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A REMARK ON DISCRETE QUADRATIC FUNCTIONALS
WITH SEPARABLE ENDPOINTS

ROMAN HILSCHER AND VERA ZEIDAN

ABSTRACT. A characterization of the positivity of a dis-
crete quadratic functional with separable state endpoint con-
straints is presented in terms of conjugate intervals to 0, var-
ious conjoined bases of the associated linear Hamiltonian dif-
ference system, and solutions of the implicit and explicit Ric-
cati difference equations. The boundary conditions are in the
form of either equalities or (strict) inequalities. Three sets of
results are derived under different underlying assumptions.

1. Introduction. Consider the discrete quadratic functional

N

Z(n,q) =g Tono + nhs1Tnngr + Z{ng+1ck77k+1 + gt Brar}
prr

subject to Any = Agng+1 + Braqr, k € [0,N], and the boundary
conditions

(1) Mono =0, Mnyy1 =0.

The minimization problem for Z will be denoted by (P). This type
of functional could be regarded as the second variation of a discrete
nonlinear control problem with separated state endpoints. Therefore,
studying the positivity of the quadratic form Z would result in suffi-
ciency optimality conditions for nonlinear problems, see [6, 7, 8]. The
positivity of discrete quadratic functionals has been studied in [1, 2,
3, 4]. In [2, 4], the positivity of Z was characterized in terms of a
specific conjoined basis, that is, the principal solution of the associate
linear Hamiltonian difference system. Furthermore, this characteriza-
tion was also done in terms of the augmented implicit Riccati difference
equation, see [2, Theorem 3] and [4, Theorem 2.3].
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In view of [5, Proposition 1.3] and [3, Theorem 4], the positivity
of 7 with fized endpoints was characterized in terms of the existence
of a solution to the explicit Riccati equation. On the other hand, a
transformation was developed in [4, Lemma 3.1] in order to reduce
a separable endpoints problem to a problem with fixed endpoints by
extending the time interval to —1 and N + 2. However, as far as
we know, this transformation was not performed on the problem (P)
to obtain sufficiency results in terms of the data of (P), which is an
important issue in applications.

The positivity of Z when the right endpoint is fixed (M = I) was
characterized in terms of the nonaugmented implicit Riccati equation
[6, Theorem 5] and in terms of the explicit Riccati equation with an
initial boundary condition of the form of an equality in [6, Theorem 6]
and inequality in [8, Theorem 10]. Note that the result [6, Theorem 6]
required a certain normality assumption.

In this paper we first extend in Theorems 1 and 2 the results in
[6] to the case where also the final state endpoint varies as in (1).
We provide in Theorem 1 a characterization of the positivity of Z
in terms of conjugate intervals to 0, a matural conjoined basis, and
an implicit Riccati equation. This result extends [3, Theorem 3],
where an additional condition Ker M C Im YNH is required, and also
completes [4, Theorem 3.2] in a sense that the corresponding implicit
Riccati equation solution and its boundary conditions are derived.
In Theorem 2 under a normality assumption, the positivity of Z is
characterized via a conjoined basis (X,U) with X invertible and via
the explicit Riccati equation. This result is based on the perturbation
technique from [6]. Next we apply the transformation in [4] to reduce
the problem (P) to a transformed problem (TP) on the time interval
[0, N + 2]. Then we apply to (TP) the results in [6] and [8]. The
translation of these results in terms of the original data for (P) is not
a routine exercise. This task requires finding the right form of the
boundary conditions associated with each of the conjoined bases and
the Riccati equation solutions. The knowledge of the corresponding
continuous time results [9, 10] is a valuable inspiration in this search.
Another important issue that arises during the translation of the results
is to figure out the bare minimum conditions that characterizes the
positivity of Z. The outcome of this method is given mainly in
Theorem 3 and also in Theorem 1(ii) where no normality is required.
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The difference between the various results of this paper resides in the
underlying hypotheses as well as in the form of the initial and final
boundary conditions of the conjoined bases and the Riccati equation
solutions. These boundary conditions have the form of an equality or
a (strict) inequality.

2. Preliminaries. Given n,N € N with N > 2, we denote by
J = [0,N] and J* := [0, N + 1] the intervals of integers between
the indicated endpoints. We assume that Ay, Bi,Ck, k € J and
[y, T, My, M are n x n-matrices such that By, Cy,To, Mg, M are
symmetric and A;, = (I — Ag)~! exists. Without loss of generality,
both My and M are projections and T'y = (I — Mg)To(I — M),
I'=(I - MT(I—-M). All quantities are supposed to be real valued.
The forward difference operator is denoted by A, i.e., Ay = Yp+1 — Yk-

The sequences {7, }r ;" and {gx }A_, of n-vectors form an admissible
pair (n,q) if they satisfy the equation of motion in (P), i.e., An, =
Arni+1 + Brqr, k € J. The quadratic functional 7 is nonnegative,
Z >0, if Z(n,q) > 0 for all admissible pairs (n,q) satisfying the
boundary conditions (1). The functional Z is positive definite, T > 0,
if Z(n, q) > 0 for all admissible (7, q) satisfying (1) and n # 0.

The corresponding linear Hamiltonian difference system is
(H) An = Apnis1 + Beqe,  Agie = Crmes1 — Af @i

As usual, the vector solutions of (H) will be denoted by small letters
and the n x n-matrix solutions by capital ones. Let (X,U), (X,U) be
solutions of (H). Then X} Uy — UL X), = W, where W is a constant
n X n-matrix, sometimes called a Wronskian of the solutions (X,U)
and (X,U). If W = I, then these solutions are called normalized. A
solution (X, U) is said to be a conjoined basis if XTU is symmetric and

rank (i) = n. Following [2], a solution (X,U) of (H) is said to have

no focal points in (0, N + 1], provided
Ker X311 C Ker X;, and Dy = X3 X]_, AxBy >0

holds for all k € J, where Ker, ¥ and > 0 denote the kernel, Moore-
Penrose inverse and nonnegative definiteness of the given matrix, re-
spectively. We will also use Im, 7 and > 0 to denote the image, trans-
pose, and positive definiteness of a matrix. Observe that the matrices
Dy, are symmetric when the kernel condition holds [2, Lemma 2].
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A solution (7, ¢) of (H) has a generalized zero in the interval (m, m+1],
provided

TIm 7£ 0, NMm+1 € ImAmBm and nquJn(I - Am)nm-i-l <0.

When the right endpoint is fixed, the generalized zero concept is used
to define conjugate intervals to 0. Let m € J. An interval (m,m+1] is
said to be conjugate to 0 if there exists a solution (7, ¢) of (H) having
(m,m + 1] as a generalized zero and, for some v € R™ satisfying the
initial boundary and transversality conditions

(2) Mono =0 and go = Tono + Mo7.
With (H) the Riccati matriz difference system
(R) R[W]k =AW, -Cy +A£Wk + (WkJrl — Ck)Ak(Ak + Bka) =0
is associated. Implicit Riccati equations, which use the operator R[W]y,
will also be considered.

In this paper the following normality concept will be used. A pair
(A, B) is called (Mg : I)-normal on J* if the system

—Agqe = Al qr, Brar =0, ke, qo=Myp,

v € R™, possesses only the zero solution ¢z =0 on J*.

Next, similarly as in [2, Remark 3(ii)], we define the transition
matrices ¥y, ,, and controllability matrices G, as follows: set Gy :=
0, ¥yi1,v =1 and, for k,m e J, k <m,

\I/k,m = (I — Ak)(I — Ak—i—l) PN (I — Am),
Gk = (Bk \I/k7kBk+1 \I/k,NleN)~
Then a pair (n,q) with Mny41 = 0 is admissible if and only if for all

keld
(3)

dk
me=—Gr| |+ nini = (=GP YN —M)) <§) ;
gN
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where ¢ := (¢ ...q%)7, a:=nny1 and Py, : RVFD o RIN=k+1)n g
the restriction operator onto the last N —k+1 entries of g, i.e., cutting
the first k entries. Note that Py is the identity (matrix). Moreover, if
(X,U) is a conjoined basis of (H) with Ker X;—; C Ker X, on J, then

(4) Nk € Im X, implies  npy1 € Im Xpy .

In order to transform the variable endpoint at N + 1 to a fixed
endpoint at N + 2, we use the result of [4]. We define the matrices
AN—i—l = 07 AN+1 = I, BN+1 = I—M, Ck = Ck, ke [O,N — 1],
Cny:=Cn+T—(I—-M)and Cnx41 := 0. Then consider the discrete
quadratic functional

N+1

(TP)  T(n,q) :==mTono + >_{ni1Crmk+1 + a Brar}
k=0

subject to J-admissible pairs (1, q), i.e., Anp = Agngr1+Brak, k € T*,
satisfying the boundary conditions

(5) Mono =0, nny2=0.

The relation between the definiteness of Z and J is stated next.

Proposition 1 [4, Lemma 3.1]. Z > 0 (Z > 0) over admissible pairs
(n,q) satisfying (1) if and only if T > 0 (J > 0) over J-admissible
pairs (n, q) satisfying (5).

Naturally we need to describe also the relation between the solutions
(X,U) of the Hamiltonian system (H) corresponding to Z and the solu-
tions (Y, V) of the transformed Hamiltonian system (H) corresponding
to J, i.e.,

(H)  Ang = Apmis1 + Brar,  Agi = Cemy1 — AL qr, k€ J*

Lemma 1. Let (X,U) be a solution of (H) on J. Then for
a solution (Y,V) of the transformed Hamiltonian system (H) with
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(Yo, Vo) = (Xo,Up) we have that Yy, = Xy for all k € J*, V}, = Uy
for all k € J and

YN+2 = (P + M)XN+1 + (I - M)UN+1,
Vg1 =Ung1 +[I'= (I = M) X1

Proof. For k € [0, N] the first equations of (H) and () are the same.
Also, for k € [0, N — 1] the second equations of (H) and (H) are the
same. Thus, Y, = X on J* and V, = U, on J. Finally the second
equation of (H) at k = N yields the expression for Vy11 and then the
first equation of (H) at k = N + 1 yields Yy o. o

3. Main results. The following result is obtained via a direct
approach with the exception of the conjugate intervals condition (ii),
which will require using the transformation in Proposition 1. This con-
jugate intervals condition can also be derived by applying [4, Theorem
2.3 (ii)] to a transformed problem on the interval [-1, N + 1]. Note
that such transformations do not produce a coupled intervals condition
as is known in [7] for the discrete calculus of variations case. Such a
condition must be derived independently in a future work.

Theorem 1 (Characterization of Z > 0). The following are equiva-
lent.

(i) Z > 0, i.e., Z(n,q) > 0 for all admissible (n,q) with Myny = 0,
Mnyi1 =0 and n #£0.

(ii) There is no interval (m,m + 1] C (0, N 4+ 1] conjugate to 0, i.e.,
the Jacobi sufficient condition holds and any solution (1, q) of (H) with

Momno =0, qo=Tono + Moy, Mnni1 =0, nyp1#0
satisfies
(6) x4 (L1 + 1) > 0.
(iii) The conjoined basis (X,U) of (H) given by the initial conditions

(7) Xo=1-M,y, Uy=To+ My
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has no focal points in (0, N + 1] and satisfies

—T — — —
(8) XNJrl (FXN+1 + UN+1) >0 on Ker MXpn41,
(9) Ker(I — M)TXny1+Uni1) NKer MX nyy € Ker Xy

(iv) The implicit Riccati matriz equation
(10)
RW]ip(=GiPx W n(I-M)) =0 onKerMo(—Go o n(I-M)),
k € J, has a symmetric solution Wy, on J* such that
Dy = By — B, — ByAF (W1 — Cr)AB, > 0
holds for all k € J, and

(11) Wo =T,
(12) F+Wxnii >0 on KerMNIm Xy, .

Remark 1. When we attempted to derive the conjoined basis and
Riccati equation conditions (iii) and (iv) via the transformation in
Proposition 1, we obtained conditions that are stronger and more
complicated than (iii) and (iv).

Lemma 2. Suppose that (iv) of Theorem 1 is true without (12).
Then o o
Ker X411 CKer Xy forall k € J,

where (X, U) is the conjoined basis of (H) given by the initial conditions

(7).

Proof. If there exists m € J such that Ker X,,,; ¢ Ker X,,, then
there is a d € R™, d # 0, such that X,,;1d = 0 and X,,d # 0.
Define the pair (1,q) as (Xpd,Uxd) for k € [0,m] and (0,0) for
k € [m+1, N+1]. Then it follows that (1, ¢) is admissible and satisfies
the boundary conditions Mgng = 0, ny+1 = 0. Hence, by (3),

e = (—GxPr  Upn(I—M)) (g) for all k € J.
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Then Mgno = 0 implies that () € Ker (=Go Yo n(I — M)) which

by (10) yields R[W]inr = 0 for all k € J. Using [2, Lemma 2(i)],
nn+1 = 0 and (11) we get

N
Z(n,q) =15 (To = Wo)mo + a1 (T + Was)nnr1 + Y 2 Diz
k=0
N
= Z ZngZk.
=0

On the other hand, by the definition of (n,q) we have Z(n,q) = 0.
Hence, for all k € J, Dyz; = 0. By [2, Lemma 2(i)] again we get that
71 satisfies the identity of the form Zyniy1 = n for all k£ € J. Since
Nm+1 = 0, we obtain that 7,, = X,,d = 0 that yields a contradiction.
O

Proof of Theorem 1. (i) < (ii). By Proposition 1 we know that (i) is
equivalent to
(i) J > 0 over Mong =0 and ny42 =0, n £ 0.

Apply to (i)’ the results of [6, Theorem 5] to obtain that (i)’ is
equivalent to

(ii)’ there is no interval (m,m + 1] C (0, N + 1] conjugate to 0 and
(N + 1, N + 2] is not conjugate to 0.

Condition (N + 1, N + 2] being not conjugate to 0 is equivalent to the
fact that every solution (1,q) of (H) with the initial conditions (2),
Nn+1 # 0 and Ny4o € Im A1 By = Im (I — M) satisfies

(13) MN1BN (I = Ang1)nnse > 0.
Since ny 2 must also be a multiple of
YNJrQ = (F + M)YNJA + (I — M)UNJrl

from Lemma 1, it follows that Mnyi1 = Mnyye = 0. Since
B}L\,H = I — M, condition (13) is equivalent to (6).

(1) = (iii). Since (i) implies that Z > 0 over all admissible pairs (7, q)
with Mono = 0 and ny41 = 0, we have from [6, Theorem 5] that the
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conjoined basis (X, U) has no focal points in (0, N + 1]. Suppose now
that 3 € Ker MX 1 and define an admissible pair (1, q) := (X3, U).
Then 7 satisfies the boundary conditions (1) and it follows from (i)
that Z(n,q) > 0. On the other hand, as (n,q) is a solution of (H),
I(n,q) = 6T7£+1(F7N+1 + Un+1)3, so that (8) is shown. Finally,
to prove (9) let 8 € R" be such that (I — M)(TXx41 +Uni1)8=0
and MX y;10 = 0. It follows that the admissible pair (1, ¢) defined as
above satisfies Z(1,q) = 0. If X138 # 0, then nyy1 # 0, i.e., n Z 0
and thus (i) would imply that Z(n,q) > 0, which is a contradiction.
Therefore, X y118 = 0 and (9) is shown.

(iii) = (iv). Let (X,U) be the conjoined basis from (iii) and let

(X,U) be the conjoined basis of (H) completing (X,U) to normalized
conjoined bases of (H), i.e.,

Xo=—-To+Mo)I+T3)™", To=(I—-M)I+T5) "
For k € J* define the n x n-matrices
= _m e e 7 <t% 7T

Then RW]p Xy =0, Wi Xy, = UpX 1 X5, and Dy > 0 for all k € J, by
(2, Lemma 2(ii)]. Let (?) be arbitrary in Ker Mo(—=Go  ¥o n(I—M)).
Define nn41 := (I —M)a and {n }2_, by (3). Then (7, ¢) is admissible
and satisfies the boundary conditions (1). From (4) we obtain that
e = X ey for some ¢, € R™, k € J*. Therefore,

RIV(-GiPe Win(7 = 20) (&) = RV = ROVL Kicx =0

and since (?) was arbitrary, (10) holds true. Initial condition (11)
follows from (iii) = (iv) in [6, Theorem 5]. To show (12), let v € Ker M,
v = Xn419 for some § € R". Then MX 110 = 0 and (8) with the
equality XWX=X'TU yield

— —T — —
Y+ W)y =" Xy (T A+ Wyia) X n4a6
T — —
=6"X Ny 1 (TX Nyt + Ung1)d > 0.
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If y7(T + Wni1)y = 0, then (I — M)(T' + W y1)y = 0. For a vector
8= Y}L\,_H'y we have that X y418 = Xn110 =, MXyi18 =0, and

(I ~M)TX g1+ Tns1)8 = ([ ~M)TX yp1 + Uns1) X oy 1 X 0410
= =M)(T+Wyi1)y =0.
Thus, (9) implies that v = X y413 = 0 and so condition (12) is proven.
(iv) = (i). By Lemma 2, Ker X;,; C Ker X}, holds for all k € J.
Let (1, ¢) be an admissible pair satisfying the boundary conditions (1).
Then 79 € Im X and (4) yield nyy1 € Im Xy, Also, by (3) with
a:=nn41, (1) € Ker Mo(=Gy Vo n(I —M)) and, for all k € J,

RWlkm, = RWi(~=GiPr Vi n(I — M) (Z) =0.

Whence, by [2, Lemma 2(i)] with z; := g, — Wy and by using (12)
we get
N

Z(n,q) = m5 (To = Wo)no + a1 (T + Waa)nwgr + Y 2 Dizi > 0,
k=0

so that we showed that Z > 0. If now Z(n,q) = 0 for some admissible
(n,q) satisfying (1), then ny11 € Im X 41, Dizp = 0 for all k € J,
and

M1 (T +Was1)ny41 = 0.

Hence, condition (12) implies that ny41 = 0. Via the identity of the
form Zynk+1 = ni, k € J, from [2, Lemma 2] we then get that 7, =0
on J*. Hence Z > 0 and the proof is complete. ]

Remark 2. If X x4 is invertible, then (8)—(9) and (12) are rephrased,
respectively, as
(14) 7§+1 (FYNJA +UN+1) >0 on Ker MYNJrl,
I'+Wxi1 >0 on Ker M.

Remark 3. In (iv) of Theorem 1, the implicit Riccati equation (10)
may take the equivalent form
(15)

RW]i(®ro(I-Mo) GrPr) =0 on Ker M(®ny10(I—Mo) Gnir),
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where @y ,,, and G}, are the transition and controllability matrices, see
[2, Remark 3].

Proof. Similarly as in (3), a pair (7, q) with Mgny = 0 is admissible
if and only if for all k € [1, N + 1]

qo
e = Pr,ono + Gy f = (®y,0(I — Mo) G Pr) (Z) ,

qk—1

where av = np. The matrix Py is the restriction operator onto the first k
entries of ¢, i.e., Prg = (¢l ,... ,ql_,)". Note that Py is the identity

(matrix). Thus, condition R[W]in, = 0 is equivalent to (15), which is
what we needed to show. O

The following result represents an extension of [6, Theorem 6] to
the case where also the right endpoint varies. As in Theorem 1 the
initial conditions of the conjoined basis (X, U) and the Riccati equation
solution W are in the form of equalities. However, X is now invertible
and W solves the explicit Riccati equation. The price for this richer
result is the assumption of (Mg : I)-normality, which incidentally does
not yield that X in Theorem 1 is invertible for all k. However, when
T > 0, the (M : I)-normality implies that 7N+1 is invertible, as it is
shown in [6, Lemma 4].

Let the two conjoined bases (X,U) and (X,U) of (H) be given by
the initial values (7) and

Xni1=0, Uny1=-1,
respectively.
Theorem 2 (Characterization of Z > 0). Assume that (A, B) is

(Mo : I)-normal on J*. Then the following are equivalent.

(i) Z > 0, d.e., Z(n,q) > 0 for all admissible pairs (n,q) satisfying
Mono =0, Mnni1 =0, n#0.
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(ii) There exists a conjoined basis (X,U) of (H) with no focal points
in (0, N + 1], Xy, invertible for all k € J*, and satisfying

(I = Mp)(ToXo—Up) =0,
(16) X]:,\;Jrl (FXN+1 + UN+1) >0 on KQFMXN+1.

This conjoined basis is given explicitly for all k € J* by
(17) Xk = EXkyzjrllMo +yk, Uk = EUkY§111M0 + Uk,

where € is small enough.

(iil) There exists a symmetric solution Wy, on J* of the explicit Riccati
matriz equation (R) with I+ By W), nonsingular and (I+BpWy,) 1By >
0 for all k € J, and satisfying

(I = Mo)Wo — T =0,
(18) '+ Wyt >0 on Ker M.

Proof. (i) = (ii). We know from [6, Theorem 6] that (ii) holds except
of (16). Since X y41 is invertible and Z > 0, condition (14) holds, see
Remark 2. On the other hand, condition (16) where ¢ = 0 reduces to
(14). Thus, by perturbing (X, U) as in (17) we obtain that, for ¢ small
enough, (16) is valid as well.

(ii) = (iii). This is automatic by Wy := Uy X, ', k € J*.

(iii) = (i). Via the Picone identity [2, Theorem 1] we obtain Z > 0.
Now, if Z(n,q) = 0 for some admissible pair (7, q) satisfying (1), then
(T'+ Whni1)nn+1 = 0. Hence, by (18), ny4+1 = 0. Via the identity of
the form Zyngyr1 = nk, k € J, from [2, Lemma 2], we get np = 0 on J*.
o

Remark 4. When the left endpoint is free (Mo = 0), then (4, B) is
automatically (Mg : I)-normal, and since in this case (17) implies
(X,U) = (X,U), the corresponding conditions of Theorem 2 and
Theorem 1 coincide.

Next a characterization of the positivity of Z in terms of the explicit
Riccati equation is given without any normality assumption. Note
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that the initial conditions are now in the form of strict inequalities,
as opposed to the equalities in Theorems 1 and 2. The proof of this
result is via the transformation technique in Proposition 1.

Theorem 3 (Characterization of Z > 0). The following are equiva-
lent.

(i) T > 0, d.e, Z(n,q) > 0 for all admissible pairs (n,q) with
Mono =0, Mnny1 =0, n#0.
(ii) There exists a conjoined basis (X,U) of (H) with no focal points
in (0, N 4+ 1], Xy, invertible for all k € J* and satisfying
X (ToXo —Up) >0 on Ker My Xy,
(19) X3 (T XN +Uni1) >0 on Ker MX 1.

(iil) There exists a symmetric solution Wy, on J* of the explicit Riccati
matriz equation (R) with I+ BpWy, invertible and (I +BWy) *By, >0
for all k € J, and satisfying

To—Wo >0 on Ker My,
I'+Wny1 >0 on Ker M.

Proof. (i) = (ii). By Proposition 1, Z > 0 is equivalent to J > 0.
Our results in [8, Theorem 10] then yields that there exists a conjoined
basis (X,U), k € [0, N + 2] of (H) satisfying all the conditions in (ii)
except of (19), but instead Dyi1 = Xy Xyhodni1Byyr > 0.
We will show that this implies (19). By Lemma 1, it follows that
Xnio=T4+M)Xyp1+(I —M)Uni1. Thus, Dyy1 > 0 is equivalent
to

(I = M)XZ T+ M) Xy + (I = M)Una]" >0,

which in turn, by transposing, is equivalent to

(I—M)T +Uni1Xyhy) (I = M) > 0.

Multiplying from the left by X 41 and from the right by Xyyq, we
obtain the condition

X{1(PXni1 +Ung1) >0 on Ker MX .
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If now MXyi1a = 0 with aTX}\;_H(I‘XNH + Unt1)a = 0, then
X}’\;H(FXNH + Un41)a =0, so that (T Xyy1 + Uny1)a = 0 by the
invertibility of Xy 1. It follows that

Xnpoa = [+ M)Xni1 + (L —M)Uni]a
= [ Xni1+ (I —M)Uni]e

={- M)(PXN+1 + UN+1)CV =0.

The invertibility of X x12 now yields that a« = 0. Thus (19) holds true.
(ii) = (iii). This is straightforward by Wy, = Uy X, ! for all k € J*.

(iii) = (i). This follows by the Picone identity as in the proof of
Theorem 2. O
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