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ON HYPERBOLICITY AND TAUTNESS
OF CERTAIN HARTOGS TYPE DOMAINS

SUNG-HEE PARK

ABSTRACT. We study the hyperbolicity, tautness, hy-
perconvexity of Hartogs domains with balanced fibers and
Hartogs-Laurent domains. In particular, we shall compare

k-, k̃-hyperbolicity and Brody hyperbolicity in the class of
such Hartogs type domains. To study tautness, we shall use
so-called Royden’s criterion for taut domains.

1. Introduction. The purpose of this article is to establish the
characterizations of hyperbolicity, tautness, and hyperconvexity in the
classes of the following two typical Hartogs type domains, see also
[1, 2, 6, 9, 12, 15, 16]. Throughout this paper, G ⊂ Cn is a
domain, H : G × Cm → [−∞,∞) is upper semi-continuous (shortly
H ∈ C↑(G× Cm)) such that H(z, w) ≥ 0, H(z, λw) = |λ|H(z, w), λ ∈
C, z ∈ G, w ∈ Cm, and u, v ∈ C↑(G) with u+ v < 0 on G. Put

Ω ≡ ΩH(G) := {(z, w) ∈ G× Cm : H(z, w) < 1},
Σ ≡ Σu,v(G) := {(z, λ) ∈ G× C : ev(z) < |λ| < e−u(z)}.

Here, if H(z, w) := h(w)eu(z), z ∈ G, w ∈ Cm, where h ∈ C↑(Cm), h �≡
0, h(λw) = |λ|h(w), λ ∈ C, w ∈ Cm, we denote ΩH(G) by Ωu,h(G).
We say that Ω is a Hartogs domain over the base G with m-dimensional
balanced fibers and Σ is a Hartogs-Laurent domain over the base G.

There are various notions of hyperbolicity of a given domain in Cn,
and the relationships between them are investigated by many authors.
For example, it is known that any domain G in Cn which is hyperbolic
with respect to the Kobayashi pseudodistance kG (shortly k-hyperbolic)
is automatically Brody hyperbolic, which means that it does not contain
nontrivial entire curve. Analogous to the k-hyperbolicity, we can define
the notion of hyperbolicity with respect to the Lempert function k̃G
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(shortly k̃-hyperbolic) of a given domain G in Cn. Here, the latter
term seems to be a simpler notion than the former one. We denote the
family of all k-, k̃-hyperbolic, Brody hyperbolic domains in all Cn’s
by GK , GL, GB , respectively. Obviously, GK ⊂ GL ⊂ GB. In [20],
Zwonek proved that GK∩PR = GL∩PR = GB∩PR, where PR is the
family of all pseudoconvex Reinhardt domains in all Cn’s. On the other
hand, it is known that there is a non-pseudoconvex balanced Hartogs
domain GET of type Ωu,|·|(E) ⊂ C2 which belongs to GB \GK , due to
Eisenman and Tayler, see, e.g., [10, p. 104] or Example 3.6. Therefore,
GB \GL �= ∅ or GL\GK �= ∅. As a main purpose of our work, we shall
give some examples of domains which belong to GB \GL and GL \GK ,
respectively. As a first step, we shall give:

• a complete characterization of k-hyperbolic Ωu,h(G), see Proposi-
tion 3.2;

• some sufficient conditions for Ωu,h(G) to be k̃-hyperbolic, see The-
orem 3.8.

These results allow us to find examples of (pseudoconvex) Hartogs
domains Ωu,|·|(E) which belong to GL \ GK , see, e.g., Example 3.11.
In particular, we also get that the domain GET belongs to GB \ GL,
see Example 3.6. Consequently, we obtain

(1) GK ∩H � GL ∩H � GB ∩H
where H is the family of all Hartogs type domains with balanced fibers
in all Cn’s.

Moreover, in Section 4 we shall discuss the hyperbolicities of Σ. Since
Σ = Σu,v(G) ⊂ Ωu,|·|(G) =: Ω′, we often get hyperbolicities of Σ
from the corresponding characteristics of Ω′. From this point of view,
a second purpose of the paper is to find the differences between the
hyperbolicities of those domains. First, we see that the k̃-hyperbolicity
of Σ implies that max{u, v} is locally bounded on G, see Lemma 4.1,
but we do not know whether its converse also holds. On the other hand,
it is clear that the hyperbolicities of Ω′ implies those of these base G.
So it is natural to ask whether this phenomenon remains true for Σ,
i.e.,

(2) “if Σ is hyperbolic, so is the base G?”.

We shall prove that, in general, the answer to (2) is ‘NO’ for all
hyperbolicities. In fact, there is a pseudoconvex Reinhardt Hartogs-
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Laurent domain Σ which is hyperbolic, but its base G is not hyperbolic,
see Example 4.8. Nevertheless, we shall show that there is a certain
significant subclass of Hartogs-Laurent domains for which the answer
to (2) is always positive, see Theorem 4.9.

Next, in Section 5 we shall discuss the tautness of Ω and Σ. In [8],
we can find a characterization for the tautness of a ‘bounded’ Hartogs
domain ΩH(G) with m-dimensional balanced fibers. In the case m = 1
without boundedness, the tautness of Ωu,|·|(G) was also studied in [15].
It is based on the following result [16]:

(3)
A holomorphic fiber bundle is taut iff both the fiber
and the base are taut.

A third purpose of the paper is to give some general versions of the
previous results. First we shall give, applying Royden’s criterion,
see Proposition 2.1, a full characterization of a taut Hartogs domain
Ωu,h(G) (without the assumption of boundedness) with m-dimensional
balanced fibers, see Theorem 5.2. As a consequence, we also get a
sufficient condition for the Hartogs-Laurent domain Σ to be taut, see
Corollary 5.4; cf. Lemma 4.10. Notice that the original proof of (3)
is based on Zorn’s lemma and is not elementary. In [14], or [10,
Theorem 5.1], we also find a simple proof of the sufficiency of (3) under
the additional assumption, that π is a proper map. In Theorem 5.5,
we shall state the sufficiency of (3) for domains in Cn and give an
elementary and direct proof by using Royden’s criterion.

Finally, we shall shortly make a comparison between tautness and
hyperconvexity of Ω and Σ, see Propositions 5.6 and 5.7.

2. Preliminaries. Let E be the unit disk in the complex plane.
For domains G ⊂ Cn, S ⊂ Cm, let us denote by O(G,S) the set of all
holomorphic maps from G to S, O(G) := O(G,C), and by PSH(G)
the set of all plurisubharmonic functions on G, SH(G) := PSH(G)
if G ⊂ C1. By ‖ · ‖ = ‖ · ‖n we denote the Euclidean norm on Cn,
| · | := ‖ · ‖1, and by Bn(z, r) the n-dimensional Euclidean open ball
with center z and radius r > 0.

In 1967, Kobayashi, cf. [10], defined

kG := the largest pseudodistance not exceeding k̃G,
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where k̃G(a, z) := inf{p(0, λ) : ∃ϕ∈O(E,G), ϕ(0) = a, ϕ(λ) = z} for any
a, z ∈ G, and p(λ, ζ) := tanh−1(|λ−ζ|/|1−λ̄ζ|) is the Poincaré distance.
We say that kG, respectively k̃G, is the Kobayashi pseudodistance
(Lempert function) on G. We write d in all cases where one can take k
as well as k̃. It is known that dE = p and the family d := (dG)G:domain

has the decreasing property, i.e., for any domain S ⊂ Cm one has

dS(f(a), f(z)) ≤ dG(a, z), f ∈ O(G,S), a, z ∈ G;

moreover, kG ∈ C(G×G), k̃G ∈ C↑(G×G).

A domain G ⊂ Cn is said to be d-hyperbolic if dG(a, z) > 0 for
a, z ∈ G, a �= z. For example, any bounded domain in Cn is d-
hyperbolic, but its converse does not hold in general, e.g. C \ {0, 1} is
d-hyperbolic.

Let us recall the concept of taut domains introduced by Wu [18]. A
domain G ⊂ Cn is said to be taut if O(E,G) is a normal family,
which means that for any sequence (fν)ν≥1 ⊂ O(E,G) there is a
subsequence (fνj

)j≥1 which is either normally convergent in O(E,G),
i.e., it converges uniformly on compact subsets to a map f in O(E,G)
(shortly fνj

K⇒ f as j → ∞), or compactly divergent, i.e., for any
compact subsets K ⊂ E, L ⊂ G, the set fνj

(K) ∩ L is empty for
all sufficiently large j. Wu proved that any taut domain in Cn is
pseudoconvex. It is known that any taut domain in Cn is d-hyperbolic,
but its converse does not hold in general, e.g., Bn(0, 1)\{0} is not taut
for n ≥ 2.

We recall that a bounded domain G ⊂ Cn is said to be hyperconvex
if there exists a continuous bounded plurisubharmonic exhaustion func-
tion on G. This notion was introduced by Stehlé [13]. Kerzman and
Rosay [9] proved that any hyperconvex domain is taut, but its converse
does not hold in general, e.g., E \ {0} is not hyperconvex.

Related to tautness, there is a function k(2)
G defined by

k
(2)
G (a, z) := inf{p(0, λ) + p(0, ζ) : ϕ, ψ ∈ O(E,G), λ, ζ ∈ E,

ϕ(0) = a, ϕ(λ) = ψ(0), ψ(ζ) = z}, a, z ∈ G.

Obviously, k̃G ≥ k
(2)
G ≥ kG. The following criterion is due to Royden

[11].
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Proposition 2.1 (A criterion for taut domains). A domain G ⊂ Cn

is taut if and only if B
k
(2)
G

(a,R) := {z ∈ G : k(2)
G (a, z) < R} � G for

any R > 0 and a ∈ G.

For a proof, see [6]. Some other criteria for tautness can be found in
e.g. [10].

A domain G ⊂ Cm is called Reinhardt if (λ1w1, . . . , λmwm) ∈ G
for any λ1, . . . , λm ∈ ∂E and (w1, . . . , wm) ∈ G. Obviously, Σu,v(G)
is Reinhardt if and only if G is Reinhardt, u(z) = u(|z1|, . . . , |zn|),
v(z) = v(|z1|, . . . , |zn|), z ∈ G. Put D = Dh := {w ∈ Cm : h(w) < 1}.
The following properties are known:

• D � Cm ⇔ ∃C>0 : h(w) ≥ C‖w‖, w ∈ Cm;

• h ∈ PSH(Cm) ⇔ log h ∈ PSH(Cm) ⇔ D is pseudoconvex;

• D is convex or bounded ⇒ h is a quasinorm, i.e.,

∃C≥1 : h(b+ w) ≤ C(h(b) + h(w)), b, w ∈ Cm;

• (due to Barth [1]) D is taut ⇔ D � Cm and h ∈ (C ∩ PSH)(Cm).

• ΩH(G) is pseudoconvex ⇔ G is pseudoconvex and logH ∈
PSH(G× Cm);

• Σu,v(G) is pseudoconvex ⇔ G is pseudoconvex and u, v ∈ PSH(G).

We refer to, e.g., [6, 7] for more information.

The following result, due to Fu [5] and Zwonek [20], gives that all
notions of hyperbolicity coincide in the class of pseudoconvex Reinhardt
domains.

Theorem 2.2. The following implications for a pseudoconvex Rein-
hardt domain in Cn are true:

k-hyperbolic ⇐⇒ k̃-hyperbolic ⇐⇒ Brody hyperbolic ⇐⇒ taut
⇐⇒ biholomorphic to a bounded Reinhardt domain.

Therefore, we will speak only on hyperbolic pseudoconvex Reinhardt
domains.
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3. Hyperbolicity of the Hartogs domain Ωu,h(G). Using a sim-
ilar argument as in the proofs of Remark 3.1.7 and Proposition 3.1.10
in [6], it is easy to see that

Lemma 3.1. Let Ω = ΩH(G). Then k̃Ω((z, 0), (z, w)) ≤ p(0, H(z, w))
for any (z, w) ∈ Ω. Here, the equality holds if H ∈ PSH(G× Cm).

Clearly, if Ωu,h(G) is d-hyperbolic, so is G and u is real-valued.
Moreover,

Proposition 3.2. Ω = Ωu,h(G) is k-hyperbolic if and only if G is
k-hyperbolic, Dh � Cm, u is locally bounded on G.

In case m = 1 the above result was already investigated in [3, 15, 17,
19]. To verify the sufficiency of Proposition 3.2 we need the following
result by Eastwood [4].

Theorem 3.3. Let π : G→ S be a holomorphic map of domains. If
S is k-hyperbolic and has an open covering (Uj) such that π−1(Uj) is
k-hyperbolic, then G is also k-hyperbolic.

A version of this result for the tautness can be found in Theorem 5.5.

Proof of Proposition 3.2 (⇐). Obviously, for every z ∈ G we may
choose a k-hyperbolic open neighborhood U(z) of z in G, so that
(U(z))z∈G is an open covering of G and R(z) := infz′∈U(z) u(z′) > −∞.
Observe that

π−1(U(z)) = Ωu,h(U(z)) ⊂ U(z) × {w ∈ Cm : h(w) < e−R(z)},
where π : Ω → G is defined by π(z, w) := z for (z, w) ∈ (G×Cm) ∩Ω.
Since Dh � Cm, there is a C > 0 such that h(w) ≥ C‖w‖, w ∈ Cm,
so {w ∈ Cm : h(w) < e−R(z)} ⊂ Bm(0, e−R(z)/C). Therefore,
π−1(U(z)) is k-hyperbolic, and thus our assertion follows directly from
Theorem 3.3.

(⇒). Suppose Ω is k-hyperbolic and put H(z, w) := h(w)eu(z),
(z, w) ∈ G× Cn.
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1◦. u is locally bounded on G. Suppose that there is a point
z0 ∈ G and a sequence (zj)j≥1 ⊂ G such that limj→∞ zj = z0
and limj→∞ u(zj) = −∞. Now we take a point w0 ∈ Cm \ {0}
with (z0, w0) ∈ Ω. Without loss of generality, we may assume that
{(zj , w0)}j≥1 ⊂ Ω. So it follows from Lemma 3.1 that

0 ≤ kΩ((zj , 0), (zj , w0)) ≤ p(0, H(zj , w0)), j ≥ 1.

But since limj→∞H(zj , w0) = 0, the continuity of kΩ implies that
kΩ((z0, 0), (z0, w0)) = 0; a contradiction to the fact that w0 �= 0.

2◦. D = Dh is bounded in Cm. Suppose the contrary. Let R > 0
be so small that Bm(0, R) � D. Choose a sequence (wj)j≥1 ⊂ D
with max{R, 1} < ‖wj‖ → ∞ as j → ∞. Fix z0 ∈ G. Observe that
u(z0) > −∞ and (z0, Re−u(z0)wj/‖wj‖) ∈ Ω for j ≥ 1. By Lemma 3.1,
one has

0 ≤ kΩ

(
(z0, 0),

(
z0, Re

−u(z0)
wj
‖wj‖

))
≤ p

(
0, H

(
z0, Re

−u(z0)
wj
‖wj‖

))
,

j ≥ 1.

However,

0 ≤ H

(
z0, Re

−u(z0)
wj
‖wj‖

)
=

R

‖wj‖ h(wj) <
R

‖wj‖
j→∞−→ 0.

On the other hand, we may assume, without loss of generality,
that there exists a point w0 ∈ Cm with ‖w0‖ = 1 such that
limj→∞(wj/‖wj‖) = w0. In particular, (z0, Re−u(z0)w0) ∈ Ω by the
choice of R. Therefore, the continuity of kΩ gives that

0 ≤ kΩ((z0, 0), (z0, Re−u(z0)w0))

= lim
j→∞

kΩ

(
(z0, 0),

(
z0,

Rwj/‖wj‖
eu(zj)

))

≤ lim
j→∞

p

(
0, H

(
z0,

Rwj/‖wj‖
eu(zj)

))
= 0,

which is a contradiction to the fact that e−u(z0)w0 �= 0.

Remark 3.4. In the case m = 1, h(λ) = |λ|, there are some differences
between the previous proof and the proof in [3]. For the latter, to
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show the fact that u is locally bounded on G, the authors did not use
Lemma 3.1. For more details, see [3].

Now we shall discuss the k̃-hyperbolicity of Ωu,h(G).

Lemma 3.5. Let Ω = Ωu,h(G). Assume that limz→z0,z 	=z0 u(z) =
−∞ for some z0 ∈ G. Then k̃Ω = 0 on M × M, where M :=
({z0} × Cm) ∩ Ω.

Proof. Let w1, w2 ∈ Cm be not all zero with max{h(w1), h(w2)} <
e−u(z0). For j ≥ 1, put Mj := max‖w‖≤rj

h(w) where rj := (1 +
j)‖w1‖+j‖w2‖. Since h �≡ 0, there exists j0 ≥ 1 such that 0 < Mj <∞
for j � j0. By the assumption, for any j ≥ j0, we may take δj > 0
such that: 0 < ‖z − z0‖ < δj =⇒ z ∈ G, u(z) < − logMj . Fix
j ≥ j0 and choose αj > 0 so small that αj(j2 + j)

√
n < δj . Put

I := (1, . . . , 1) ∈ Cn and define two mappings fj : E → Cn and
gj : E → Cm by

fj(λ) := z0 + αj(1 − jλ)jλI, gj(λ) := (1 − jλ)w1 + jλw2, λ ∈ E.

Then Ψj := (fj , gj) ∈ O(E,Ω) with Ψj(0) = (z0, w1), Ψj(1/j) =
(z0, w2); moreover,

0 ≤ k̃Ω((z0, w1), (z0, w2)) = k̃Ω(Ψj(0),Ψj(1/j)) ≤ p(0, 1/j)
j→∞−→ 0.

Example 3.6. Let G := E and define u(λ) := log |λ| for λ ∈ E \ {0}
and u(0) := 0. The domain GET := Ωu,|·|(E) was first studied by
Eisenman and Taylor. They showed that GET belongs to GB \ GK ,
see, e.g., [10, p. 104]. In fact, by Lemma 3.5, k̃GET

= 0 on M × M,
where M := ({0} × C) ∩ Ω, cf. Remark 3.2.16-(i) in [10], so GET ∈
GB \ GL. However, by using the Montel theorem, it is easy to check
that k̃Ω((a, z), (a,w)) > 0 for (a, z), (a,w) ∈ Ω ∩ (C \ {0} ×C), z �= w.

Lemma 3.7. Let Ω = Ωu,h(G). Assume that G is Brody hyperbolic,
u ∈ PSH(G,R), h ∈ PSH(Cm) is a quasinorm on Cm with h−1(0) =
{0}. Moreover, assume that
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(
) any sequence (fν)ν≥1 of holomorphic functions fν ∈ O(rνE,G)
with f1(0) = fν(0) = fν(1) for ν ≥ 1, where (rν)ν≥1 is a sequence in
R>0 with 1 < rν < rν+1 ↗ ∞ as ν → ∞, has a subsequence (fνj

)j≥1

converging to an f ∈ O(C, G) uniformly on every compact subset of C.

Then for any (a, z), (a,w) ∈ Ω ∩ (G× Cm)

(

) k̃Ω((a, z), (a,w)) = 0 ⇐⇒ z = w.

Proof. Fix (a, z), (a,w) ∈ Ω∩(G×Cm). Assume that k̃Ω((a, z), (a,w))
= 0. Then there are two sequences (rj)j≥1 ⊂ R and (ϕj)j≥1 ⊂
O(rjE,Ω) such that ϕj(0) = (a, z), ϕj(1) = (a,w), and 1 < rj <
rj+1 ↗ ∞ as j → ∞. Let j ≥ 1 and put ϕj := (fj , gj), where
fj ∈ O(rjE,Cn) and gj ∈ O(rjE,Cm). Note that the mapping gj can
be written in the form gj(λ) = z + λg̃j(λ) for some g̃j ∈ O(rjE,Cm).
Because of ϕj(rjE) ⊂ Ω, one has H(fj(λ), gj(λ)) < 1 for any λ ∈ rjE.
Since h is a quasinorm on Cm, there is a C > 0 such that for any
λ ∈ rjE

|λ|H(fj(λ), g̃j(λ)) = H(fj(λ), λg̃j(λ))
≤ C (H(fj(λ), gj(λ)) +H(fj(λ), z)) .

Now, put ε := dist(a, ∂G)/2 > 0. Obviously, Bn(a, ε) � G and also
logM := max‖ζ−a‖≤ε u(ζ) < ∞, because of u ∈ C↑(G). By the
condition (
) and the fact that G is Brody hyperbolic, without loss
of generality we may assume that fj

K⇒ a on C. Thus, for R > 1, we
may choose jR ≥ 1 such that rjR > R and fj(λ) ∈ Bn(a, ε) for |λ| < R
and j ≥ jR. This implies that

|λ|H(fj(λ), g̃j(λ)) ≤ C(1 + h(z)M), |λ| ≤ R, j ≥ jR.

Then it follows from the maximum principle for subharmonic functions
that

H(fj(λ), g̃j(λ)) ≤ C

R
(1 +Mh(z)), |λ| ≤ R, j ≥ jR.

On the other hand, fj(1) = a, g̃j(1) = gj(1)−z = w−z for any j ≥ 1, so
the previous inequality tells us that h(w− z)eu(a) ≤ C(1 +Mh(z))/R.
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Since h is nonnegative and R > 1 is arbitrary, we then get that
h(w − z)eu(a) = 0 by letting R → ∞. Because u is real-valued and
h−1(0) = {0}, it must be z − w = 0.

Now we are able to give some sufficient conditions for Ω to be k̃-
hyperbolic.

Theorem 3.8. Let u ∈ PSH(G,R), and h ∈ PSH(Cm) is a
quasinorm with h−1(0) = {0}. If one of the following conditions is
satisfied :

(a) G is taut ;

(b) G � Cn;

(c) G is k̃-hyperbolic and u is bounded from above,

then Ω = Ωu,h(G) is k̃-hyperbolic.

Proof. Under our hypotheses the base G is always k̃-hyperbolic.
So, it is enough to verify that the condition (

) is satisfied. In the
cases (a) and (b), we can use so-called diagonal process to extract the
desired subsequence for the condition (
) (in case (b), use Montel’s
theorem), so (

) holds. In case (c), we can take N > 0 so large that
sup|λ|<rj

u(fj(λ)) ≤ logN for any j ≥ 1, where (fj)j≥1 and (rj)j≥1 are
as in the assumption of (
). Therefore, we can get the desired condition
(

) by carrying out the same argument as in the proof Lemma 3.7.

Remark 3.9. Other examples of a k̃-hyperbolic domain Ωu,h(G) can
be found in Example 5.3 below. Those examples do not satisfy any of
the conditions (a), (b), (c) in Theorem 3.8. Nevertheless they satisfy
the condition (
) in Lemma 3.7.

On the other hand, we can easily show the following

Proposition 3.10. If G,Dh are Brody hyperbolic and u > −∞ on
G, then also Ωu,h(G) is Brody hyperbolic. Conversely, if Ωu,h(G) is
Brody hyperbolic, so is G.
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Now we can give some concrete examples of domains which belong
to GL \ GK .

Example 3.11. (1) For ν ≥ 1, choose αν , βν ∈ (0, 1), λν ∈
E \ {0}, such that limν→∞ λν = 0, limν→∞ βαν

ν = 0, and
∑∞

ν=1 αν
log |λν | > −∞. We define a function u : E → [−∞,∞) by u(λ) :=∑∞
ν=1 αν log(β2

ν + |λ − λν |2) for λ ∈ E. The Hartogs domain GTT :=
Ωu,|·|(E) ⊂ C2 was constructed by Thai and Thomas [17]. Obviously,
u ∈ SH(E,R)∩C∞(E\{0}) and lim infλ→0,λ 	=0 u(λ) = −∞. Hence, by
Proposition 3.2, GTT ∈ GB \GK ; moreover, according to Theorem 3.8,
GTT belongs to GL.

(2) The following was constructed by Diederich and Sibony [2]. Define
u(λ) :=

∑∞
ν=2 ν

−2 max{−ν3, log |λ − 1/ν| − log 2} for λ ∈ E. Put
GDS := {z = (z1, z2) ∈ E × C : |z2|e‖z‖2+u(z1) < 1}. Then u ∈
SH(E,R) and GDS ∈ GB \ GK . In particular, kGDS

((0, 0), (0, w)) =
0, (0, w) ∈ G. But since |z2|eu(z1) < e−‖z‖2 ≤ 1 for any z ∈ GDS,
Theorem 3.8 implies that GDS belongs to GL, but is not of Hartogs
type.

4. Hyperbolicity of Σu,v(G). Obviously, the d-hyperbolicity of Σ
implies that max{u, v} > −∞ on G. If G is k-hyperbolic and u (or v)
is locally bounded on G, it follows directly from Proposition 3.2 that
Σ is also k-hyperbolic. Moreover,

Lemma 4.1. If Σ is k-hyperbolic, then max{u, v} is locally bounded
on G.

Note that we do not know whether its converse also holds.

Proof. Suppose the contrary. Since u, v ∈ C↑(G), there exist a
point z0 ∈ G and a sequence (zj)j≥1 ⊂ G converging to z0 such that
0 > max{u(zj), v(zj)} → −∞ as j → ∞. For j ≥ 1, we put αj := 1 if
v(zj) ≤ u(zj); αj := v(zj)/(2u(zj)) if v(zj) > u(zj). Then (αj)j≥1 ⊂
(0, 1], v(zj) ≤ αju(zj) < 0, j ≥ 1, and limj→∞ αju(zj) = −∞. Take
λ0 > 0 such that (z0, λ0) ∈ Σ and λ0 = eζ0 for some ζ0 ∈ R.
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(i) The case λ0 ≤ 1. Without loss of generality, we may assume that
αju(zj) − ζ0 < 0, j ≥ 1. Let j ≥ 1. Define a holomorphic mapping
ϕj : E → G × C by ϕj(λ) := (zj , λ0e

(αju(zj)−ζ0)λ), λ ∈ E. Then
ϕj(0) = (zj , λ0) and

ev(zj) ≤ eαju(zj) = λ0e
αju(zj)−ζ0 <

∣∣∣eαju(zj)λ
∣∣∣ < e−αju(zj) < e−u(zj),

λ ∈ E,

so ϕj ∈ O(E,Σ). Take w0 ∈ C \ {0} with v(z0) − ζ0 < Rew0 <
−u(z0) − ζ0. Then (z0, λ0e

w0) ∈ Σ. Since ζj := αju(zj) − ζ0 → −∞
as j → ∞, it is clear that w0/ζj ∈ E and ϕj(w0/ζj) = (zj , λ0e

w0) for
j � 1. Therefore the continuity of kΣ and the decreasing property of
k give that

0 ≤ kΣ((z0, λ0), (z0, λ0e
w0))

= lim
j→∞

kΣ

(
ϕj(0), ϕ

(
w0

ζj

))

≤ lim
j→∞

p

(
0,
w0

ζj

)
= 0,

which is a contradiction to the k-hyperbolicity of Σ.

(ii) The case λ0 > 1. Let Σ′ := {(z, λ) ∈ G× C : (z, λ) ∈ Σ}. Then
the function Φ = (Φ1,Φ2) : Σ → Σ′ defined by Φ(z, λ) := (z, 1/λ) for
(z, λ) ∈ G×C is biholomorphic. Put Φ2(z0, λ0) = 1/λ0 =: λ′0 ∈ E\{0}.
By applying the case λ′0 ≤ 1 to (i) we obtain that Σ′ is not k-hyperbolic;
a contradiction.

Lemma 4.2. If limz→z0, z 	=z0 max{u(z), v(z)} = −∞ for some
z0 ∈ G, then k̃Σ = 0 on M×M, where M := ({z0} × C) ∩ Σ.

Proof. For this it suffices that k̃Σ((z0, w′), (z0, w′′)) = 0 for (z0, w′),
(z0, w′′) ∈ Σ with w′ ∈ R. To show this, fix two points (z0, w′), (z0, w′′)
∈ Σ, w′ := eα, w′′ := eβ+iθ, α, β ∈ R, 0 ≤ θ < 2π, where i2 = −1. For
j ≥ 1 put rj := α− j(|α−β|+2π) and Rj := |α|+ j(|α|+ |β|+2π). By
the hypothesis, we may take j0 ≥ 1 so large that, for any j ≥ j0,
there exists δj > 0 such that: 0 < ‖z0 − z‖ < δj ⇒ z ∈ G,
max{u(z), v(z)} < min{rj ,−Rj}. Fix j ≥ j0, and choose Cj > 0
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so small that Cj(j2 + j)
√
n < δj . Set I := (1, . . . , 1) ∈ Cn and define

two analytic disks fj : E → Cn and gj : E → C by

fj(λ) := z0 + Cj(1 − jλ)jλI, gj(λ) := e(1−jλ)α+jλ(β+iθ), λ ∈ E.

Then Ψj := (fj , gj) ∈ O(E,Σ) with Ψj(0) = (z0, w′), Ψj(1/j) =
(z0, w′′); moreover,

0 ≤ k̃Σ((z0, w′), (z0, w′′)) = k̃Σ(Ψj(0),Ψj(1/j)) ≤ p(0, 1/j)
j→∞−→ 0.

The following statement follows immediately from Theorem 3.8.

Proposition 4.3. Suppose that u ∈ PSH(G,R), respectively v ∈
PSH(G,R). If one of the following conditions is satisfied :

(a) G is taut;

(b) G � Cn;

(c) G is k̃-hyperbolic and u, respectively v, is bounded from above on
G,

then Σ is k̃-hyperbolic.

Using the argument of the proof of Lemma 3.7, we can also get:

Proposition 4.4. If one of the following conditions is satisfied :

(a) G is taut and u, v ∈ PSH(G) with max{u, v} > −∞ on G;

(b) G � Cn, u, v ∈ PSH(G) with max{u, v} > −∞ on G,

then Σ is k̃-hyperbolic.

The next property follows directly from the little Picard theorem.

Proposition 4.5. If G is Brody hyperbolic and max{u, v} > −∞
on G, then Σ is Brody hyperbolic.

Example 4.6. There exists a Hartogs-Laurent domain Σ ⊂ C3

which belongs to GB \GL. For this, define u(z) = v(z) := log(1+ |z2
1 +
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z1z2|) − log 3 for z = (z1, z2) ∈ GET . Then max{u, v} > −∞ on GET
and GET × {1} ⊂ Σu,v(G) =: Σ. So

0 ≤ k̃Σ(((0, λ), 1), ((0, 0), 1)) ≤ k̃GET
((0, λ), (0, 0)), λ ∈ E.

Thus, by Example 3.6, the domain Σ is not k̃-hyperbolic.

Next, we are going to study the differences between the hyperbolici-
ties of Σu,v(G) and Ωu,|·|(G).

To give a negative answer to (2), we need the following auxiliary
lemma:

Lemma 4.7. Let G ⊂ Cn be a domain, and let u ∈ PSH(G,R) be
nonconstant and bounded from below on G. Suppose that the domain
G is not Brody hyperbolic and that u ◦ ϕ is not a constant for any
nonconstant ϕ ∈ O(C, G). Then the domain Σ = Σu,−∞(G) is Brody
hyperbolic.

Proof. Suppose that there exists a nonconstant mapping ψ :=
(ψ1, ψ2) ∈ O(C,Σ), where ψ1 ∈ O(C, G) and ψ2 ∈ O(C,C). By our
assumption, we can choose a constant M > 0 so large that u > − logM
on G, which implies that |ψ2(λ)| < M for any λ ∈ C. Then Liouville’s
theorem implies that ψ2 ≡ constant =: A ∈ C\{0}. On the other hand,
our assumption gives us that u ◦ ψ1 is not a constant on C. Hence, it
follows from the Liouville type theorem for subharmonic functions that
there exists a sequence (λν)ν≥1 ⊂ C such that u(ψ1(λν)) → ∞ as
ν → ∞. Thus, we can take a ν0 ∈ N such that 0 < e−u(ψ1(λν)) < |A|
for any ν ≥ ν0, which is a contradiction to the fact that ψ(C) ⊂ Σ.

We give an example of a hyperbolic pseudoconvex Reinhardt domain
Σ such that its base G is not hyperbolic.

Example 4.8. Let n ≥ 2, and let G := {z ∈ Cn : |z1 · · · zn| < 1}.
Define u(z) := max1≤j≤n |zj | for z ∈ G. It is easy to check that
u ∈ PSH(G) andG is not Brody hyperbolic. In view of the little Picard
theorem, u ◦ ψ = max1≤j≤n |ψj | is not a constant for any nonconstant
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mapping ψ := (ψ1, . . . , ψn) ∈ O(C, G), where ψj ∈ O(C), j =
1, . . . , n. Thus Lemma 4.7 implies that the pseudoconvex Reinhardt
domain Σ = Σu,−∞(G) is Brody hyperbolic.

In spite of this example, the following result gives us a positive answer
to (2).

Theorem 4.9. If Σ = Σu,v(G) is a pseudoconvex Reinhardt domain
with u �≡ −∞ and v �≡ −∞, then Σ is hyperbolic if and only if G is
hyperbolic and max{u, v} > −∞ on G.

To prove this we need the following lemma.

Lemma 4.10. If Σ = Σu,v(G) is taut, then u and v are continuous
on G.

Proof. Let us suppose the contrary. Without loss of generality, we
may assume that u /∈ C(G). Choose a constant A ∈ R and a sequence
(zj)j≥0 ⊂ G such that zj → z0 as j ∈ N and −u(z0) < −A < −u(zj)
for any j ∈ N. Note that u(z0) �= −∞. Since u(z0) + v(z0) < 0,
we may take an α̃ ∈ R such that v(z0) < −α̃ < −u(z0). Because
of v ∈ C↑(G), we may assume that v(zj) < −α̃, j ≥ 1. Now, put
C := (1/2) min {−u(z0) + α̃, −A+ u(z0)} > 0 and Σ̆ := Σŭ,v̆(G),
where v̆ := v + u(z0) + C/2 and ŭ := u − u(z0) − C/2. Clearly,
the mapping Σ � (z, w) �→ (z, w exp(u(z0) + C/2)) ∈ Σ̆ is well-
defined and biholomorphic, so Σ̆ is a taut domain. Moreover, if we put
Ă := −u(z0) +A− C/2 and ᾰ := −u(z0) + α̃− C/2, then v̆(zj) < −ᾰ
for any j ≥ 1. Hence, for any j ≥ 1
(4.10.1)

max{v̆(z0), v̆(zj)} < −ᾰ < −C < 0 < −ŭ(z0) < C < −Ă < −ŭ(zj).
For j ≥ 1 we define fj(λ) := (zj , eCλ) for any λ ∈ E. Then

ev̆(zj) < e−C < |eCλ| < eC < e−ŭ(zj), j ≥ 1, λ ∈ E,

so (fj)j∈N ⊂ O(E, Σ̆). Moreover, fj(0) = (zj , e0) = (zj , 1)
j→∞→

(z0, 1) ∈ Σ̆, because ev̆(z0) < e−C < e0 < e−ŭ(z0). The tautness of
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Σ̆ gives that fj
K⇒ (z0, eCλ) ∈ O(E, Σ̆) as j → ∞, which implies that

ev̆(z0) < eCReλ < e−ŭ(z0) for any λ ∈ E. Consequently, we obtain a
contradiction to (4.10.1) by setting E � λ→ 1.

Remark 4.11. In general, the tautness of Σu,v(G) does not imply
the tautness of G, cf. Example 4.8. However, if G is taut and u, v ∈
(C ∩ PSH)(G,R), then Σu,v(G) is taut, see Corollary 5.4.

Proof of Theorem 4.9. In view of Theorem 2.2 and Proposition 4.5,
it is enough to verify the necessity. Assume that Σ is hyperbolic. By
Lemma 4.1, the function max{u, v} is locally bounded on G. Seeking
for a contradiction, suppose that G is not Brody hyperbolic. Then
there is a nonconstant ϕ ∈ O(C, G). Note that (u + v) ◦ ϕ < 0 on
C. By the Liouville type theorem for subharmonic function, one has
u ◦ ϕ+ v ◦ ϕ = constant =: α ∈ [−∞, 0).

(i) The case −∞ < α < 0. Note that u ◦ ϕ = −v ◦ ϕ + α.
Since u ◦ ϕ, v ◦ ϕ ∈ SH(C), the function v ◦ ϕ is harmonic on C,
and so v ◦ ϕ = ReF for some F ∈ O(C). Take a number β ∈ R
such that 1 < β < e−α and define Ψ = Ψϕ,F,β : C → Cn+1 by
Ψϕ,F,β(λ) := (ϕ(λ), βeF (λ)) for λ ∈ C. Observe that

ev(ϕ(λ)) = eReF (λ) < β|eF (λ)| < e−α|eF (λ)| = e−α+v(ϕ(λ)) = e−u(ϕ(λ)),

λ ∈ C,

which implies that Ψ is nonconstant holomorphic with Ψ(C) ⊂ Σ, a
contradiction.

(ii) The case α = −∞. Since the hyperbolicity is an invariant
property under biholomorphic mappings, without loss of generality we
may assume that u(ϕ(λ0)) > −∞, v(ϕ(λ0)) = −∞ for some λ0 ∈ C.
Since u◦ϕ ∈ C(C) by Lemma 4.10, one may take an open neighborhood
W = W (λ0) ⊂ C such that u◦ϕ > −∞ onW . Thus, it follows from the
integrability theorem for subharmonic functions and the open mapping
theorem that v = −∞ on G; a contradiction.

In the next example, we shall give a negative answer to the question
(2) in the class of non-Reinhardt Hartogs-Laurent domains.
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Example 4.12. Let G := {z ∈ C2 : |z1z2| < 1} and u(z) :=
max{|z1|, |z2|}, z ∈ G. Put Σ := Σu,−∞(G) and Σ̃ := Σu,−∞(GET ).
Since GET ⊂ G, one has k̃Σ̃ ≥ k̃Σ. Because Σ is hyperbolic by
Example 4.8, so is Σ̃.

5. Tautness of Ωu,h(G) and Σu,v(G). The following statement
is an immediate consequence of Royden’s criterion for taut domains
(Proposition 2.1).

Lemma 5.1. Let G ⊂ Cn be a domain. If G is not taut, then there
exist an R > 0, sequences (zj)j≥0 ⊂ G, (fj)j≥1, (gj)j≥1 ∈ O(E,G),
and (αj)j≥0, (βj)j≥0 ∈ [0, 1), such that for any j ≥ 1:

k
(2)
G (z0, zj) < R,(†1)
fj(0) = z0 ∈ G,(†2)
fj(αj) = gj(0),(†3)

gj(βj) = zj , zj
j→∞−→ ∃ẑ0 ∈ ∂G or ‖zj‖ j→∞−→ ∞,(†4)

αj
j→∞−→ α0, βj

j→∞−→ β0.(†5)

Using it, we now give a full characterization of a taut Hartogs domain
(without the assumption of boundedness) withm-dimensional balanced
fibers.

Theorem 5.2. Ω = Ωu,h(G) is taut if and only if G,D = Dh are
taut, u ∈ (C ∩ PSH)(G,R).

Proof. To prove the necessity, we can use the same argument as
in [8, Proposition 3.8]. For the sufficiency, suppose that Ω is not
taut. By Lemma 5.1, one can choose R > 0, sequences (zj)j≥0 ⊂ Ω,
(fj)j≥1, (gj)j≥1 ∈ O(E,Ω), and (αj)j≥0, (βj)j≥0 ∈ [0, 1) having the
properties (†1) ∼ (†5). Observe that k(2)

Ω (z0, zj) ≥ k
(2)
G (z1

0 , z
1
j ), where

zj =: (z1
j , z

2
j ) ∈ G × Cm, j ≥ 0. So the property (†1) implies that

(z1
j )j≥1 ⊂ B

k
(2)
G

(z1
0 , R). But since G is taut, we may assume, in view

of Royden’s criterion, that z1
j

j→∞→ ∃a1
0 ∈ G. For any j ≥ 1, denote
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fj =: (f1
j , f

2
j ), gj =: (g1

j , g
2
j ) ∈ O(E,G) × O(E,Cm). Because of

the tautness of G and the property (†2), we may extract a sequence
(f1

1j)j≥1 ⊂ (f1
j )j≥1 such that f1

1j
K⇒ ∃f1

0 ∈ O(E,G) as j → ∞. Hence,
the properties (†3) and (†5) yield that

lim
j→∞

g1
1j(0) = lim

j→∞
f1
1j(α1j) = f1

0 (α0) ∈ G.

So, the tautness of G implies that there is a sequence (g1
2j)j≥1 ⊂

(g1
1j)j≥1 such that g1

2j
K⇒ ∃g1

0 ∈ O(E,G) as j → ∞. In particular,

g1
0(β0) = lim

j→∞
g1
2j(β2j) = lim

j→∞
z1
2j = a1

0.

On the other hand, since D is taut, it is clear that D � Cm, i.e., there
is a constant C > 0 such that h(w) ≥ C‖w‖, w ∈ Cm. Since u is
real-valued, one has h(z2

j ) ≤ exp(−u(z1
j )) for j ≥ 1. The continuity of

u gives that

lim sup
j→∞

‖z2
j ‖ ≤ 1

C
lim sup
j→∞

h(z2
j ) ≤

1
C

exp(−u(a1
0)) <∞,

which implies that z2
j �→ ∞ as j → ∞. Thus, in view of (†4), we may

take a point a2
0 ∈ Cm so that limj→∞ zj = (a1

0, a
2
0) = ẑ0 ∈ ∂Ω.

Step I. Choose c2 ∈ (0, 1) so that βj ∈ c2E for j ≥ 0. For
any j ≥ 1, we define a map g̃j : c−1

2 E → Cn × Cm by g̃j(λ) =
(g̃1
j (λ), g̃2

j (λ)) := gj(βjλ), λ ∈ c−1
2 E =: E2. Clearly, it is well-

defined and (g̃j)j≥1 ⊂ O(E2,Ω). Now we shall show that (g̃2
2j)j≥1

is bounded on E2. Let F2 := ∪j≥0(βjE2). Using (†5), it is easy to
check that F2 � E. Let L := g1

0(F 2). Obviously, L � G and so
δ := dist (L, ∂G)/3 > 0. Since g1

2j converges uniformly on F 2 to g1
0 as

j → ∞, one can take j0 ∈ N such that ‖g1
2j(λ) − g1

0(λ)‖ < δ, λ ∈ F 2,
j ≥ j0. Hence,

‖g1
2j(λ)− v̂0‖ ≥ ‖g1

0(λ)− v̂0‖−‖g1
2j(λ)− g1

0(λ)‖ ≥ dist (L, ∂G)− δ ≥ 2δ

for j ≥ j0, λ ∈ F 2, v̂0 ∈ ∂G. That is, dist (g1
2j(F 2), ∂G) ≥ 2δ > 0

for j ≥ j0, which implies that K := g1
0(F̄2) ∪ (∪j≥j0g1

2j(F 2)) � G. In
particular,

K ′ :=
{
g1
2j(β2jλ), g1

0(β0λ) : λ ∈ E2, j ≥ j0
} ⊂ K.
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Since u is uniformly continuous on K, one can take a constant C ′ > 0
so that |u(x) − u(y)| < C ′ for x, y ∈ K. Therefore, for any j ≥ j0 and
λ ∈ E2 one has

C‖g̃2
2j(λ)‖ ≤ h(g̃2

2j(λ)) < e−u(g̃12j(λ))

≤ e−u(g10(β0λ))+C′

≤ e− infx∈K̄ u(x)+C′
<∞.

Here, in the third inequality, we used the fact that K ′ ⊂ K. So,
the family (g̃2

2j)j≥1 is uniformly bounded on E2. In view of Montel’s
theorem, we can choose a sequence (g̃2

3j)j≥1 ⊂ (g̃2
2j)j≥1 such that

g̃2
3j

K⇒ ∃g̃2
0 ∈ O(E2,Cm) as j → ∞. In particular,

g̃2
0(1) = lim

j→∞
g̃2
3j(1) = lim

j→∞
g2
3j(β3j) = lim

j→∞
z2
3j = a2

0.

Put H(z, w) := h(w)eu(z) for (z, w) ∈ G × Cm. For j ≥ 1 we put
ϕ3j := H ◦ g̃3j on E2. Since ϕ3j < 1 on E2 for any j ≥ 1, one has
ϕ0 := H ◦ g̃0 ≤ 1 on E2, where g̃0 := (g̃1

0 , g̃
2
0), g̃1

0(λ) := g1
0(β0λ),

λ ∈ E2. In particular, ϕ0(1) = H(ẑ0) = 1. Hence, the maximum
principle for subharmonic functions implies that ϕ0 ≡ 1 on E2, and
also g̃0(0) = (g̃1

0(0), g̃2
0(0)) ∈ ∂Ω.

Step II. We are going to apply the same argument as in Step I
to (fj)j≥1 and (αj)j≥0. Choose c1 ∈ (0, 1) so that αj ∈ c1E for
j ≥ 0. Define a holomorphic mapping f̃j : c−1

1 E → Ω by f̃j(λ) =
(f̃1
j (λ), f̃2

j (λ)) := fj(αjλ), λ ∈ c−1
1 E := E1. Then we may verify, as

in step I, that (f̃2
3j)j≥1 is bounded on E1. Again, applying Montel’s

theorem, we can choose a sequence (f̃2
4j)j≥1 ⊂ (f̃2

3j)j≥1 such that

f̃2
4j

K⇒ ∃f̃2
0 ∈ O(E1,Cm) as j → ∞, from which and (†3), we obtain

that

g̃0(0) = lim
j→∞

g̃j(0) = lim
j→∞

g4j(0) = lim
j→∞

f4j(α4j) = lim
j→∞

f̃4j(1) = f̃0(1),

where f̃0 := (f̃1
0 , f̃

2
0 ), f̃1

0 (λ) := f1
0 (α0λ), λ ∈ E1. Observe that

ψ0(1) = H(f̃0(1)) = 1. But since ψ0 := H ◦ f̃2
0 ≤ 1 on λ ∈ E1 as

above, it follows from the maximum principle for ψ0 ∈ SH(E1) that
ψ0 ≡ 1 on E2, which implies that
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∂Ω � f̃0(0) = lim
j→∞

f̃4j(0) = lim
j→∞

f4j(0) = z0.

This is a contradiction to (†2) and we are done.

We are now in a position to give some examples of domains which
were mentioned in Remark 3.9.

Example 5.3. (1) There exists a non-taut pseudoconvex domain G
such that for any ϕ̃ ∈ PSH(G) the Hartogs domain Ω̃ := Ωϕ̃,|·|(G) is
k̃-hyperbolic, pseudoconvex, but not taut. Here, it is possible that ϕ̃ is
not bounded from above.

More explicitly, let GTT = Ωu,|·|(E) and (αν)ν≥1 be as in (1)
of Example 3.11. Put A := (log 5)

∑∞
ν=1 αν < ∞ and take an

α ∈ (0, 1) so that (logα) + A < 0. Define ϕ(z1, z2) := u(z1) and
ψ(z1, z2) := max{logα, log |z2|} for (z1, z2) ∈ GTT . Clearly, ϕ+ ψ < 0
on GTT , so the domain Σ = Σϕ,ψ(GTT ) is well-defined. Moreover, it
follows directly from Example 3.11 (1) and Proposition 4.3 (c) that
Σ is k̃-hyperbolic. But since ϕ is not continuous at (0, z2) ∈ GTT ,
Σ is not taut by Lemma 4.10. Therefore, for any ϕ̃ ∈ PSH(Σ),
the unbounded domain Ω̃ = Ωϕ̃,|·|(Σ) is pseudoconvex, but not taut
by Theorem 5.2; moreover, it is k̃-hyperbolic. For this, it suffices
to show, as Σ replaces G in Lemma 3.7, that (
) for Σ is true,
because Σ is k̃-hyperbolic. Let a = (a1, a2, a3) ∈ Σ. Take a sequence
fν ∈ O(Eν ,Σ), ν ≥ 1, with fν(0) = fν(1) = a, where Eν := rνE and
1 < rν ↗ ∞ as ν → ∞. For j = 1, 2, 3 we define πj : C3 → C by
πj(z1, z2, z3) := zj , and put fν := (f1

ν , f
2
ν , f

3
ν ), where f jν ∈ O(Eν ,C).

Since π1(Σ) ⊂ π1(GTT ) ⊂ E, the Montel theorem gives that there is
a sequence (f1

1ν)ν≥1 ⊂ (f1
ν )ν≥1 such that f1

1ν
K⇒ a1 as ν → ∞. Since

ψ
∣∣
Ω

≥ logα, one has ∪∞
ν=1f

3
ν (Eν) ⊂ π3(GTT ) ⊂ C \ (αE). By the

tautness of C \ (αE), we can take a sequence (f3
2ν)ν≥1 ⊂ (f3

1ν)ν≥1 such
that f3

2ν
K⇒ a3 as ν → ∞. On the other hand, since f2ν(E2ν) ⊂ Σ for

ν ≥ 1, one has

|f2
2ν(λ)| = elog |f2

2ν(λ)| ≤ eψ(f1
2ν(λ),f2

2ν(λ)) < |f3
2ν(λ)|, ∀λ ∈ E2ν .

Thus, there is ν0 ∈ N such that |f2
2ν(λ)| ≤ |a3| + 1 for any λ ∈ E2ν

and ν ≥ ν0. In view of Montel’s theorem, we can choose a sequence
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(f2
3ν)ν≥1 ⊂ (f2

2ν)ν≥1 such that f2
3ν

K⇒ a2 as ν → ∞. Consequently,
f3ν

K⇒ a as ν → ∞.

(2) There is a non-taut k-hyperbolic domain G such that for any
u ∈ PSH(G,R), which is not locally bounded, the Hartogs domain
Ω := Ωu,|·|(G) is k̃-hyperbolic but not k-hyperbolic; our construction
shows that Ω could be chosen to be non-pseudoconvex.

More explicitly: Let u1 ∈ C↑(E,R) and put D1 := Ωu1,|·|(E). For
j = 2, 3, define Dj := Ωuj ,|·|(Dj−1) where uj ∈ C↑(Dj−1,R). If uj ,
j = 1, 2, 3, are not continuous, uj , j = 1, 2, are locally bounded, and
u3 is not locally bounded, then D1, D2 are k-hyperbolic by Proposition
3.2, but not taut by Theorem 5.2. On the other hand, D3 is not k-
hyperbolic by Proposition 3.2. If, moreover, u3 ∈ PSH(D2), then
D3 is k̃-hyperbolic. For this, as in (1), it suffices to show that (
)
for D2 holds. Let b = (b1, b2, b3) ∈ D2, and let n ≥ 1. Take a
sequence gν := (g1

ν , g
2
ν) ∈ O(Eν , D2) such that gν(0) = gν(1) = b, where

Eν := rνE and 1 < rν ↗ ∞ as ν → ∞, let g1
ν := (ϕ1

ν , ϕ
2
ν) ∈ O(Eν , D1),

where ϕ1
ν ∈ O(Eν , E). In view of Montel’s theorem, we can extract a

sequence (ϕ1
1ν)ν≥1 ⊂ (ϕ1

ν)ν≥1 such that ϕ1
1ν

K⇒ ∃ϕ1 ∈ O(C, E) as
ν → ∞, and it follows from the Liouville theorem that ϕ1 ≡ constant =
ϕ1

11(0) = b1 ∈ E. Now, put ε := dist (b1, ∂E)/2 > 0 and fix 0 < s < 1.
Then we can choose νs ≥ 1 such that ϕ1

1ν(λ) ∈ B1(b1, ε), ν ≥ νs,
λ ∈ sE. Because u1 is locally bounded on E and B1(b1, ε) � E, one
has

∣∣ϕ2
1ν(λ)

∣∣ ≤ exp
(

max
|ζ−b1|≤ε

u1(ζ)
)

=: α <∞, λ ∈ sE, ν ≥ νs.

But since s is arbitrary, the family (ϕ2
1ν)ν1 is locally bounded. So

by Montel’s theorem, we can choose a sequence (ϕ2
2ν)ν≥1 ⊂ (ϕ2

1ν)ν≥1

such that ϕ2
2ν

K⇒ ∃ϕ2 ∈ O(C, αE) as ν → ∞. By applying Liouville’s
theorem to the entire function ϕ2, we then get that ϕ2 ≡ constant =
ϕ2

21(0) = b2. Hence, g1
2ν

K⇒ (b1, b2) ∈ D1 as ν → ∞. Applying
the same method to the family (g2ν)ν≥1, we can obtain a sequence
(g3ν)ν≥1 ⊂ (g2ν)ν≥1 such that g3ν

K⇒ b ∈ D2 as ν → ∞.

As a consequence of Theorem 5.2, we have
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Corollary 5.4. If G is taut and u, v ∈ (C ∩ PSH)(G,R), then
Σu,v(G) is taut.

However, its converse does not hold in general, see Example 4.8.

Proof. Let (ϕj)j≥1 ⊂ O(E,Σu,v(G)) be a sequence. Observe that
Σ := Σu,v(G) ⊂ Ωu,|·|(G) =: Ω. Since Ω is taut by Theorem 5.2,
(ϕj)j≥1 is a normal subfamily of O(E,Ω), i.e., there is a sequence
(ϕ1j)j≥1 ⊂ (ϕj)j≥1 which is either normally convergent in O(E,Ω) or
compactly divergent. In the latter case, the sequence (ϕ1j)j≥1, as a
subfamily of O(E,Σ), diverges compactly.

For j ≥ 1 we put ϕj := (fj , gj), where (fj)j≥1 ⊂ O(E,G) and
(gj)j≥1 ⊂ O(E).

From now on, we only suppose that (ϕ1j)j≥1 is normally convergent
in O(E,Ω). Take a function ϕ := (f, g) ∈ O(E,Ω), where f ∈ O(E,G),
g ∈ O(E), such that f1j

K⇒ f and g1j
K⇒ g as j → ∞. Note that

e(v◦fj)(λ) < |gj(λ)| < e−(u◦fj)(λ), λ ∈ E, j ≥ 1,

|g(λ)| < e−(u◦f)(λ), λ ∈ E.

Since g−1
j (0) = ∅ for any j ≥ 1, it follows from Hurwitz’s theorem that

either g ≡ 0 or g never vanishes. In the former case, it is clear that
ϕ(E) ⊂ ∂Σ, which implies that (ϕ1j)j≥1, as a subfamily of O(E,Σ), is
compactly divergent. Now we assume that g �≡ 0 and define

ũ(λ) := |g(λ)|e(u◦f)(λ), ṽ(λ) :=
1

|g(λ)| e
(v◦f)(λ), λ ∈ E.

Observe that ũ, ṽ ∈ SH(E) and max{ũ, ṽ} ≤ 1 on E. Then the
maximum principle for subharmonic functions implies that either ũ

∣∣
E

=
1 or ũ

∣∣
E
< 1 and either ṽ

∣∣
E

= 1 or ṽ
∣∣
E
< 1. These properties yield that

either ϕ(E) ⊂ ∂Σ or ϕ(E) ⊂ Σ. Consequently, the sequence (ϕ1j)j≥1

is either normally convergent in O(E,Σ) or compactly divergent.

Next, we shall state and prove a version of Theorem 3.3 for the
tautness

Theorem 5.5. Let G ⊂ Cn, S ⊂ Cm be domains, and let π : G→ S
be a holomorphic mapping. Suppose that for any p ∈ S there exists an
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open neighborhood U = U(p) of p in S such that π−1(U) is taut. If S
is taut, then G is also taut.

Proof. Suppose the contrary. Then, by Lemma 5.1, we can take
sequences (zj)j≥0 ⊂ G, fj , gj ∈ O(E,G), and (αj)j≥0, (βj)j≥0 ⊂ [0, 1)
satisfying (†2) ∼ (†5). Because S is taut and the family (π ◦ fj)j≥1 ⊂
O(E,S) satisfies

lim
j→∞

(π ◦ fj)(0) = lim
j→∞

π(fj(0)) = π(z0) ∈ S,

there exists a sequence (f1j)j≥1 ⊂ (fj)j≥1 such that

(5.5.1) π ◦ f1j K=⇒ ∃ϕ1 ∈ O(E,S) as j → ∞.

In particular, by (†3)

lim
j→∞

(π ◦ g1j)(0) = lim
j→∞

(π ◦ f1j)(α1j) = ϕ1(α0) ∈ S.

Hence, (π ◦ g1j)j≥1 ⊂ O(E,S) does not diverge compactly on G, and
because of the tautness of S, we can extract a sequence (g2j)j≥1 ⊂
(g1j)j≥1 such that

(5.5.2) π ◦ g2j K=⇒ ∃ϕ2 ∈ O(E,S) as j → ∞.

Step I. For any λ ∈ E, there exist open neighborhoods Vλ � E of λ,
Uϕ2(λ) ⊂ S of ϕ2(λ), and jλ ∈ N, such that π−1(Uϕ2(λ)) is taut and
g2j(Vλ) � π−1(Uϕ2(λ)) ⊂ G for any j ≥ jλ.

Subproof. Fix λ ∈ E. Clearly, ϕ2(λ) ∈ S and by our assumption,
one can take an open neighborhood Uϕ2(λ) ⊂ S of ϕ2(λ) such that
π−1(Uϕ2(λ)) is taut. Take rλ := r(λ) > 0 so that B(ϕ2(λ), 3rλ) ⊂
Uϕ2(λ). Because of the continuity of ϕ2, Bλ := ϕ−1

2 (B(ϕ2(λ), rλ)) ⊂ E
is an open set containing the point λ, and also, one can take an open
neighborhood Vλ = V (λ) � Bλ of λ so small that ‖ϕ2(ζ)−ϕ2(λ)‖ < rλ
for any ζ ∈ V̄λ. Now, in view of (5.5.2), we may choose jλ ∈ N so large
that ‖(π ◦ g2j)(ζ) − ϕ2(ζ)‖ < rλ for any ζ ∈ V λ and j ≥ jλ. Hence

‖(π ◦ g2j)(ζ)−ϕ2(λ)‖ ≤ ‖(π ◦ g2j)(ζ)−ϕ2(ζ)‖+‖ϕ2(ζ)−ϕ2(λ)‖ < 2rλ
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for any ζ ∈ V λ and j ≥ jλ. Thus we get that

(π ◦ g2j)(Vλ) ⊂ (π ◦ g2j)(V λ) ⊂ B(ϕ2(λ), 3rλ) ⊂ Uϕ2(λ), j ≥ jλ.

Step II. Taking a point 0 < s < 1 so that [−s, β0] is compact in E,
we can choose a finite set {xμ : μ = 1, . . . , q} ⊂ [−s, β0] such that
[−s, β0] ⊂ ∪qμ=1Vxμ

and

∀μ∈{1,... ,q}, ∃ν∈{1,... ,q}\{μ} : Vxν
∩ Vxμ

�= ∅,

and moreover, after a rearrangement, we may assume that β0 ∈ Vq and
Vxμ

∩ Vxμ+1 �= ∅, μ ∈ {1, . . . , q − 1}. Now, we will consider the case
λ = β0. Suppose that there exists a subsequence (g3j)j≥1 ⊂ (g2j)j≥1

such that g3j
K⇒ ∃gβ0 ∈ O(Vβ0 , π

−1(Uϕ2(β0))) as j → ∞. By the first
property of (†4), one has

lim
j→∞

z3j = lim
j→∞

g3j(β3j) = gβ0(β0) ∈ G,

which is a contradiction to the divergence of the sequence (zj)j in (†4).
Hence, in view of Step I, the sequence (g2j)j diverges compactly on
Vβ0 . But since β0 ∈ Vxq

∩ Vβ0 , in view of Step I, we may extract a
sequence (g4j)j≥1 ⊂ (g2j)j≥1 such that (g4j)j≥1 diverges compactly on
Vxq

. Because Vxq−1 ∩ Vxq
�= ∅, in view of Step I, we may also extract

a sequence (g5j)j≥1 ⊂ (g4j)j≥1 such that (g5j)j≥1 diverges compactly
on Vxq−1 . Of course, we can proceed to q − 2 and so on. In this
manner, we may get μ0 ∈ {1, . . . ,m} with 0 ∈ Vxμ0

and a sequence
(g6j)j≥1 ⊂ (g5j)j≥1 such that (g6j)j≥1 diverges compactly on Vxμ0

.

Thus, the result of Step II gives, in view of (†3), that

(5.5.3) either f6j(α6j)
j→∞−→ ∃â0 ∈ ∂G, or ‖f6j(α6j)‖ j→∞−→ ∞.

This is a similar situation as in (†4) for the sequence (gj(βj))j . Hence
we can repeatedly carry out the procedures of Step I, using (5.5.1) and
our assumption, and Step II, using the condition (5.5.3), to the sequence
(f6j(α6j))j , so we may obtain a subsequence (f7j)j∈N of (f6j)j∈N such
that (f7j(0))j∈N does not converge to a point in G; a contradiction to
(†2).
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As a consequence of Theorem 5.5, we get the following result, due to
Thai and Huong [16]: If π : G → S denotes a holomorphic covering
between domains in Cn, then G is taut if and only if so is S.

We shall finish this section by studying the hyperconvexity of ΩH(G)
and Σu,v(G).

Note that ΩH(G) � Cn+m if and only if G � Cn and ∃C>0 :
H(z, w) ≥ C‖w‖, (z, w) ∈ G × Cm; Σu,v(G) � Cn+1 if and only if
G � Cn and u is bounded from below on G.

The following result can be found in [8].

Proposition 5.6. A bounded Hartogs domain ΩH(G) is hyperconvex
if and only if G is hyperconvex and H ∈ (C ∩ PSH)(G× Cm,R).

On the other hand, we have

Proposition 5.7. Suppose that Σ = Σu,v(G) is bounded. If G is
hyperconvex and u, v ∈ (C ∩ PSH)(G,R), then Σ is hyperconvex.

Proof. Because of the hyperconvexity of G, there exists an exhaustion
ϕ ∈ (C ∩PSH)(G, (−∞, 0)) of G. Define a function Φ : G×C \ {0} →
[−∞,∞) by Φ(z, λ) := max{ϕ(z), ψ(z, λ)} for (z, λ) ∈ G × C \ {0},
where

ψ(z, λ) := max {u(z) + log |λ|, v(z) − log |λ|} , (z, λ) ∈ G× C \ {0}.

Since u, v ∈ (C ∩ PSH)(G), one has ψ ∈ (C ∩ PSH)(G × C \
{0}). Therefore, Φ ∈ (C ∩ PSH)(G × C \ {0}); moreover, Φ ∈
(C ∩ PSH)(Σ, (−∞, 0)), and it is an exhaustion of Σ. Thus Σ has
a bounded continuous plurisubharmonic exhaustion function Φ, so it is
hyperconvex.

Remark 5.8. If a pseudoconvex Reinhardt Hartogs-Laurent domain
Σu,v(G) is hyperconvex, then G is hyperconvex and u is bounded from
below on G. However, its converse, in general, does not hold. For
example, consider the Hartogs triangle Σ0,log |·|(E).



984 S.-H. PARK

Acknowledgments. The author would like to express his sincere
appreciation to supervisor Professor Peter Pflug for his guidance and
fruitful discussion. He is also indebted to Professor Marek Jarnicki for
his helpful comments.

REFERENCES

1. T.J. Barth, The Kobayashi indicatrix at the center of a circular domain, Proc.
Amer. Math. Soc. 88 (1983), 527 530.

2. K. Diederich and N. Sibony, Strange complex structures on Euclidean space,
J. Reine Angew. Math. 311/312 (1979), 397 407.

3. N.Q. Dieu and D.D. Thai, Complete hyperbolicity of Hartogs domains, Labo-
ratoire Emile Picard, Prépublications 194 (2000).
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