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NORLUND AND WEIGHTED MEAN
MATRICES AS OPERATORS ON I,

F.P. CASS AND W. KRATZ

ABSTRACT. Let a = {an} be a sequence of positive num-
bers with a, = f(n), for n large, where f is a logarithmico-
exponential function defined on [zg,00) for some zg > 0.

Let No = {ank}, where apnr = an—_x/An (An = EZ:O ak)
for 0 < k < n and 0 otherwise; let W, = {anr}, where

ank = ag/An for 0 < k < n and 0 otherwise. N, is called
a Norlund matriz and W, is called a weighted mean matriz.
The principal results in the paper include:

(i) No € B(lp) (1 < p < o0) if and only if a =
limy, 00 nan /An < oo; and

(ii) Wa € B(lp) if and only if 8 = limp—s00 An/nan < p.
In each case estimates and asymptotic properties of the norms
of the operators are obtained.

1. Introduction. Let a = {a,} be a sequence of positive numbers
and let A, = >"}'_ ak. Define the Norlund matriz N, = {ani} by

o — an—t/An, for 0 <k <mn,
"o, for k > n.

and the weighted mean matriz W, = {anr} by

e — ag /A, for 0 <k<n,
k= 0, for k > n.

The N,- or W,- transform y = {yx} of a sequence = = {z} is given
by yn = ZZ:O AnkTE-
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In this paper we investigate conditions under which y € I, whenever
z €1, (1 <p < o0), and we provide estimates of the norms of the
resulting operators N, and W,. We are concerned with the situation
in which, for sufficiently large k,ar = f(k), where f is a logarithmico-
exponential function defined and positive for all sufficiently large values
of the real variable z. In this case we shall say that the sequence a s
given by the function f.

Logarithmico-exponential functions are discussed in [3]. Let L denote
the set of all logarithmico-exponential functions defined on [z, 00) for
some xg > 0. If f € L, then f is eventually monotone, eventually of
constant sign and f’ € L. We use the notation

g=f, ifg(z) < Cf(x), forsome C >0 and z large,
g =< [, if lim g(z)/f(z) = 0.
g=<f, ifg=fand f =g,
g~ [, if lim g(z)/f(z) = 1.

The symbols > and > then have the obvious meaning.

We suppose throughout that 1 < p < co, 1/p+1/g =1 and define

n n+1 1/p
01(”) = Zank (k_ﬂ> )
k=0

oo

k+1 1/(1
UZ(k):Zank( ) )
= n+1

o1 =supoi(n) and o2 = sup oa2(k).
n>0 k>0

Let B(l,) denote the Banach algebra of bounded linear operators on
l, and ||T||, denote the norm of 1" € B(l)).
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2. Results. We establish the following results.

THEOREM 1. Suppose a is given by f. Then N, € B(l,) if and only
if a =limy,_, o na, /A, < 00, and then

[+ 1)I'(1/q)

< Na < 1/q 1/P<
F(Oé—’—]./q) —H HP—Ul O3 0

(1)

and lim,, o, 01(n) = limg_,oo 02(k) = T'(a + DI'(1/q)/T(a + 1/9).
Further, if a is any sequence of positive numbers such that o =
lim,, o na, /A, =0, then N, € B(l,) and (1) holds.

REMARKS. (a) That lim,,_, o na,/A, exists follows since f € L (see
Lemma 2).

(b) When [[a|l1 = Y>3y ar < oo, it follows readily from [1, Theo-
rem 1] that 1 < [|Ny|[, < |la|lx supnzo(l/An).

THEOREM 2. Suppose a is given by f. Then W, € B(lp) if and only
if B =lim, o0 Ay /na, < p, and then

p 1 1
(2) =g S Wally < 0o/ < 0o

and lim,, o, o1(n) = limg_ o o2(k) = p/(p — B).
Let [,(N)={z={ar} €lp:xp =21 =+ - =2z, =0}, N € Ny, and

let HNaH,(,N) and ||Wa\|,(,N) denote the norms of the operators N, and
We in B(l,(N)). Further, let

" n+1 p
oMy = 3 [ ] s o™ = supo™ (),

k=N-+1 k+1 n20
o) — {0, for 0 < k < N,
oa(k), for k> N,
and oéN) = Supy>g OéN)(k‘). Note that 0§N) < sup,-yoi(n) and

oéN) = supy. y 02(k).
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COROLLARY 1. Let a be given by f, and suppose lim,_, o an /A, = 0.
Then N, € B(lp(N)) if and only if o = limy,_,o nan /A, < 00, and

then
I'(a+1)I(1/q) (V) (N)\1/q( ~(N)\1
il St Sl i VA Na < q /P.
Far g < INllE < (o) e(o4™)
Moreover,
(3) lm ([N, |[{Y) = T(a + 1)I'(1/q)T (e + 1/q).
N —o0

Further, if a is given by f and lim,_, an/An, > 0, then N, € B(l,(N))
if and only if 3°.° , exp{—p(N +1)f'(n)/f(n)} < co.

COROLLARY 2. Let a be given by f. Then W, € B(l,(N)) if and
only if B = lim, o An/na, < p, and then

p/(p=B) < Wl < (o) /2 (a3™) .
Moreover,

(4) Jim Wl = p/(p - ).

REMARK. If S is the shift operator that maps {x;} to {yx} where
yo = 0 and yx = xf_; for & > 1, then (3) and (4) may be written
Jim ||NaS™|[p = T(er+ 1)T(1/9)/T (e + 1/q)

and
. N _ .
i [[WeST |, =p/(p — 5)

respectively.

3. Lemmas and proofs. Our first lemma does not seem to be
explicitly stated elsewhere in the literature.

LEMMA 1. Suppose that g € Ci|zg,0), for some zy > 0, and
that g > 0. Let € = xg'/g, suppose that g and € are monotonic on
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[z0,00) and that lim,_,~ €(x) = 0. Then there is a function p such that

limg 00 p(x) = 00, limy o0 u(z)/z = 0 andlim, o g(x)/g(u(z)) = 1.
Moreover, if g € L, then we may choose y € L.

PROOF. Let s = lim,; ,00 g(z). Then 0 < s < 00. If 0 < s < 00,
we may take u(z) = y/z. (Observe that g(z)/g(v/z) — s/s = 1.) The
case when s = 0 follows from the case when s = oo with g replaced
by 1/g. If s = oo, then g(x) must increase. Thus ¢’ > 0 and ¢(z)
must decrease (since 0 < €(z) — 0). Define pu(z) = ze /%) where
d(z) = max{2/logz,/e(v/z)} — 0. Clearly p < z and p > /= — co.
Finally 0 < g(z) — g(p(z)) = f:(z) e(t)g(t)/tdt < Q(CU)E(\/E)f:(m)% <

g(z)\/e(v/x) = o(g(z)) as  — oo. Hence lim,_, g(p(z))/g(x) = 1.0

LEMMA 2. Suppose g € L, g(z) > 0, zg'/g = o(1) as x — oo and
0<a<oo, 0<v<oo, d <1. Then

- T )

I'(a)I(1 - 4)
7F(a+1—6) G,STL—)OO,
and
J(k) =k 9(n = k) (R+1)*¥(n+1-k)>!
—  g(n)
— L(e)b (v as k — oo
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PROOF. Suppose first that ¢ = 1. Then

I(n) <(n+1)" +Z/k+1(n+1>_1(:zj—ll>a(l_n—ti-l>_l

1-6
(1t_1> dt + (n+ 1yt

n+1 n+1

=o(1) + /17(/:;1) ot (1 + ﬁ)a (1-7)7°
1-6
O e

—)M as n — oo with 7 = t
I'a+1-9) n+1

by Lebesgue’s dominated convergence theorem. Also,

o () () ()
(1_ t )15 1y

n-+1 n+1
ninen) L \! )
ol +/ e <1+—> =)
W) 1/(n+1) T(n+1) ( )
1 —1
1 -
( +(1r)(n+1>> "
Lol =9) as n — oo
I'a+1-9) '

The assertion concerning J(k), with g = 1, is obtained similarly via
the integral

/:Ot—a—"( t—k)*Vdt =k~ / Y1-7)" "t dr =k~ "—F((Z)i(l’j;

)

with 7 = (¢t — k)/t. Now suppose g € L, g(z) > 0 and zg'/g = o(1).
Then, for all n > 0, 277 < g < z". Hence x"g increases and x~"g
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decreases ultimately. Since, for any fixed N,

N a—1 -6
1
Zg(k) Rl 1-— i —0 asn— oo,
n+1 g(n) \n+1 n+1

we obtain

1 n k+l a—n—1 1 -0
li I(n) < i 1-
i) < i =53 (145 =

_ Lle -1 -9)
- Dla—n+1-4)

. . (07 ” I ]- 6
11m 1N (n) F( 5)

for all 0 < 7 < a. The same reasoning may be applied to J(k), and
then the assertions of our lemma follow. O

Lemma 3 elucidates the relationship between lim,_, zf'(x)/f(z)
and lim,, o na, /As.

LEMMA 3. Suppose a is given by f and that
lim zf' (z)/f(z) =a—1 (—o0 < a < +00).
Then
{a ifa>0
0 ifa<O.
Conversely, if lim,_, . na, /A, = a > 0, then lim,_, o zf'(z)/f(z) =

a — 1. (Observe that lim, oo 2 f'(z)/f(x) always exists by monotonic-
ity.)

lim na,/A, =
n— o0

PROOF. If a = oo, then f = z® for all A > 0 by [3, Theorem
23 with v(z) = z|. Moreover, A, ~ a, or A, < [{' f(t)dt = F(n)
by [3, Theorem 33]. Since F(z) < f(z)z™ [t dt + zo(Af(z) <
(xf(x))/(A+1)+z0f(x), for all A > 0, we obtain that na,/A, — co.
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If0 < o < oo, then f ~ 2% g with 2% < g < 2° for all § > 0
by [3, Theorem 23] and A, ~ [, f(t)dt by [3, Theorem 33]. Hence,
A, ~ nay/a by [3, Theorem 25]. If Xa,, is convergent, which happens if
a < 0 and sometimes when a = 0, then na,, — 0. Hence na, /A, — 0.
Finally, we may assume a = 0 and Xa, = oco. Then f = g/z with
7% < g < a’ for all § > 0 by [3, Theorem 23] and A, ~ [;" f(t) dt by
[3, Theorem 33]. Now, Lemma 2 implies that

n

A, > » F(t)dt ~ g(n)log (%) = nay log <ﬁ> - Nan,

which completes the proof. O

LEMMA 4. Suppose f € L, f(z) > 0 and lim,_, o zf'(z)/f(z) = oo.
Then, for v real,

as T — 00,

/°° dt 1
« VFQ@)  27f(z)
where F(z) = fcz f(t) dt for any sufficiently large constant c.

PROOF. By [3, Theorem 23], our hypothesis implies that f = 2 for
all A > 0, so that the integral exists. Integrating by parts and using
[3, Theorem 25], we have

/:o t"i’t(t) - /:o {—%} {—5—;} dt

1 © 1
= i@ | Fee

1 < dt

=t "W Faoe

Using Lemma 4 with [3, Theorems 25 and 33], we obtain

LEMMA 5. Suppose f € L, f(z) >0 and lim, o zf'/f = co0. Let v
be real, an, = f(n) and A, = > ;_,ar. Then

<1 1
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PROOF. We may assume without loss of generality that f is increasing
on [0,00). Let

F(z) = /0 () dt

and
n n

A=Y ae =Y F(k).

k=0 k=0

Then, for all sufficiently large k, we have

/°° dt - i": 1 _ /°° dt
k+1 F(t)(t — 1)7 - o Ann’y - k—1 F(t)t’y ’

We now distinguish three cases.

Case 1. f(z) = €A% for every A > 0. Referring to [3, Theorem 33],
we have A,,_1 < a,, and A, ~ a,,. Now

i": 11 N 1 +/"0 dt
=AY T Ak A (B+1)7 0 g F(t)tr

Thus, using Lemma 4, we see

(oo}

1
limsupakaZA 5 <1

k—o0 n—k nTl

On the other hand,

oo

SO

liminf aipk” Z 1

k— o0

and the result follows.

Case 2. f(x) < €% for every § > 0. In this case we have, using
[3, Theorems 33 and 25|, A, ~ F(n) and a,/A, = o(1). Now, for all
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sufficiently large k,

< :
/k, ﬂF Z mF /k_l t7F(t)

Since, for large k, we have

/’c it _ 1 L1
w1 F() — (k—=1)"F(k—1)  kYAr  kYag’

and > >°  1/A,nY ~ 3 >, 1/F(n)n?, the result follows from Lemma
4.

Case 3. f(z) = eb(z), where a > 0 and €% < b(z) < € for all
d > 0.

Here, from [3, Theorem 33], A, ~ {a/(1 — e *)}F(n) and a, ~
{a/(1—e~*)}c, wherec,, = [ | f(t)dt. Soar/Ar ~ cp/F(k) ~ 1—e™®
and Ay /Akir ~ € %" as k — oo with r fixed. Now, for r fixed, we have

akkﬂ/nz:;c Anln"/ = Z—i A Ak+r k! ket F(:lft)t“/
Thus
liinsupakk i < (14 el T e,
—© n=k
and so -
lilrclis;p akm; A <1.

On the other hand, for fixed r,

T

kY —a —va
akk'YZAnv ZAk+1jakk+l/ — (1-e )Ze

v=0
so that
<1
liminf aik” >1
minfak” ) o = 1
-

and the result follows. O
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4. Proof of Theorem 1 and Corollary 1.

Case 1. lim,, o an /A, > 0. Note that o = lim,,—, 0 na, /A, = co.

Now > o lanol? = Y00 o lan/An|P = co. Hence N,e° ¢ I, where
e’ =(1,0,0,...), so that N, ¢ B(l,). For Corollary 1 a more delicate
argument is required.

Suppose first that

(5) Y exp{-p(N +1)f'(n)/f(n)} < oo,

n=0

so lim, o0 f'(2)/f(x) = co. Then, by [3, Theorem 33], f(z) = 2% for
all A >0, and A, ~ a,. Let z € [,(N) and y = Nyz. Using Holder’s
inequality we obtain

TS <Z |wk|P> ( > (an_k/Am)p/q

n=N+1 n=N+1 \k=N-+1 k=N+1
oo n—N-1 r/q
<llzllp An”< > a%)
n=N+1 k=0
~lB Y (Fn— N =1)/f(n))".
n=N+1

Since f'(t)/f(t) is eventually increasing, we have log(f(n)/f(n — N —
D) = [0 n @/ f(®)dt > (N+1)f'(n— N —1)/f(n — N — 1) for
large n, so that Y3>° . (f(n — N —1)/f(n))? < oo by comparison
with (5).

Suppose now that

(6) > exp{—p(N +1)f'(n)/f(n)} = co.

n=0
Let z = (0,0,...,0,1,0,...) with the 1 in the (N + 1)St place. Then, if
Yy = NoZ, Yn = apn+1. Since, for some ¢, we have 0 < ¢ < a, /A, <1,
it follows that

(o]

Yoo lwlP = Y (fn=N=1)/f(n))

n=N+1 n=N+1
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Since f'/f is eventually monotonic we have, for large n,

[ rwiseas
(N + ) max{ () (0), £ (= N = 1)/ f(n = N = 1)}

and Y07\ (f(n— N —1)/f(n))? = oo by comparison with (6). This
completes the proof of Corollary 1 in Case 1.

Case 2. lim,_,o an/A, = 0 and a = lim,_, . na,/A, = oco. It
follows, by Lemma 3, that lim,_, zf'(2)/f(z) = oo. Since 4,, — oo,
we have A, ~ [ f(t)dt where c is constant. From [3, Theorem 25]
we have [7 f(t)dt ~ f2/f' (since f > z® for all A > 0); therefore,
h(n) ~ A,/a, — oo with h = f/f’. Hence, from [4, Lemma 2 with
A3(z) =z and A = f], we obtain

Z ax < aph(n).
n—h(n)<k<n

Putting § = 1/p, we have

Dankk+1)0> Y ak(n+1-k) 7 = (b(n)' Can.
k=0 n—h(n)<k<n

Thus o1(n) = (1/4,)(n + 1)%a,(h(n))'~° < (na,/A,)° — co. From
[2, Theorem 4 with b = d, = 1], it follows that N, ¢ B(l,). Since
> or—n_nar < A, we have > on—h(n)y<k<n—N O < anh(n) ~ A,, and
the arguments above imply that N, ¢ B(l,(N)).

Case 3. lim,_,o, na, /A, = a with 0 < a < co. Hence, by Lemma
3, lim, ,zf'(z)/f(z) = a—1. Now, f = (z + 1) g, where
x7¢ < g <z forall e >0.

Putting 6 = 1/p and applying [3, Theorem 25] together with Lemma
2, we find
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1
o1(n) = n+ Zakn+1—

n

gégﬁ,’? (fiii) 1(1—,1_'?1)_6
aT(@)I(1/g)

T(a+1/q)

Thus, from [2, Theorem 4], || Ny||, > T'(a+ 1)I'(1/¢)T (e + 1/g). Also,
putting ¥ = 1/¢, by Lemma 2,

.k

3

k) ~ak” Y 97(;‘(;)}“) (n+1)"*¥(n+1— k!

T@)r(/g)
T(a+1/q)
Thus, from [2, Theorem 1 with b, = (n+1)/(k + 1)], (1) holds. It
follows similarly that

lim o{™ (n) = lim o§™ (k) = T(a + 1)I(1/q)/T(a + 1/q),

n— 00 k— o0

and Corollary 1 is established for 0 < a < co.

Case 4. Here, a = {a,} is any sequence of positive numbers such
that a = lim,_,o, na, /A4, =0. Let § = 1/p and 0 < 6 < 1. Now, for §
fixed,

n 8 Ay
1<) = an) >+ X | Gy

0<k<On On<k<n

and

n+1)9 Ay
(n+1) 3 (k+f)520(1) as n — 0o,

F) é
(nt ] Z (an_k <<n+1> — 07 asn— oo



72 F.P. CASS AND W. KRATZ

Consequently, 1 < liminfo;(n) < limsupoy(n) < 1/6°, and since 6
is arbitrary, we have lim,_,. 01(n) = 1. Since O{N) (n) < o1(n) and
0§N)(n) > (1/4,) Z;év_l ar — 1, we also have lim, 0§N)(n) =1.
Again, [2, Theorem 4] yields || N, ||, > || No||S") > 1. For 0 < 6 < 1
and k large enough that (n+ 1)a, /A, < 6 for all n < k, we have, with
v=1/q,

Ap—k
N>
n2k:+1A ’I’L+l nk:+1A ’I’L+l
o dt
<(k+1)"0 — =gqb
—( +) k+1tu+1 q
and
Ap—k
(k+1)” <1.
+ A (n+ 1)~

Thus limsup o2 (k) < 1448, and, since 6 is arbitrary, lim sup o5 (k) < 1.
Now [2, Theorem 1] yields (1), and Corollary 1 is established for o = 0.
O

REMARK. When lim,, o, na,/A4, = a with 0 < a < oo, then [1,
Theorem 2] shows that N, € B(l,) and the proof of [1, Theorem 2]

yields || N,||, < o1/ %03/
5. Proof of Theorem 2 and Corollary 2.

Case 1. B = lim, 0 4n/na, = 0, so that, by Lemma 3,
lim, oo zf'(z)/f(z) = 00
Now, using [3, Theorem 25] (6 = 1/p),

1
oi1(n) = n+ Zakk—i—l — 1 asn—o0

n

and J§N) (n) = 1 as n — oo. Thus, by [2, Theorem 4],

[Wallp > IWall™ > 1.
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Also, since, by Lemma 5, > >, 1/A,n” ~ 1/ayk” where v = 1/q, we
obtain limg_, o 02(k) = 1. This, together with [2, Theorems 2 and 4],
establishes Theorem 2 and Corollary 2 in the case 8 = 0.

Case 2. B =1lim, o Ap/na, with 0 < 8 < oo so that, by Lemma 3,
lim, o zf'(z)/f(z) = a — 1, where o = 1/0.

We have f = (z + 1) 'g, where ¢ < g < z€ for all € > 0. Then,
using [3, Theorem 25] and putting § = 1/p,

n f &
o1(n) = ( Zl) Zak(k—i-l)*‘s
" k=0

~a(n+1)°" Zg k)(k+1)27971L,

(i) If « < § (i.e., B > p), then > 7o g(k)(k +1)* %! < 0o so that
o1(n) — oo and [2, Theorem 4] shows W, ¢ B(l,). Also agN) (n) — oo,
so W, ¢ B(I,(N)).

(ii) Suppose a = 4, i.e., 8 = p. Then, with the notation of Lemma
L,

n 5
or() = (2D

~ ﬁ > gk)/(k+1)
> 2N gk)/(k+1)
90

~ alogln/u(m) — oo

and W, ¢ B(l,). Also W, ¢ B(l,(N)).

(iii) Suppose a > §, i.e., 8 < p. Then, from [3, Theorem 25 with
a=a— ¢ —1] and from [3, Theorem 33],

o1(n) ~ af(a—8) =p/(p - B).
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Also oa(k) = ar(k+1)”. 307, 1/An(n+1)” where v =1/q. So
a3(k) ~ g(B)k* Y n®"*/g(n) — p/(p—B) ask— oo

With [2, Theorems 2 and 4] we get Theorem 2 and Corollary 2 for the
case 0 < o < 0.

Case 3. Now suppose 8 = lim,_,o, A, /na, = co. Then, by Lemma
3, lim; oo zf'/f = p < —1. Hence, lim, ;o0 4, = s < 00 if p < —1,
and f(z) = g(z)/(x+1) withz ¢ < g <z foralle>0,if p=—1. If
A,, — s we obtain (with d=1/p),

(n + 1)° (n +1)°
= (k+1)" (k+1
a1(n) g ar(k + . kgoak +1)7% 5 oo,
and if p = —1 we also get o1(n) — oo, because, in that case,

Zak (k+1)" Zg )k+1)" < 0o

and A, = Zk:og( )/(k+ 1) < n for all € > 0. Now [2, Theorem 4]
shows that W, ¢ B(l,) and W, ¢ B(l,(IN)). This completes the proofs
of Theorem 2 and Corollary 2. O
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