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UPPER BOUNDS FOR UNITARY PERFECT NUMBERS
AND UNITARY HARMONIC NUMBERS

TAKESHI GOTO

ABSTRACT. We prove the following two theorems: (1) If
N is a unitary perfect number with k£ distinct prime factors,

then N < 22", (2) If N is a unitary harmonic number with k
distinct prime factors, then N < (22k)k.

1. Introduction. Let o; be the divisor function defined by

oi(N) = d.

d|N

This function is multiplicative, that is, ;(ab) = 0;(a)o;(b) if (a,b) = 1.
A positive integer N is said to be a perfect number if o1(N) = 2N. It
is well known that an even perfect number has a form 2P~1(27 — 1)
with 2P — 1 prime. As of October, 2006, 44 even perfect numbers
are known (for the newest information, see the web site of GIMPS:
http://www.mersenne.org/prime.htm). It is still open whether or
not odd perfect numbers (OPNs) exist; however, many conditions for
their existence are known. For example, Brent, Cohen and te Riele [1]
showed that OPNs must be greater than 103°°. Suppose that N is an
OPN with k distinct prime factors. Dickson [5] showed that, for a fixed
positive integer k, there exist only finitely many such N. Moreover, it
was shown by Hagis [7] and Chein [2] independently that k must be

2
greater than 7. Pomerance [13] showed that N < (4k)(4k)2k , and this
bound was improved by Heath-Brown [9] to 44" by Cook [4] to p*
with D = (195)}/7 ~ 2.12, by Nielsen [10] to 2%*.
Subbarao and Warren [15] introduced the concept of unitary perfect

numbers (UPNs). A positive integer d is said to be a unitary divisor of
N if d| N and (d, N/d) = 1. So we define the unitary divisor function
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by
0;(N): Z .

d|N
(d,N/d)=1
This function is also multiplicative. A positive integer NV is said to be a
UPN if 0 (N) = 2N. Subbarao and Warren listed four UPNs: 6, 60, 90
and 87360. They showed that every UPN is even and conjectured that
there exist only four UPNs; however, Wall [16] discovered the fifth one:

218.3.5%.7.11-13-19-37-79-109 - 157 - 313,

an integer with 24 digits. He showed that this is the exact fifth one,
that is, there exist no unknown UPNs less than the number above. It
is still open whether or not there exist other UPNs. Suppose that IV is
an unknown UPN with & distinct prime factors. Subbarao and Warren
showed that, for a fixed positive integer k, there exist only finitely many
such N, Subbarao [14] that k¥ must be greater than 7 and Wall [17]
improved to k > 9. One of the aims of this paper is to give a bound for
UPNSs which is analogous to Nielsen’s bound for OPNs. In Section 2,
we give an upper bound for components of UPNs (a prime power p€ is
said to be a component of N if p¢ | N and p°™1 { N).

Theorem 1.1. Suppose that N is a UPN with k distinct prime
factors. Let N; be the ith smallest component of N. Then it follows
that N; < (227" = 1)(k — i + 1) with equality if and only if N = 6,
N1:2, N2:3 OT‘N:60, N1:3

From Theorem 1.1 it is immediate that N < 22k_1k!; however, we
give a better bound in Section 3.

Theorem 1.2. If N is a UPN with k distinct prime factors, then it
follows that N < 22"~ =1(22"7" _ 1) with equality if and only if N = 6.
In particular, N < 22",

Ore [11] introduced some object named after harmonic numbers
by Pomerance [12]. Because this term also means another object,
1+1/2+4---41/n, we may use a term Ore’s (harmonic) numbers to
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avoid confusion. A positive integer N is said to be a harmonic number
if the harmonic mean of its divisors

NO'()(N)
0'1(N)

is integral. Ore proved that every perfect number is harmonic and
conjectured that no nontrivial odd harmonic numbers exist (1 is called a
trivial harmonic number). In fact, no nontrivial odd harmonic numbers
are known, though thousands of harmonic numbers are known. If Ore’s
conjecture is true, it follows that no OPNs exist.

Hagis and Load [7] introduced the concept of unitary harmonic
numbers (UHNs). A positive integer N is said to be a UHN if the

harmonic mean of its unitary divisors
No}§(N)

H*(N) = —/ %+~

oi(NV)

is integral. Many examples of UHNs are known, (see [8] or Section 5 in
this paper); however, it is still open whether or not there exist infinitely
many UHNs. Hagis and Load showed that every UPN is a UHN. They
also proved the following two facts:

(a) For a given positive integer ¢, there exist only finitely many UHNs
N with H*(N) = c.

(b) For a given positive integer k, there exist only finitely many UHNs
with k distinct prime factors.

In Section 4, we prove the following theorem.

Theorem 1.3. Suppose that N is a UHN with k distinct prime
factors and H*(N) = c¢. Then it follows that

(a) N < ¢,
(b) N < (2"
with each equality if and only if N = 1.

2. Upper bound for components of UPNs. In this section,
N, ..., Nj would denote prime powers satisfying N; < N;, (N;, N;) =
1 for i < j. We often use the following lemma.
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Lemma 2.1. If 0*(Ny--- Ni) = s, then

k

Ny <
=51

with equality if and only if N; = N; 1 +1,1=2,... k.

Proof. Since

Ni+1 Ny+1 N +1
NN TN
N+l M+2 Ntk Ntk
- N Ni+1 N +k-1 N,

s=0"{(Ny---Ng) =

the lemma holds. O

Before proving Theorem 1.1, we give some bounds for components of
UPNs.

Proposition 2.2. Suppose that N = Ny --- N is a UPN. Then the
following inequalities hold.

Ny <k,

Ny < 3(k —1),
N3 <9(k —2),
Ny < 54(k — 3),

N5 < 648(k — 4),
Ng < 321408(k — 5),
_ 103305030912

P e (k).

Proof. Since o*{(N) = 2, we immediately have Ny < k from
Lemma 2.1. Next, since 0*,(Ny---Ny) = 2/0*;(Ny), Lemma 2.1
implies

k—1 k—1

NS oot ) =1 = 2, =1 PR
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Similarly, we have
k—2

N3 < .
5= 2/* (N{N) — 1

It is necessary that o*;(NyN2) < 2. Note that ¢*;(2-3) = 2,
0*1(2-5) =18, 0*1(3-4) = 1.6. Hence, 0*;(N1N2) < 0*,(2-5),
and

k—2

N3§W:9(k72).

For a bound of N4, we must investigate when o* ; (N1 N2 N3) is maximal
under the condition ¢*;(N1N2N3) < 2. By a direct calculation, we
have

0c1(2-5-9)=2, o¢*(2-5-11)=~1.96, o*,(2-7-9)~ 1.90,
0*1(3-4-5)=2, o0*,(3-4-7)=1.90.
Hence it follows that

k-3
Ny <
t=2/0"(2-5-11) — 1

= 54(k — 3).

By a computer search, we have

1296
Uil(N1N2N3N4) <2= Uil(N1N2N3N4) < 0'*_1(25].159) = m,
hence k— 4
Ns < — = 648(k — 4).
®=2/g* (2-5-11-59) — 1 (k=4)
Similarly, we have
k-5
Ng < = 321408(k — 5
6=12/5" (2-5-11-61-479) — 1 (k=3),
k—6 103305030912
N, < = k-6
"= 2/6* (2-5-11-61-479 - 321413) — 1 5 ( )

as required. ]

Note that 0*;(2-5-11-59) > 0*,(2-5-11-61); however, 0*;(2-5-
11-59-653) < 0*,(2-5-11-61-479). So the computer search is very
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heavy. For a rough estimate of o* (N --- N,.), we show the following
lemma.

Lemma 2.3. Let x1,...,x, be positive integers such that 1 < z1 <
. S T,. If
. 1
11 <1 + —) <2,
- Z;
=1
then .
! L) 22" —1
H + I—z = T927—1
i=1

with equality if and only if ©; = 22i_1, i=1,...,r.

Using this lemma, we can easily prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that N = Ny - - N is a UPN. From
Lemma 2.1 it follows that

k—i+1
1 N; € —— :
( ) 2/0’_1(N1 "'Ni,]_) -1

From Lemma 2.3,

(2) O'il(Ny'-Ni_l) <

So we have the required inequality. Suppose that the equality holds.
Then both equalities in (1) and (2) hold; hence, it is necessary that
k—i+1<3andi—1<1. Therefore, k < 4. Subbarao and Warren
[15] showed that all such UPNs are 6, 60 and 90, so we have the cases
which are mentioned in the statement of the lemma. O

In the rest of this section, we prove Lemma 2.3. Cook [4] essen-
tially showed Lemma 2.4. By a similar argument, we can also prove
Lemma 2.5.

Lemma 2.4 [4]. Let my,...,m, be positive integers such that 2 <
my < --- < my. If real numbers x1,... ,x, satisfy 2 < z; < --- < x,
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and

u u
(3) Ha:iZHmi, u=1,...,r

i=1 i=1
then it follows that

I ’I"

1 1

(=) =105

i=1 i i=1 mi
with equality if and only if x; =m;,i=1,...,r.

Lemma 2.5. Letmq, ... ,m, be positive integers such that1 < m; <

- < my. If real numbers x1,... ,x, satisfy 1 <z <--- <z, and (3),

then it follows that

() <1 5)

i=1 i=1

with equality if and only if t; =m;, 1 =1,...,r.

Proof of Lemma 2.3. For a contradiction, assume that

r

22" _1 £ 1
(4) W<1_[<1+x—i><2.

i=1

Then it is easily verified that
(5) HJJ,’ > 221‘_1.
i=1

Put m; = 22" From Lemma 2.5, if

then
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a contradiction. Therefore, we may assume that there exists an integer
s such that 1 < s <r and

S S
(6 [T < me
i=1 i=1
Suppose that s is the maximal one. From (5) we have s < r. We easily

show that
* 1 - 1

i=1 i=1

From (4) it follows that

1T (1+xii>> 1T (1+mi>

i=s+1 1=s+1

Using again Lemma 2.5, we see that there exists an integer ¢ such
that s < ¢ < 7 and H§:s+1 x; < H§:s+1 m;. From (6) we have
HE:I T < H;Zl m;, which is contradictory to maximality of s. ]

3. Upper bound for UPNs. In this section, we prove Theorem 1.2,
so N would denote a UPN, that is, 0* ;(N) = 2. Let N = Ny---Ng
with N; < Nj, N;,;N; = 1 for i < j. Using Lemma 2.4, Cook [4]
showed the following proposition to give an upper bound of OPNs (for
a detailed proof, see also [10]).

Proposition 3.1 [4]. Let r,a,b be positive integers. If integers

T1,... & Satisfy2 <z <+ <z, and
r 1 a 1
[M{1-=)<:< 1-—) <1,
T; b T;
i=1 i=1
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with equality if and only if xt; =n;, 1 <1i < r, where

- (a+1)2 " +1 i=1,...,r—1,
' (a+1)2i71 i=r.

Using this proposition, we immediately have the weak upper bound
92 in the statement of Theorem 1.2. In fact, since

H( N+1> %

it follows that

k k
N =[N <@V +1) <2*" 227 < 2%

2k—1

In order to take the strong upper bound 22’671_1(2
the following proposition.

— 1), we need

Proposition 3.2. Let r,a,b be positive integers. If integers
T1,...,%p Satisfyl <z <+ <z, and

a
mo ael(eg) <5 T )
then it follows that
Hm, <b+1)2 - (b41)F 1

with equality if and only if x; =m;, 1 < i <r, where

_— (b+1)2"" i=1,...,r—1,
Cle+nrT o1 =
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Using Proposition 3.2, we immediately have the following proposition,
which is an extension of Theorem 1.2.

Proposition 3.3. Let a,b, k be positive integers. Suppose that N is
a positive integer with k distinct prime factors such that c* {(N) = a/b.
Then it follows that N < (b+ 1)2:%171(([) + l)2ki1
if the equality holds, then k < 2.

—1). Furthermore,

Proof. Let N = Ny --- N as usual. Since

[1(t+ )

a
b b
it follows that

2k—1

k
N=[N <@+ -+ 1= 0+1)2 7 H((b+1)

i=1

~1)

by use of Proposition3.2. Suppose that the equality holds. Then
N; = m; (mys are integers given in the statement of Proposition 3.2).
If £ > 3, then (N1, N2) > 1, a contradiction. Hence, we have k& < 2.
u]

In the rest of this section, we prove Proposition 3.2, using Lemmas
2.5 and 3.4.

Lemma 3.4. Letmy,...,m, be positive integers such that 1 < m; <
-~ < my.. If real numbers x4,... ,x, satisfy
(8) 1<z <--- <,
and

u u r r
(9) HmiZHmia u=1,...,7r—1, HmiSHmia
i=1 i=1 i=1 i=1

then
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H(wi +1) < H(mi +1)

i=1

with equality if and only if v; =m;, 1 =1,...,r.

Proof. The proof is similar to one of Lemma 2.4 (see [4] for details).
The set of points (z1,...,2,) € R" satisfying (8) and (9) is a compact
region. Hence, there exists a point (zy,...,x,) such that the value
IT;_;(z; + 1) would be maximal in this region. The goal is to show
that (z1,...,2,) = (my,...,m;). If not so, then we can make the
value []!_, (z; + 1) increase.

We now show this fact. Suppose that ; = m;, i = 1,... ,t — 1,
Ty > My, Ty = -~ =5 < Tgy1. Lake areal number K > 1, and change
z; to K~'xy, x5 to Kxs. Then the value (z; + 1)(z, + 1) increases. If
K is small enough, then (8) still holds. We can see that (9) also holds
by some discussion. ]

Proof of Proposition 3.2. The proof is by induction on r. When r = 1,
the assumption is

1
1<%<14 —.
b Il

Since b < a and a,b € N, we have b+ 1 < a and

b+1 1
Lgl_l__’
b I

hence z; < b. Assume now that » > 2 and that the result holds for

each positive integers less than r.

If 21 <mj =b+ 1, then b(z1 +1) + 1 < (b+ 1)%. From (7) we have

T‘—l ™
1 axy 1
[[(1+=) <i—=<][(1+—):
<+$i><b($1+1)_ <+$i>’

=2 =2

therefore, the induction hypothesis implies
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or—2

1 H:c <mi(b(zy +1) + 12 " H(b(zy + 1) + )2 — 1)

=2

<G+ e+ ),

as required. So we may assume that z; > mj.

If x129 < myims, then Lemma 3.4 implies
b1 +1)(za+1)+1<blmy +1)(ma+1)+1=(b+ 1)~
From (7) we have

T () < grimms < ().

=3 =2

By the induction hypothesis, it follows that

T1To | | z; <mimo(b(zy +1)(22 + 1) + 1)2r73_1
i=3
or=3

% (b + (s +1) + 1)~ 1)
<@+ e+ -,
as required. So we may assume that xix2 > mims. Since

u

b [[(mi+1)+1 = (b+1)=1)((b+1)+1) - (b+1)*" +1)+1 = (b+1)*",

i=1

we can repeat this discussion. So we can assume that

u u
Hxiznmi, u=1,...,r—1.
i=1 i=1

If this inequality is false when w = r, then the required inequality
automatically holds. Hence we can apply Lemma 2.5 to our case, and

we have
- 1 - 1 b+1
1+ — )< 14— | = ——.
H(+$i>_H<+mi> b

i=1 i=1
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On the other hand, the assumption means
. 1
H <1 + _> > @ > b+_1;
el €T; b b

therefore, we have equality, and x; = m;, i =1,...,r. u]

4. Upper bound for UHNSs. In this section, we prove Theorem1.3.
First, recall that the results which Hagis and Load [8] produced (they
did not mention Lemma 4.2 (b); however, they essentially showed it in
the proof of (a)).

Lemma 4.1 [8]. Let N be a UHN with k distinct prime factors, and
let H*(N) = c¢. Then it follows that

2k+1
k+2

k< <c< 2k,

Furthermore, we have first equality only when k = 2, second equality
only when N = 2 or 6, third equality only when N = 1.

Lemma 4.2 [8]. Let N be a UHN with k distinct prime factors, and
let H*(N) = ¢. Then the following facts hold.

(a) If k < 3, then N € {1,6,45,60,90, 1512, 15925, 55125} .
(b) If ¢ < 5, then N € {1,6,45, 60, 90}.

Proof of Theorem 1.3. Since

oy(N) 2k

N)= -0 ==

U—l( ) H*(N) c 1]
Proposition 3.3 implies that

(10) N< e+ e+ 1) < (c+1)%.

From Lemma 4.2, if £ < 3 or ¢ < 5, then the required inequalities hold.
So we may assume that £ > 4 and ¢ > 6. From Lemma 4.1 we have
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c+1 < 2k Hence, (10) implies (b). We turn now to (a). From k > 4,
we easily see k + 2 < 2(2k+3)/4_ Hence, Lemma 4.1 implies that

2k+1

c> > 9(2k+1)/4

Therefore, 2¢ < ¢?/y/2. From ¢ > 6 we easily see ¢ + 1 < V2, Hence,
it follows that

n < (c+1)2k <(c+ 1)62/\/5 < CCZ,

as required. a

Acknowledgments. I would like to thank Professor Graeme Cohen
for introducing me to the topic of unitary harmonic numbers.

APPENDIX

5. Table of UHNSs. Hagis and Load [8] listed all UHNs less than
10% and essentially all UHNs N with H*(IN) < 5. The table below is
the list of all UHNs N with H*(N) < 50. Shibata and the author [6]
gave an algorithm to get original harmonic numbers. In order to give
the table below, we use a similar algorithm. It takes about 15 hours
to compute with a computer of Pentium IV, 3GHz and Mathematica
program. By another computer search, it becomes clear that the table
contains all UHNs less than 107. From Lemma 4.1 the table contains all
UHNs N with w(N) < 5 (w(N) denotes the number of distinct prime
factors of N). Hence, the table is an extension of Lemma 4.2. In the
table, there are 124 UHNs, 9 odd UHNs, and 41 “seeds” (seeds are
marked with asterisk). A UHN is said to be a seed if it does not have
a smaller proper unitary divisor which is a UHN (see [3] for original
harmonic seeds).
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TABLE 1. All unitary harmonic numbers N with H*(N) < 50.

H*(N) N | Factorization of N
1 *1
2 *6 | 2-3
3
4

*45 | 325
*60 | 223-5
90 | 2-3%5
*1512 | 23337
420 | 223.5.7
630 | 2-3%5.7
*15925 | 527213
*55125 | 325372

~N o

9 *3780 | 22335.7
*46494 | 2-347-41
10 7560 | 2333%5.7

*9100 | 22527.13
*31500 | 2232537
*330750 | 2-335372
11 16632 | 23337-11
12 *51408 | 2433717
*66528 | 2°337-17
*185976 | 22347-41
*661500 | 22335372
13 5460 | 223-5-7-13
8190 | 2-325-7-13
*646425 | 325213217
716625 | 32537213
14 95550 | 2-3-527%13
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TABLE 1. (Continued).

H*(N)

N

Factorization of NV

15

16
17

18

19

20

22

23

27300
*40950
232470

*20341125
*87360

64260
790398

81900

*464940
859950
143640
172900
598500

6284250

*163800
257040
332640
929880

40682250
565488
2045736
7276500
*21965856

1182384

1530144

4277448

15214500

223.527.13
2.32527.13
2.345.7.41
34537241
263.5.7.13
22335.7.17
2.347.17-41
2232527.13
22345.7-41
2.33527213
233%5.7-19
22527.13-19
2232537.19
2.33537219
2332527.13
243%5.7-17
25335.7-11
23345.7-41
2.34537241
24337.11.17
23347.11-41
2233537211
2°3.11231-61
24337.17-23
25337.11-23
23347.23.41
2233537223
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TABLE 1. (Continued).

H*(N)

N

Factorization of NV

24

25
27

29

31
33

34

36
37

3439800
*6323184
*8182944

*11442816
81364500
*9705347500
52886925
*124987536
*161748576
*30156053112
791700
1187550
6741630
589892625
2708160
900900

5114340

9459450

1392300

7903980
14619150

105773850

5314680

6397300
22144500

232517250

2333527213
24347.17.41
2°347.11.41
27337.11.43
2234537241
225479.157-313
31527%13-41
243517-31-61
253511-31-61
233723.137-547
223.527.13-29
2-32527.13-29
2.3%5.7.29-41
34537229.41
263.5.7.13-31
2232527.11-13
22345.7.11-41
2.33527211-13
2232527.13.17
22345.7.17-41
2-33527213-17
2.3527213-41
233%5.7-19-37
22527.13.19-37
2232537.19-37
2.33537219-37

1573
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TABLE 1. (Continued).

H*(N)

N

Factorization of NV

38

39
40

43

44

45

46

3112200
4883760
6320160
17667720
772962750
*54299700
*5569200
*7202700
31615920
40914720
57214080
24315984
87966648
312889500
944531808
37837800
69555024
329487840
895009500
*3778127232
624937680
808742880
87348127500
150780265560
79115400
145433232
188207712
263184768
1871383500

2332527.13-19
24335.7.17-19
253%5.7.11-19
23345.7.19-41
2.34537219-41
2233527.13217
2432527.13-17
2°32527.11-13
24345.7.17-41
2°345.7.11-41
273%5.7.11-43
24337.11-17-43
23347.11-41-43
2233537211-43
253.11%231-43-61
233%527%11-13
24347.11-17-41
2°325.11231-61
2234537211-41
273.11%231-43-61
24355.17-31-61
25355.11-31-61
22325479.157-313
23375.23-137-547
2333527213-23
24347.17.23.41
25347.11.23-41
27337.11.23.43
2234537223.41
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TABLE 1. (Continued).

H*(N) N | Factorization of N

47

161670600
297189648
384598368

2333527213.47
24347.17.41-47
25347.11-41-47

537812352 | 27337-11-43-47
3824131500 | 223%537241.47

48 116953200 | 2433527213.17
151351200 | 253352721113

423095400 | 233%527213-41
*868795200 | 263%527-13217
*1407466368 | 27347-11-41-43

*5881607424 | 28337-11-43-257
*22350712320 | 29355-19-31-61
49 *1191483216 | 2*337311-17-43
*4310365752 | 233473114143
475562027500 | 225%7279.157-313
50 *174696255000 | 23325479-157-313
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