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THE METRIZATION OF UPPER LIMIT TOPOLOGIES

WARREN M. KRUEGER

1. Introduction. A fruitful source of examples in general topology
arises from certain linearly ordered sets endowed with the upper limit
topology (e.g., the reals and various spaces derived from the ordinal
space [0,9]). Their usefulness stems in part from the fact that,
although these particular spaces are not metrizable, each possesses
many properties necessary for metrization.

In this note, we deduce the non-metrizability of these spaces from
a result which characterizes metrizability of the upper limit topology
on an arbitrary totally ordered set. The method is both elementary
and direct—elementary in that it uses only the definition of the order
topology and simple topological properties and direct in that it does
not require the use of auxiliary spaces such as the Cartesian square.

The author wishes to thank Art Kruse for his perspicacity in gen-
eral and for his suggestions regarding Theorem 4 and Corollary 5 in
particular.

2. Preliminaries. Let (X, <) be a totally ordered set. The upper
limit topology induced by < is the one, a basis for which is

{(a,b]‘a,bEX,a<b}.

Following Dugundji [1, p. 66], we call the resulting space X,,. Suppose
d is a metric on the ordered set X; its topology need not be that of X,.

For € > 0 and y € X, we adopt the notation Ny(y, €) for
{z € X|d(y, =) < e}
Now define f: X — R U {oo} by the rule

fly) = {glb{d(x,y) ly <z}, if (y,00) # @,

0, otherwise.

Received by the editors on April 1, 1985 and in revised form on March 3, 1986.

Copyright ©1990 Rocky Mountain Mathematics Consortium

173



174 W.M. KRUEGER

Viewing f as a function from X, to R U {co}, we assert

THEOREM 1. If d metrizes X, then f s positive and upper semi-
continuous.

PROOF. To see that f is positive, choose y € X; since d metrizes X,,
there is € > 0 so that

Na(y,€) C {z |z < y}.
Then, for >y, = ¢ N4(y,¢€), so d(z,y) > € and
glb{d(z,y) |y <z} >

To see that f is upper semicontinuous we appeal to

LEMMA 2. With the assumption of Theorem 1, let e > 0 and y,w € X
so that

(way] C Nd(y7 6)'
Then, for z € (w,y), f(z) < e. (Note that (w,y) might be empty.)

PROOF. For z € (w,y), in order to show that f(z) < e, it suffices to
show there is a point & > z with d(z, 2) < e. Take z = y. O

Now returning to the proof of Theorem 1 for b € R U {oo}, we set
Up={z € X|f(z) <b};

we must show that U, is open. If b < 0, U, is empty. If b = o0, Uy = X
or X has a greatest element yo and U = Uy<y, {a:| z < y}. Thus let
0 < b < 0. Choose y € Uy. Since d is a metric for X,,, there is a w so
that

(U), y] C Nd(ya b)

Apply Lemma 2 to conclude that

(wv y] C Ub-
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DEFINITION 3. With (X, <),d and f as above, for n > 0, define the
closed set

Fo={y € X|f(y) = 1/n}.

The family of sets {F,, |n > 0} is called the filtration of X associated
to d, or, more briefly, the filtration of d.

Note that if d metrizes X,,, f is positive, the F,, are closed and

X =U,F,.
3. A necessary and sufficient condition.

THEOREM 4. The space X, is metrizable if and only if it is the union
of countably many discrete, closed subspaces.

PROOF. Suppose that d metrizes X,. In light of the foregoing
discussion we only need to show that each element of the filtration
of d is a discrete subspace of X,. Suppose, for some M, F; has a limit
point, say xg. Metrizability implies that there is a w so that

(w, o] C Ny(zo,1/M).

Since zg is a limit point of Fjs there is a point y € (w,xo) N Fps. Now,
by construction, f(y) > 1/M, but, by Lemma 2, f(y) < 1/M.

To demonstrate sufficiency we proceed as follows. Let
{Xn|n=12,...}

be a sequence of discrete, closed subspaces of X, the union of which
is X. Let
E={e,|n=12,...}

be a non-increasing sequence of positive, real numbers which converges
to 0. Define
p: X—=>FE

by the rule
(p(.l‘) = €k,
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where k is the smallest integer for which = € Xj. Define

d: XxX—=>R
by the rule
max{y(z) |9; <z<y}, z<uy,
d(w,y) =40, =1y,
d(y, z), T > y.

It is easy to check that d satisfies
d(z, z) < max{d(z,y),d(y, 2)}
for z,y and z in X so that d is a metric on X. If (a, b] is given,
Ny(b,€) C (a, b,

provided that ¢ < min{d(a,b), p(b)}. If Ny(x,¢) is given, let K be such
that e, < € for k > K. Then there is a point w < x (if « is not the
least element of X) so that (w,z) N (X3 U---UXgk)=@. Then

(w,x] C Ng(z,¢€).

Thus d metrizes X,,. O

COROLLARY 5. If X is uncountable and X, is separable, then X, is
not metrizable.

PROOF. Suppose X, is metrized by d. Then each subspace F;, in the
filtration of d is separable metrizable and, by Theorem 4, is discrete.
Hence each Fj, is countable, and so

X =UF,

is countable, contrary to hypothesis. O

As a consequence the real line with the upper limit topology (dubbed
Eéa 4 by R.H. Bing) is not metrizable. The fastest classical way to show
that E]:l)ad is not metrizable is, of course, to note that

1 1
Epag X Epaqs
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the Sorgenfrey plane [2], is not normal.
It is of interest to note that (regardless of whether X is uncountable)

if X, is separable, then X, can be homeomorphically order-embedded
in Eéa.d' This suggests Corollary 6 below.

COROLLARY 6. Fach uncountable subspace ofEéad is non-metrizable.

PROOF. Consider any uncountable set Y in R. Let
S={yeY | thereisa z € R, z < y and (z,y] NY countable}.

Along standard lines of reasoning, S is countable. Let X =Y\ S; X is
uncountable. Straightforwardly, the relativization to X of the topology
of Eéad is the topology of X,,, which, by Corollary 5, is not metrizable.
Thus, Y as a topological subspace of Etl)ad, has the non-metrizable
subspace X, and is non-metrizable.

COROLLARY 7. The spaces [0,2] and [0,9) in the order topology are
not metrizable.

PROOF. In each case the order topology is the upper limit topology.
If either space were metrizable, some filtration element would contain
a countable infinity of points and hence a limit point. O

Of course one can dismiss metrizability for [0,€2] by simply noting
that it is not 1°° countable at 2, but [0,2) is not susceptible to such
an elementary argument.
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