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REGULAR SETS OF SAMPLING AND
INTERPOLATION IN BERGMAN SPACES

ARTUR KUKURYKA, MARIA NOWAK AND PAWEL SOBOLEWSKI

ABSTRACT. Let p denote the pseudohyperbolic metric
in the unit disk D in the complex plane. We give exam-
ples of analytic functions g satisfying the condition |g(z)| ~
p(z,T)(1 — |2])7%, z € D, in the case when I" are AP zero
sets considered by Horowitz and Luecking. This helps to
solve directly interpolating and sampling problems for these
sequences.

1. Introduction. For 0 < p < oo, the Bergman space AP is the set
of functions analytic in the unit disk D with

I = |f<z>|pdA<z>)l/p <o,

where dA denotes the normalized Lebesgue area measure on D.

A sequence {zx} of distinct points in D is an interpolation sequence
for AP, if the interpolation problem

f(zk):wk, k:1,2,...,

has a solution f € AP provided
o0
Z (1 — |2e*)? |wp P < 0.
k=1

A sequence {z;} of distinct points in D is a sampling sequence for AP
if there exist positive constants Ky, Ko such that

Kl £115 Zl_|zk| [ (i)lP < Kl 1[5
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Sufficient and necessary conditions for a sequence to be interpolation
or sampling for AP are given in terms of pseudohyperbolic densities.
These characterizations are due to Seip for the case p = 2. Extensions
for general values of p can be found in [3, 7, 8] and in the book [1].
Let p denote the pseudohyperbolic metric in D, that is,

(—=z
Z’ = —
LY e
We say that a sequence of points I' = {z,} in D is uniformly discrete
if

, 2,(e€D.

o(I') = inf p(zj,2k) > 0.
For the uniformly discrete set I', the lower uniform density of I is
inf Tn(T d
D~ ([) = limint 2eeR o n(L,C 5)ds
r—1 log(l/(l —’I"))
and the upper uniform density of T" is
T
su n(I',(, s)ds
D+(F) = lim sup PceD fo (¢, 5) ,
P T log(1/(1— 7))
where n(T,(,s) denotes the number of points of T' that lie in the

pseudohyperbolic disk {z : p((,z) < s}. The following theorems are
due to Seip (for the case p = 2).

Theorem S1. For 0 < p < oo, a sequence I' of distinct points in
the unit disk is an interpolation sequence for AP if and only if it is
uniformly discrete and DV (T) < 1/p.

Theorem S2. For 0 < p < oo, a sequence I' of distinct points in
the unit disk is a sampling sequence for AP if and only if it is a finite
union of uniformly discrete subsequences and it has a uniformly discrete
subsequence I for which D~(I'") > 1/p.

Unfortunately, lower and upper uniform densities can be quite diffi-
cult to compute. Duren, Schuster and Seip [2] calculated directly lower
and upper uniform densities of the sequence I' defined as follows. Let

adA(z)

du(z) = SEBE a>0,
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and divide the unit disk into disjoint annuli
R,={z:th1 <lz|<tn}, n=12,...,

such that u(R,) = 2"~'. Next divide each annulus into 2"~ ! cells Q,;
by placing radial segments at angles 27"+ 271, j = 1,2,...,2"" ! set
Cnj = anj zdu(z) and let ' be an enumeration of ¢,;. Duren, Schuster
and Seip [2] proved that

D—(I) = DH() = g
Next using some additional lemmas they have been able to find the
uniform densities of AP zero sequences considered by Horowitz and
Luecking. Horowitz [4, 5] considered the sequence consisting of 2"
equally spaced points on the circle |z| = (1/u)? ", u > 1. Luecking
[6] considered the set consisting of |3 ] equally spaced points on each
circle of radius r,, =1 -7, 8> 1,v > 0.

If f(z) and g(z) are nonnegative functions in D, then we write
f(2) = g(z) if there are positive constants C; and C5 such that

Ci1f(2) <g(z) <Cof(z) forall zeD.

However, if a uniformly discrete sequence I' admits an analytic function
g with the property

(1) lg(2)| = p(,T)(1 = |27, z€D

for some « > 0, then a sequence T is an interpolation sequence for AP
if and only if & < 1/p, and I is a sampling sequence for AP if and only
if & > 1/p. Then also

D) =D~(I) =a.

Moreover, in the case when (1) holds with oo < 1/p, using the function
g, one can construct directly the function f solving the interpolation
problem for AP. In the case when (1) holds with o > 1/p, any f € AP
can be represented in terms of g (see, e.g., [1] for details).
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One example of family of sequences and the corresponding function g
satisfying (1) was obtained by Seip in 1993 [10]. For ¢ > 1 and b > 0,
Seip considered the set of points in the upper half-plane of the form

A(a,b) ={a™(bn+1i):m e Z, n € Z}
and
I(a,b) = ¢(A(a, b)) C D,
where ¢(¢) = (¢ —1)/(¢ + 1), and constructed a function g such that
l9(2)] = (1= [2*) ™ p(2,T(a, b)),

where 0 = (2m)/(bloga).

Here, we prove that in the case when I' is the Horowitz sequence,
the function g defined by Horowitz in [5, p. 330] satisfies (1). We also
construct a function that has property (1) for the Luecking sets. Our
proofs are independent of results obtained in [2].

2. Main results. Let I' be the Horowitz set of points equally spaced
on the circles |z| = (1/u)? ", n=1,2,..., such that 22" = 1/u, u > 1.
Set

cr 1—22"p
(2) H S ONER z € D.

The function H was defined by Horowitz in his paper [5]. Horowitz
also showed that there is a constant C such that

C
< -
|H(2)] < A=) zeD,

where « = log p/log 2.
We will prove the following

Theorem 1. If H is the function defined by (2), then

[H(2)| = p(z,T)(1 = |2)™*

with o = log pu/log 2.
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Proof. We first show that there is a positive constant C' such that

3) 1) < Cole.T) s 2€D.

To this end, put 8 = 1/u and for a positive integer n define

ﬂ . Z2n

Hnle) = 1

z e D.

Then

H(z nn716—22k = 1-(2"/B
(2) ukli[ll 11 (== /B)

= _ ok _ 2kg -
H.(2) 25 AL

Note first that if z is in the annulus 4, = {z : ﬁrnﬂlm < |z| <

ﬁz_n_(l/z)}, then the modulus of the last product is bounded above by
a constant independent of n. Thus

‘ H(z) | _ oun

Since z € A, if and only if

logp 1 _
227" < log — < (V2logp) 27",
7 < log ( g 1t)

2| —

we see that )
(A= lzl) <log o < (log p)v2-27",

and consequently, 2" < (v/2logu)/(1—|z|). This implies that if
z € A, then

‘ H(z)

log 11/log 2

< Oy = C2nlosn/los2) < ¢ log e
) =T
with a constant C' independent of n.

Let z € D be arbitrarily chosen. Then there is an n such that z € A,,
and thereis a zj, € T'such that p(2,T) = |(z — 2x) /(1 — Zk2)| = p(z, 21).
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If zj, is in A,,, then z; is one of the roots of the equation 22" = 3. Let
b1, B2, ..., Pan denote the distinct roots of this equation. Then

(z —761)---(2—@271) z—@i
(1=512)+ (1= fanz) 1— 0z
and (3) follows from the last two inequalities. Now note that each
annulus A,, contains the pseudohyperbolic disks with centers at [3; and

a positive radius §. (One can show that 6 > 3/7). So, if z € A,, and
2y 1s not equal to any §;, then p(z,T") = p(z, zx) > § and consequently

C 1 C 1
T-Te =5 a—pape =5 D g e

\H,(2)| = L i=1,2,...,2",

|H(z)| <C

Our aim is now to prove the other inequality

1
4 H(z)| > Cp(l,z) —————, z€D.
(4) [H(z)| = Cp(T, 2) SET
We first show that for z € A,
H(z) C
5 =z
®) Zol

with a constant C' independent of n. As above we write

H(z) .7 6-22" 5 1-(2/p)
Ho(z) " ]g1—z2’“ﬂkn 1- 223

=n—+1

and claim that for z € A,, the modulus of each of the last two products

is bounded below. Indeed, for |2| < 27"/,

N Ca)
Il =—=5

00 1_521c71/271

=z H 1— 52k—1/2+1’

k=1

k=n+1

and the last product converges. On the other hand, if |z| > 627“(1/2),

then

—1 k —1 k—n+1/2 —1 —k+1/2
= [ -
Pt 1 — ZQkﬁ - Pt 1_ /Bﬁzkfni»l/Q Pt 1 _ 5627k+1/2

MG s o
T - paUve -t
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Put ng = |log 1/log 2], and write

C 2t g 3" -p 5B
H ﬂQk H ﬂQk H 52’9

=g bt |
Since
B A=) 148
1— B> " L= (327D (1+25)5°
we get

n

k
H 62 —6 i s (1= ((1429)8))

s o O 2 (1+8)/((142)8)

kn+1
)

and our claim is the consequence of the convergence of the series
> o(1+8)/((1+2%)B). Now, to obtain (5) similar reasoning to that
in the proof of the first inequality can be applied.

Let z € D be arbitrarily chosen. Then there is an n such that
pgrre < |2] < 32" and B;, where f; is a root of 22" = 8,
such that |argz — arg3;| < 2m/2"T1. Let 2, € T be such that
p(z, 1) =|(z — z) /(1 — Zx2)| = p(z, 2x). If 2z, = B;, then note that

|H, ()] g2

e G=m/a-Fa)]  #(-F)

z2—0;

and .
27515 ")
B2 (1 - p?)

It is also clear that the function H,(2)/[(z — 3;)/(1 — 3;z)] is analytic
and nonvanishing in the cell
<gi)

> 72" S .

2771—(1/2)

{z:87" " <2l < argz —arg 1] < o
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Thus its modulus attains minimum on the boundary. Moreover,

[Ho(2)]
=g/ =Fa) = @l

and one can easily show that on the boundary of the cell |H, (z)| > 5/7.
So, in the case when p(z,T') = p(z, 5;), inequality (4) holds. If z; # 3,
then p(z,z;) < p(z,06;), so (4) also holds. This ends the proof of
Theorem 1. O

For 8> 1 and v € (0,1), set
re=1-96"% Ny =[6"],

and let A consist of Nj equally spaced points on each circle |z| = 7y,
k=1,2,.... Then for each k there is 6; such that points in A lying on
the circle |z| = 7 are of the form zj; = rge?*(;, 7 =1,..., Ny, where
(; are the distinct Njyth roots of unity. Analysis similar to that in the
proof of Theorem 1 can be applied to obtain the following

Theorem 2. If A is as above and
0 TIJch — Nk g—ilNk Ok

(6) o) =11 ~

b
k=173 " (1 — r,ivksze*’Nka)

z € D,

then
|G(2)| = p(z, A) (1 — [2])™

with a = v/log (.
We start with showing the following

Lemma 1. If the function G is defined by (6), then there is a positive
constant C' such that

C

(7) 1G(2)] < A=

z €D,

with a = v/log 3.
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Proof. Assume that 0, = 0, k = 1,2,.... We first show that (7)
holds for |z| =r, =1 —~8"". We have
n N, N, o0 N, N,
1 | r)F— 2% 1 | r)F— 20
|G(Z)‘:H Ni 1k Nk Ny, ’ H Ng 1k Ni Ny,
k=1"Tk —TEF k=n+1 "k —TpZ
LS| s 1| Ve — N
< . k

Now note that

n n n _k
ox [ iz = =2 Mt (1 =77 = YoM 7 Ziﬁ_k
=17k k=1 k=1

n

< ——n7+72
—l—ypk Z wﬂ’“

,y2

1-mE-1)

Thus there is a constant C' > 0 such that

ny.
H,r.Nk < Ce
k=1"k

<ny+

On the other hand, a calculation shows that

1
— ~—(7v/logB) | nvy
——a =7 el
(1—=ry)

Moreover, if |z| = ry,, then

Nlc _ Nk
T z

Ny Ny,
Tk z k)

N,
k>n4+1Tg * (1 -

Nk Ny Ny,

< II T < II <1+<r—”> )
kSl TR <1+ A ) k>n+tl Tk
— eZk2n+11°g(1+(T"/T’c) k) < eZanH(T"/T’“)Nk

N, o gk
< eCZanJrl rnt < e(c/(lf’Y)) o1 © P

— )
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where the one before the last inequality follows from the fact that {r»}
converges asymptotically to e~7. In the case when r, < |z| < rpy1, we
have

C
G(z)| < sup |G(2)| < ———
G(2)] ‘leml\ (2)| A=ra)e

Ce” < Ce”
(L=rp)> = (1 —|z))>

= Oy~ (1/1088) . (nt1)y

It is also clear that the same proof can be applied for a general case
when not all 0 are zeros. ]

Proof of Theorem 2. Without loss of generality, we can assume that
all 0y are zeros. For a positive integer n, put

Np,

Gn(z) = 17’L ’I“N"ZN”
—In

j— ZN’VL

and 7,_1/0 = 1 — y37"F/2. We will show that if z € L, = {z :
Tn—1/2 < |2| <7y41/2}, then there is a positive constant C' independent
of n such that

G(2) C
Gn(2)| ~ (1 —12])
with @ = v/logB. Since there are positive constants C; and Cy
independent of n such that for z € L,,,
G e O
(1 =1z (1 =z~

to prove this claim the reasoning similar to that used in the proof of
Lemma 1 can be used. Now our aim is to prove that

G(z) C
> for zeL,.
‘Gn(z) (1 =z
To this end we write
() ‘ G(z) 712[ 1 ﬁ r,]cv"—zN’“ ﬁ 1 7“,6’“—21\/’c
Gn(z) paiet T,JCV" o |1 ’I"]ICV’“ZN’C b1 r,iv" 1-— r,iv’“sz
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We first note that

which means that

provided that z € L,,. Now we observe that for z € L,, each factor in
the second product in (8) is bounded below by a constant dependent
only on § and ~. Indeed, for k =1,2,...,n—1,

Ny,

Ve Ny, — Nk

T —Z Tn—1/2 ™ Tn-1 Tn—1/2 — Tn—1
> (1—n) otz Tnml
l—r,iv’“sz - 1—7‘2’"1/2 ivkl z(1-7) I —rp_1/2Tn—1
VB -1
> (1-7)

VB+1

Consequently, there is a constant C' > 0 such that

(14 )(1 jjjl/z)
T 1/2

—|Gr(z)) = C Z
n—1

1 7/67714’1/2)]\@) < CZ Nkﬁ—nH/Q

k=1

)

o

e
5

\/\ I/\

5
where we have used the fact that r,iv * is bounded away from 1. This
proves our claim. Finally, to see that the third product in (8) is bounded
below in the annulus L,,, note first that each factor in this product is
bounded below by a positive constant independent of n for all z € L,,.
Indeed, if z € L,,, then

N, ) Ny, N,
1 | rr = 2Nk 1-— (rn+1/2/rk) Ty
N, Y z Ni N, > 1= )
k k . k k
P B R AL 1—r Thii/2 Tn+1
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Npy1 —v\/ B . Npy1 —y :
nilje =€ VB and limy, .o roiit = e, our claim

follows. Consequently,

and since lim,, o 7

o 1 r,iv’“ — 2Nk
k:1;[+1 et |1 =y
> D R (e VA (A R VICE M E R
Moreover,
3 (1 et o™ ) $ M
TN N = Ne Nr
k=n-+1 Tt (1= * 2| Nr) ke=nt1 "k F(1 =y 2 [N)
T — N = 1/2y1 8%+
e
<2 oSO ) mhp=0) - AP <o
k=n+1 "k k=n+1 k=1

Now, since an annulus L, contains pseudohyperbolic disks with
centers r,(;, where (; are Np,th roost of unity, and radius (v/3 —

1)/(v/B + 1), the inequality

C

|G(2)| < A=l p(

z,\)

can be derived from the proved inequality in much the same way as it
is in the proof of Theorem 1. To see that the inequality

G > S p(z,A)

(1—1z))

also holds, notice that

, |G (2)]
: _
s=rats [(2 = 1al)) /(1= 2G|

21_%

and that |G, (z)| is bounded below by a constant independent of n and
j=1,..., N, on the boundary of a cell

{2110 <2 <rpgaye, |argz —arg (5| < /Ny }. ]
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