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MAXIMUM LIKELIHOOD AND
BEST APPROXIMATIONS

A. EGGER

ABSTRACT. That least squares approximation is an ap-
propriate method in the presence of normally distributed er-
rors is a consequence of the fact that the Maximum Likelihood
Estimate and Best Approximation Problems coincide in this
setting. It is shown that such a relationship holds only for ex-
ponentially distributed errors and the ¢P norms. Thus there
is no norm which is similarly suited for curve fitting or data
smoothing in the presence of errors distributed according to,
for example, the Cauchy distribution.

Natural sources of approximation problems include curve fitting,
signal filtering, data smoothing and parameter estimation. In the
discrete setting, the object to be approximated is a vector z € R".
Given a set K C R" of approximating vectors, the Best Approximation
Problem is to determine k£ € K as close as possible to z. When the
distance function is given by a norm || ||, this is equivalent to minimizing
||k — z|| over K. We shall say that * € K is a Best Approximation
(BA) from K to z if ||z* — z|| = infrek ||k — z||. There are infinitely
many norms on R"™ and, although they are all equivalent, they generate
distinct Best Approximation Problems. Among the most frequently
considered norms are the # norms, |||, = (X|z;[P)!/?, 1 < p < oo,
and ||z||o = max{|z;| : 1 < ¢ < n}. In a specific problem, the choice of
a norm is typically influenced by computational considerations. Often,
however, it is known or assumed that the residual » = z — z* is
distributed according to some probability density function p. In this
setting, there is sometimes a norm which is particularly appropriate.

Suppose that the approximating set K is a subspace of R™ with
basis V1, V2 ..., V¥ where Vi = (vi,vi,...,v). Assume that z =
T + g, where T € K and € = (81,E2,...,&,) are such that the g;
are independent random errors distributed according to a probability
density p. Specifying x € K to approximate z is equivalent to specifying
a vector v = (v1,...,v,) of coefficients that generates a residual
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e=z—uz,¢ = (1,...,€n), where x = Zle v;Vi. In this setting,

given p and z, the likelihood of z is given by L(z) = L(v) = Hle p(ei)
[2]. Then z* € K is a Maximum Likelihood Estimate (MLE) for z if
L(z*) = sup,ex L(z). Since log is monotone, for any p > 0, this is
equivalent to maximizing log(L(z)).

Now, if p is an exponential distribution, p(w) = fe 1*I"/* 1 < p <
00, we have that log(L(z)) = nlog(B8) — (1/a) Zj \ylvjl. + 1/21;]2. ot
z/kv;? — zj|P, which yields the following theorem.

THEOREM 1. If the €; are assumed to be independently distributed
according to the density p(w) = Be *I"/* 1 < p < oo, then z* is an
MLE for z from K if and only if it is a BA to z from K in the P norm
[2].

REMARKS. In the case p = 2, Theorem 1 justifies the use of the mean
square norm when the errors are normally distributed. Note that, for
any two exponential distributions p;(w) and ps(w) corresponding to
exponents p; and pg, with p; > ps > 1, we have that p;(w) < pa(w)
for large w. Thus the associated error curves would tend to be more
spikey for p near 1. This is why /P approximation, 1 < p < 2, is
sometimes considered for Robust Estimization Problems. Furthermore,
since the net of /P Best Approximations, 1 < p < oo, converges
to a Best Approximation with respect to || ||, this theorem also
justifies Uniform Approximation when the residuals are to be uniformly
distributed. Finally, the theorem easily generalizes to the case that the
i-th error is distributed according to the density p;(w) = B;e~1*!"/ei,
Here log(L(2)) = 3 log(8;) — ¥ (1/ay) [V} + -+ + nVE — 27, s0
determining MLEs is equivalent to finding weighted ¢? BAs.

If such a MLE -BA pairing were to hold for arbitrary error distribu-
tions, then it would be possible to construct a norm which was appro-
priate for a specific problem or data set. That this is not possible is
easily seen by considering any density p such that p(0) = 0. Then, for
z € K, z need not be a MLE for itself, but must be a BA in every
norm. Even if p(0) > p(w) > 0 for all w # 0, there need not exist a
MLE -BA correspondence, as the following example shows.
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ExAMPLE 1. Consider the Cauchy distribution, p(w) = 1/(7(14+w?)).
Let K C R* be the subspace of constant vectors. Set z = (a, a, —a, —a
and z = (a,a,a,a,). Then L(0) = 1/(7*(1 + a®)*) and L(z) =
1/ (7*(1 + 4a?)?). For large a, L(0) < L(a), so 0 is not a MLE in
this case. Observe that if y is a MLE for z with respect to p, then so
is —y. If the BA-MLE pairing were to hold for || || and p, then both y
and —y would be BA’s. By the convexity of norms, 0 would be a BA,
which is impossible. Thus, in this case, there is no norm for which the
BA-MLE pairing holds.

Although Example 1 shows that a BA-MLE pairing is not possible for
every norm, perhaps such a pairing holds for some additional norms.
In view of Theorem 1, it is natural to consider generalizations of the
{P norms. Perhaps the simplest such norms are the Luxemburg norms,
defined as follows. Let M be a continuous, convex, non-decreasing
function defined for ¢ > 0 with M(0) = 0 and lim; o, M(t) = oo.
The Luxemburg norm || ||ar, is defined by ||z|/pr = inf{A > 0 :
> M[|z;|/A] < 1} [4]. Let p be a continuous, symmetric, probability
density which is strictly decreasing for w > 0. Define M(w) =
—log(p(w)/p(0)). Assume that M is convex. Then M satisfies the
conditions above and we may form || ||5;. Then, with the notation of
Theorem 1, we have

THEOREM 2. For each z € R", there exists a norm, || ||n such that
x* is a BA to z with respect to this norm if and only if x* is a MLE for
z with respect to p.

PROOF. In this setting, the existence of at least one MLE is immedi-
ate. Let 8= M(w; — z;) for any w a MLE . Then 8 < >~ M (y; — 2;)
forally € K. If 8 =0, then z € K, and the result is immediate in this
case. If B # 0 let N(w) = 1/8M(w). Then |jz* — z||x < |Jlw — 2||N-
If, for any a > 0, > N[(w; — 2;)/a] < 1, then > N[(z} — z;)/a] <1
as well. For A = 1, > N(w; — z) = 1/8Y. M(w; — z;) = 1. Thus
S M(xf —2;) < and z* is a MLE . Now suppose that z* is a MLE.
Then Y N(zf —z) = 8 and >, N(z} — z;) = 1. Since there must
exist at least one BA with respect to || ||, let y be such a BA. Then
S N(y; — 2)/A] <1 for some XA < 1. If * is not a BA, then this in-
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equality holds for some A < 1. Since N and M are strictly increasing,
>> N(y; — z;) would be strictly less than 1 which is impossible. Thus
x* must be a BA. O

Theorem 2 is not completely satisfactory, since the norm depends
upon z. The following example illustrates this shortcoming.

EXAMPLE 2. Let p(s) = e~c(s*+1sD) be such that Jppds=1. Then p
satisfies the conditions of Theorem 2. Let K be the subspace of constant
vectors in R3 and let z = (0, a,0). If z* is a BA from K to z with respect
to some fixed norm, then Ax* is a BA to Az as well. Finding MLE ’s with
respect to p is equivalent to minimizing 2b* +2|b|+ (b—a)? +|a —b| over
bin R. For a = 1 this occurs uniquely at b = 1/6, and for a = 1/2 this
occurs uniquely at b = 0. If BA-MLE pairing were to hold independent
of z, then (1/12,1/12,1/12) would be a MLE for (0,1/2,0) which is
not possible.

In view of the above, it is of interest to characterize those probability

densities and norms for which a BA -MLE pairing holds independent of
the specific problem. Such a characterization follows.

THEOREM 3. Let X = ®g, the vector space of sequences {&;} such
that &, = 0 for large n. Suppose that || || is a norm on every finite
dimensional subspace of X. Let p be a probability density function
satisfying

(1) p(0) > p(w) = p(—w) >0 for w #0,

(2) p is continuously differentiable,

(3) log(p(w)) is strictly decreasing for w > 0.

Suppose that, for each finite dimensional subspace K C X and each
z € X, we have that k € K is a BA to z with respect to || || if and only
if k is a MLE for z with respect to p. Then p is one of the exponential
distributions of Theorem 1.

PROOF. For fixed n,m let K = K, be given by
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and define z = z,,,, by

o[ 1<isn
TN, n<i<n+m

If z* is a BAto z from K, then Ax* is a BA to Az for each A € R.
If the Let BA -MLE pairing holds, then Az* must be an MLE for \z.
Conditions (1)—(3) ensure that z* is an MLE for z if and only if

nlogp(a) + mlog p(a — 1) = Iglari((n log p(b) + mlog p(b — 1)),
€

where 2*(i) = a, i = 1,...,n + m. These conditions also ensure this is
equivalent to

" n'(@) _ ~mp'(a-1)
p(a) pla—1)
Similarly Az* is an MLE for Az if and only if
np'(Aa)  —mp'(Aa— )
p(Aa) — p(Aa—N)

Let A = {a € R : a satisfies (1) for some n and m}. The cases
n=0m=1andn =1,m = Oensure 0 € Aand 1 € A. In

fact, A is dense in [0,1]. To see this let a € (0,1). Then, for some
s> 0, s’; ((Z)) = pp ((f:;)), and since increasing a decreases 1 —a, condition
(3) ensures that there exist arbitrarily small e > 0 and m and n positive
_ plate) _ p'(1-(ate))

(2)

is a rational number.

integers, for which n/m

plate) = pll=(ate))
Thus A is dense in [0,1]. Define F(w) = ’;((:5)). Equation (2) implies

that, for a € A, Aa = w, F(w(l — a)/a) = CyF(w) for fixed C, and
all w. For w = 1, we have F((1 —a)/a) = CoF(1). If F(1) = 0, then
F((1 —a)/a) = 0 for all non-zero a € A, which is not possible. So
F(tw) = F(t)F(w)/F(1) for t = (1 —a)/a,a # 0,a € A. F(1) <0,
so let —a = 1/F(1). Since A is dense and F is continuous and
odd, F(tw) = —aF(t)F(w) for all t and w. Set G(w) = —aF(w).
Then G(wt) = G(w)G(t). Then G(w) = |w|°sign(w) [1]. Hence
F(w) = |w|sign(w)/(—a) and p(w) = Be~1wI’/v ag desired. o

Thus problems involving exponentially or uniformly distributed resid-
uals are naturally associated with the corresponding /¥ norms 1 < p <
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00, via the principle of maximum likelihood. Any other residual distri-
bution can have no such pairing, and the choice of approximating norm
would have to be based on other considerations.
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