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GENERALIZED S-TYPE LIE ALGEBRAS

KI-BONG NAM

ABSTRACT. The generalized W-type Lie algebra W (et1,
,eimm,m) is introduced in the paper [5] using exponen-
tial functions. We define generalized S-type Lie algebras

S(e®e1, ... eFtm m) over F and Sp(e*?1,... er*m m)
over Fp. We show that the Lie algebras S(et?1,...  e*®m m)
and Sp(eiwl ,...,eT¥m m) are simple.

1. Preliminaries. Let F be a field of characteristic zero (not
necessarily algebraically closed) and F, a field of characteristic p (not
necessarily algebraically closed). Throughout this paper, N and Z will
denote the nonnegative integers and the integers, respectively. Let F®
be the multiplicative group of nonzero elements of F. Let F[z1, ... , zy,]
be the polynomial ring in indeterminates zi,...,z,,. Throughout
this paper, let us assume that m > 1. Let us define the F-algebra
V(et®1 ... e*®n m) spanned by

(1) {em®r...e@mTmglt ogim | gy A € Lyin, ... sim € N}

where m is a fixed nonnegative integer and e***+, 1 < w < m, denotes
the exponential function. We define the Lie algebra W (e®®:,...,
et®m m) over F which holds the following two conditions:

(1) W(et®r ... et®n m)istheset {gd, | g € V (et ... et®n m),
1 <wu < m} with the obvious addition,

(ii) the Lie bracket on W (et ... e*®m m) is given as follows:
[910u: 9200] = 910u(92)00 — 9200(91)u; for g1, g € V(eF™1, ..
et*m m), 1 < u < m, where 9,, 1 < u < m, denotes the partial
derivative with respect to z,,.
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The Lie algebra W (et®1,...  e*®= m) has the standard basis

(2)

a1 AT % 7
By (ea1,... etem m) = 1€ et Tmalt im0y | ay, . €2,
iy e yim EN, 1 <u<m}.
For each basis term e®1%1 ... e%m@myll ... gin g, of W(e®1 ... et¥m,

m), we call €11 ... e%m%m the exponential part, xlf -~ xim the polyno-
mial part, a, the exponent of z,, and i, the degree of x,,, 1 < v < m.
The Lie algebra W (et®1,...  eT®m m) is Z™-graded as follows:

(3) W(Eixl’ T ’eimm’ m) = @ W(ahm Jam)
(a1yeee sam)EZ™

+xq
S

where W, . 4,.) is the vector subspace of W(e ., etTm m)

spanned by
{e®m@1 . etmTmyl L gim g iy, i, €N, 1 <u <m}.

We call W(q, ... a,.) the (ai,...,a;,)-homogeneous component. The
(0,...,0)-homogeneous component Wi,... 0y is the well-known Witt
algebra W (m) which is simple [6]. Every homogeneous compo-
nent W, . .4, 18 a Wg, . g-module [1]. The generalized spe-

cial type Lie algebra S(et®1 ... e**m m) is a Lie subalgebra of
W(et™ ... et m) with elements
{ Z gk,tat
kel 1<t<m

Z 8t(gk7t) = O, gkt (S V(Eixl, . ’e:i:zm’ m)}

kel 1<t<m

where Y, | <, 9k,:0; has only finitely many nonzero terms [6] and

is an index set. Note that z;0; ¢ S(e*® ... e*®m m) and (x;0; —
x;0;) € S(er®r, ..., eF®m m) for 1 < i,j < m. For the element
(2:0; — x;0;) € S(e*®1,... ,e*®m m), 1 <i,j < m, it is convenient to

use the parenthesis () of («;0; —x;0;), because z;0; and x;0; are not
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in S(e*® ... e*®m m). The Lie subalgebra S(e@1, ... eXem m) of
S(e®, ..., e m) is generated by

G

S(eEe, ek m)
—
_ [ a1z T Bl 1T A Tom, 01 T4l i
= {e LT1 L garTr eI T L pmTm gt gl T, "'%,T&t’

A1yeve U €Ly 01, ... iy €N 1§t§m}

—

where e®7¢ and zi* mean that those factors are omitted. In the Lie
algebra W (et ...  e*®m m), if n = 0, then we have the Witt algebra
W™ (m) [6]. Similarly, we have the special type Lie algebra S*(m) in
the paper [6] with the set of elements

{ S fewle | D> av(fk,v)zo,fkeF[xl,...,xm]}

keJ,1<v<m keJ1<v<m

where J is an index set. The Lie subalgebra S+(m) of ST(m) is
generated by

Tt+1 - . .
S+(m) = {2} - xt‘xtH-~x§n(‘9t|zl,...,zm€N,1§t§m}.

The Lie algebra S*(m) has the standard basis

(4) Berimy = {[.Z‘le -zl m;’jf cexim gyl acv”xi”jf e ximd,] |

i1, dm €N, 1<t <m}.

We may find a basis Bs(eﬂlwﬁeﬂm’m) of S(ex*1 ... eXrm m) as

BS+—(m) in (4). Since the Lie algebra W (e®?1 ... eT®m m) is Z™-
graded, S(e*®1,...  e*®m m) is Z™-graded naturally as follows:

(5) S, et m) = B S an)-

(a1,...,am)EZ™

The (0, ... ,0)-homogeneous component Sy, ... ¢y is the well-known spe-
cial type Lie algebra ST (m) in the paper [6] and S(,, ... 4,.) is a vector
subspace of W4, . a,.)-
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For any basis elements e®%1 - .. e4m@m gt ... gim 9, and P11 . .. ebmTm x
2l xdm Dy in W(eE .. eX*m m), we may define the order >, as
follows:

cre™® ... 6“’"3”"’/3331 . -qu’fat >1 coet -eb’"zmle'l . -x%"(?v
if and only if a3 > by, or a3 = by and i1 > i9, or ..., or a3 = by,...,
im = Jm, and v < t for any ¢y, co € F*. Thus we may consider that a
Lie subalgebra of W (et ...  e*®= m) has the order >. Naturally,
the Lie algebra S(e*,... e*®= m) has the order >;. Let S be a
subset of a Lie algebra L. An element | € L is ad-diagonal with
respect to S, if [I,s] = cs holds for any s € S where ¢ is a fixed
scalar which depends on [ and s. The Lie algebra S*(m) has the ad-
diagonals {Zu)veK Cuw(TuOu — 20p) | 1 <u, v<m, ¢, €F, K C

{1,...,m}} with respect to Bs+—(m) in ST(m). Let Fp be a field of
characteristic p (not necessarily algebraically closed) and Z, denote
the prime field where p is a prime number. Let us assume that m is a
fixed positive integer such that m > 1. Let us define the Fy-algebra

Vp(e*®1, ... e*®n m) spanned by

(6)

{eM1 .. edmTmpl gty | a1, Gy i1, im € Zp, 1 <u < m}

where m is a fixed nonnegative integer, e*»*» 1 < w < m, denotes the
exponential function (formally), and 9, 1 < u < m, denotes the partial
derivative with respect to x,. We may define the W-type Lie algebra
Wy(et®1 ... et®m m) over Fy, as W(e®®1 ... e*®n m) and S-type
Lie algebra S,(e*®1,... e*®m m) over Fy, as S(e*®,... e*®m m).
The Lie algebra W,,(e¥®1, ...  e¥®m m) is simple [5]. The Lie algebra
Sy(eFe ... e*m m) has a similar Z,™-gradation in (5).

2. Generalized S-type Lie algebra over F or Fy,.

Proposition 1. The Lie algebra S*(m) and the Lie algebra S+ (m)
are the same.

Proof. Since the Lie algebra St (m) is a subalgebra of ST (m), it is
enough to show that S (m) C St(m). Let [ be any element of S (m).
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It is enough to show that the element [ is the sum of basis elements in
Bs+—(m) of S*(m). Let us prove this proposition by induction on the
number of basis terms of [ which are in By +(,,) N.S*(m). If [ has only

one basis term in By + () N ST (m), then [ is a generator of G

5+ (m)
in (1). Thus there is nothing to prove. Let us assume that we have
proven the proposition when [ has k basis terms in By +(,,) NSt (m).
Let us assume that | has k + 1 basis terms in By +(,,) N ST(m). If

! has a basis term [; in Gm, then [ — ¢l; has at most k basis

terms in By + () N S*t(m) by taking an appropriate scalar c. By

induction, [ —cly € ST (m), i.e., | € ST(m). Without loss of generality,

we may assume that [ has the following form ¢;z ™z ... zimd, +

coxyt -y Tyt - aim O, 4+ where 4y # 0, * is the sum of remaining

terms of [ and ¢; € F*. We have that

C1 i1+1 i ip+1 g1 i F Y
+ P (70, ay---xp T xxm0] € ST(m)

by induction. Since

€1 i1+1 i ip+1, Gt41 im
1 [P0, g xy Tl arOn] € ST (m),

we have that | € S+(m) by induction. Therefore, we have proven the
proposition. ]

Proposition 2. The Lie algebra S(e*®1,... e**m m) and the Lie
algebra S(e*™, ..., et m) are the same.

Proof. Since the Lie algebra S(e¥*1,... e¥m m) is a subalgebra of
S(e*®1 ... eTm m), it is enough to show that S(e*®,... eTm m) C
S(eti, ... efem m). Let [ be any element of S(e®1,... et®m m).
It is enough to show that the element [ is the sum of basis elements
in Bs(eﬂlw pE— If [ is in the (0,...,0)-homogeneous component

S(o,....0) of S(et, ... e*¥m m), then there is nothing to prove by
Proposition 1. Let us prove this proposition by induction on the num-
ber of terms of | in By (c1 .. cem m) NS(et™, ... et m) and the
number of exponents of basis terms of [ in Byy(exe1 . ctem m). 1
has only one basis term, then [ is a generator in G

S(e*=1,... etem m)
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in (1). Thus there is nothing to prove. Let us assume that we have
proven the proposition when [ has k terms in Byy(ctar .. etwm m) N
S(e*® ... eT®n m). Let us assume that [ has k + 1 basis terms in
By (eta1,... etem m) NS(et®, ... et®= m). By Proposition 1, without
loss of generality, we may assume that [ has the form as follows:

QT pAuTu -~-e“m”mx§1 cextm

arzy |

l=cpe

+CQ€ ..eauru ...eamzmxil xmau_F*

where ¢1, ¢ € F, * is the sum of the remaining terms of [, and
a1, a, # 0. Let us prove the proposition by the degree i, of x;. Since
a, # 0, we have that

c . . .
(7) I, =1— a_l [61113011.1118”7 42tz . .. eamwmx? . xmtal].

u
If 41 = 0, then Iy has k + 1 terms or k terms in Byy(eter . etem m) M
S(e*®1 ... eT®m m). If [} has k terms, then there is nothing to prove
by induction. Let us assume that [; has k + 1 terms. Without loss of
generality, we may assume that v = m by (7), i.e.,

ll — C3ea1m1 - eamwmxill . xmtam + sk

where c3 € F, *x is the sum of the remaining terms of /5. Since
e171 '~e“mzmx§1 ...xim 9, is the maximal term of [y, if c3 # 0, then
Iy & S(et™ ... et m), ie., | ¢ S(et™,... et m) by (7). This
contradiction shows that [; has at most k£ terms. This implies that
Iy € S(e*1 ... e*®m m) by induction. Thus we may assume that

C1 i ; ;
(8) =0+ — [ea”“lelau, %22 .. eamwmxéz .. .x:glal].
u

This implies that [ is the sum of elements in Bw(eizl,“_,eizm’m) N
S(e*® ... eT®n m). Therefore we have proved the proposition.
O

By Proposition 1 and Proposition 2, the basis Bs+—(m) is the stan-
dard basis of ST(m) and BS(eiwl,i. is the standard basis of
S(e*® ... eT®n m). A similar result of Proposition 2 for the Lie
algebra Sp(e%1, ... eT®m m) holds.

.,etTm m)
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Note 1. The (0,... ,0)-homogeneous component S, ... oy of

Setrr .. etrm m),

respectively

Sp(e®@r, ... eTom m),

in (5) is the simple Lie algebra ST (m) in the paper [6], respectively [5].
]

Lemma 1. The only Lie ideal of S(e*®,... e**n m), respec-
tively Sp(eizl,... ,etm m), which contains a nonzero element in
S,...,0) 18 S(eter, ... eTm m), respectively Sp(e?1, ... eTTm m),
where S(o,... oy is the (0,... ,0)-homogeneous component of S(et™, ...,
eTm m), respectively Sp(et™1, ... eF®m m), in (5).

Proof. Let I be a nonzero ideal of S(e**1,...  e*®m m), respectively
Sy(e®™1, ... e*®m m), which contains an element in S(,... 0)- Since

S(0,... 0y is simple [6], So,... o) C I. For any element e®®1 ... %m®m gz}
. x?witﬁf coextm @, € S(e*r L. e om), 1 <t < m, we have that

) - )
[0, €™ - eeetmEmpil gyt 2Oy
Tt

airry ea”lwmx?‘ll .. .xétxt+1 .. x:—:{lat

= ae
- a1x AmTm 01— 1 02 de g1 i
+ae™ et It T 2t Oy € 1

where a; # 0. By induction on i; in (9), we know that %1 . .. g@m®m z:\1

Coopltpitl L gim € . For any element €M1 ... gat®i . .. plmTm g1
t Yt41 m Yt . Yy 1
ceaytat e aimoy € S(et®r, ... et m), 1 <t < m, without loss

of generality, we may assume that i, # 0, n < k < m. By

—
[aku ealxl .. eltTt .. ea”lw”lxil e x;txt::’ll . :L"Lm”lat]

—

) — .
a1z amzmlel . _x;t xtrll . 'JU:,T@t el

. —
= 1€ ce.eltTt ...

—
Bv induction on i of e%1%1... e/atTt . eamwmx“ . LEH.’IJ“+1 . :L-ima
y k 1 t L+ m Yt

o~

have that €911 . .. gaudt . .. im@mgil ... pitg"+1 . 1ing ¢ [ Thi
we have that e e e Ty Ty 0 € 1. 18
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implies that I = S(e*¥1 ... e*¥m m), respectively I = S,(e*®1,...,
e*®m m). Therefore we have proven the lemma. O

Theorem 1. The Lie algebra S(e*®,... e**m m), respectively
Sy(e®m . et m), is simple.

Proof. Let I be a nonzero ideal of S(e*®1,... e**n m), respectively
Sp(eiwl, ...,eT® m) and | a nonzero element in I. Let us prove the
theorem by induction on the number of different homogeneous compo-
nents of [ which contains a basis term of [. If [ has one homogeneous
component and [ € S(q,... o), then there is nothing to prove by Lemma 1.
Let us assume that [ has one homogeneous component which is not in
S(,...,0)- Let us prove that [ is in S(g,... o) by induction on the number
of basis terms of [ in B . If [ has one basis term, then

S(ex=1,. .. efzm m)
— . - i X

[ has the form e™®1...eat®t ... etmTmgit. .. gity th...qxtmy, ¢ € F,

such that at least one of aq,...,ax_1,0ax,... and a,, is not zero. Oth-

erwise, there is nothing to prove by Lemma 1. Let us assume that

k < m; by taking e~ %1 ... e7%m%¥m g, we have that

[eialml ‘e eiam'zm/at7 6(1111 e 6/0«1?1 e eam/rn”bxil

o~

iy, bt i
cextat e amoy] € 1

a1z Sarxr A T i1 /'L\t T4l
Let us assume that k <n,l =e s @Ot efmTmp oty B
. —_—
xlm 0y, a1. Then we have that 0 #£ [e”®1%1 ... e~ 0mTm, 1Tl ... ea:Ty

coeetmTmpil gyt gim @] € Sp. This implies that the ideal

So,..0 CI = S(et®, ..., eF®m m), respectively I = S,(e®®1,... |
et®m m), by Lemma 1. By induction, we may assume that if [ has
k homogeneous components, then the ideal T = S(e*®1,... , e*®m m),
respectively S,(e*,...,e*®n m). Let us assume that [ has k + 1

homogeneous components which contains a basis term of [. If [ has a
term in S(g,... ), then there is nothing to prove by taking an appropriate
Oy, v € I, since

(10) 0% [0, [0 [+, [00,1]...] €T

where we have applied the Lie bracket appropriate times in (10) so
that [0y, [Dy, [ .-, [Ov,]...] has at most k homogeneous components.
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This implies that [e=*%1...e~%m?m 3, ] has a nonzero basis term in
S(,...,0)- Thus we have proven the theorem by Lemma 1. Similarly to
(10), we can find an element in I such that it is the sum of terms in

at most k different homogeneous components of S(e*®1, ... e*®m m),
respectively S,(e¥?1,... e¥®m m). By induction, we can prove that
I = S(e*™1, ... et®n m), respectively I = S,(e*®, ... et m).

Therefore we have proven the theorem. ]

3. Conjectures and questions. This is a good place to pose the
following questions. The Lie algebra S(e*®1, ... e*®m m) has the Lie
subalgebra S, spanned by {(z,0, — 2,0,), 2,0y | 1 < u,v < m} which
is isomorphic to sl,,(F) as Lie algebras [1].

Question 1. Is there a Lie subalgebra A of S™(m) which is isomorphic
to the Lie algebra sl,,(F) such that A # S,,?

Question 2. For any Lie algebra automorphism 6 of ST (m), does the
equality 0((z,0, — ,0y)) = c(2w0y — p0,) hold for ¢ € F* where
1 < u,v,w,p < m?

Question 3. For any Lie algebra automorphism 6 of S*(2), does the
equality 6(Sy,) = Sy, hold?

Thus we have the following interesting conjecture.

Conjecture. For any Lie algebra automorphism 6 of S(e™®, ...,
et m), 0((2,00 — 1,0,)) = c(Tw0y — xp0p) and 0(S,,) = S, hold
where 1 < u,v,w,p <m and c € F.
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