, i.e., h. is a piecewise linear map which transforms linearly the
segment [0, ] onto AB, [e,k — £] onto BC' and [k — ¢, k] onto C'D.

Now we define the function H. : [0,1] — R? by H.(z) = h.g(z).
Next define I/{\E : R? — R? by the formula:

= H. (z) ifze€]0,1],
H.(z,y) = ¢ H.(0) ifz € (—o0,0],
H.(1) ifze]l,00).



FIXED POINTS OF PLANAR HOMEOMORPHISMS 1591

Lemma 4.1. H. is a contraction.

Proof. First observe that H. and so H, on [0,1]x {0} is a contraction.
This is a consequence of the fact that, for every z,y in the domain of
he there is: ||he(z) —he(y)|| < ||z —y|| and that g is a contraction (with
constant k£ < 1).

For p,q € [0,1] x (R \ {0}) we take a projection of these points:
p', ¢ on the line y = 0 and see that ||p’ — ¢'|| < |lp — ¢|| but
HE(P) = He(p/) = Hs(p,)a HE(Q) = He(q/) = He(ql)a so the thesis
is a consequence of the previous case.

It is obvious that H. is a contraction in the remaining cases. o

Consider the family of maps F.(z) = = + H\E(m), and take z; €
[0,e/k] x {0}. Elements of the orbit of zy, {F/(z1)}52, go away
from the line y = 0 until the projection of F7(z1) on this line lies
in [0,1 — 2¢/k] and then start to approach it. For some large enough i
the segment which joins two consecutive elements of the orbit crosses
the z-axis. Because ¢ < k it happens for the segment [1 — ¢/k,1]:
[Fi(21), FF (@) N ([1 = e/k, 1] x {0}) # 2.

Let 6 > 0 be an arbitrary small real number. We want to show
that there are ¢ and ®, such that ||z1 — .|| — 0 < ||He(z1)||/k, or
equivalently:

(4.10) k= kd/||zy — @n|l < |He(z1)[[/ll2r = 2nl]-

Let us take x,, = x;. Then, by the construction of F., we see that
x,, is situated inside the triangle made of vertex: z, (1,0), (1,¢), thus

|2y — zn|| < 1 +e. On the other hand, ||H.(z,)|| > | H.(0)|| = k — 3e.
Finally we obtain the inequality

k — 3¢
1+¢

<[ He(@)[/[ler = @nl|-

For ¢ — 071 the fraction on the lefthand side of the above formula
converges to k, taking values which are less than k; thus, for appropriate
¢ and x,, defined as above, we get the needed inequality (4.10).
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