ORDER CONTINUOUS BOREL LIFTINGS

DAVID C. CAROTHERS

Introduction. The lifting theorem of A. and C. Ionescu-Tulcea [3] can be stated as follows: Every bounded linear operator $T: L_{\mu}^{\infty} \to L_{\mu}^{\infty}$ has a lifting \hat{T} , taking values in M, the space of bounded μ -measurable functions. In other words, $P_{\mu} \circ \hat{T} = T$, where P_{μ} is the natural projection of M onto equivalence classes in L_{μ}^{∞} .

It is not known whether M may be replaced by the space of Borel functions in the Ionescu-Tulcea theorem. In this paper we study order continuous operators on L^{∞}_{μ} and characterize those which have an order continuous lifting \hat{T} which takes values in the Borel functions.

Let X be a compact Hausdorff space and let μ be a positive bounded Baire measure on X. C(X), or C, is the space of continuous functions on X, with first and second normal duals C' and C''. μ may be identified with a positive element of C'. C, C', and C'' are Riesz spaces, or vector lattices, and C may be embedded in C'' in a natural way.

This paper will deal with C, C', and C'' along with various subspaces which are order isomorphic with $L^1_{\mu}, L^{\infty}_{\mu}$, and the space of Borel functions. For a thorough study of C'' and definitions not included here, see [4]. For more information on Riesz spaces, see Schaefer [6] or Luxemburg-Zaanen [5].

C' may be written as the order direct sum of C'_a , the "atomic" measures (those generated by X as a subset of C') and C'_d , the "diffuse" measures (those order disjoint from C'_a). This yields a corresponding decomposition $C'' = C''_a \oplus C''_d$, where $C''_a = (C'_a^\perp)^d$. $C^u(C^l)$ consists of those elements of C'' which are infima (suprema) of subsets of C. $s(X) = C^u - C^u = C^l - C^l$ is the linear subspace generated by C^l or C^u . The σ -order closure of s(X) will be denoted by Bo. Bo is order isomorphic with its projection Bo_a onto C''_a (and thus is determined by its values on $X \subset C'$).

Received by the editors on October 8, 1986 and in revised form on April 3, 1987.

Copyright ©1990 Rocky Mountain Mathematics Consortium

The same is true for C^u , C^l , and s(X). C^u_a and C^l_a may be identified with the upper and lower semicontinuous functions on X, respectively, and $Bo \cong Bo_a$ with the space of Borel functions. Note that each element of Bo is the limit of a decreasing (increasing) net in $C^l(C^u)$ [4]. We will denote C^l and C^u by "lsc" and "usc", respectively.

The band C'_{μ} of C' generated by μ may be identified under order isomorphism with L^1_{μ} . The dual band $C''_{\mu} = (C'^{\perp}_{\mu})^d \subset C''$ may similarly be identified with L^{∞}_{μ} . Let P_{μ} denote the projection onto C''_{μ} . Bo projects onto C''_{μ} , i.e., $Bo_{\mu} = P_{\mu}(Bo) = C''_{\mu}$. (A note of caution about this identification: If μ is a diffuse measure, as Lebesgue measure on [0,1], then $(C''_{\mu})_a = \{0\}$ while $Bo_a \approx Bo$). In the following, we will replace the symbol C'_{μ} with L^1_{μ} and C''_{μ} with L^{∞}_{μ} .

C'', as a Dedekind complete AM space with unit, is isometric and order isomorphic to C(Y) for some hyperstonean space Y. L_{μ}^{∞} as a band of C'', is isometric and order isomorphic to $C(Y_{\mu})$ for a closed and open set $Y_{\mu} \subset Y$.

If **1** represents the constant one function on X and its image, the unit element of C'', then $e \in C''_+$ is a component of **1**, or simply a component, if $e \wedge (1-e) = 0$. The set of all components will be denoted by \mathcal{E} . $\mathbf{1}_{\mu}$, the projection of **1** on L^{∞}_{μ} , which also corresponds to the constant one function on Y_{μ} , is a component in C''.

For Riesz spaces E and F, $L^r(E,F)$ consists of all order bounded linear operators which are the difference of two positive operators (operators which map E_+ to F_+). $T \in L^r(E,F)$ is order continuous if $Tz_{\alpha} \to 0$ for $z_{\alpha} \to 0$ (order convergence). We designate the set of order continuous operators by $L^c(E,F)$. If F is Dedekind complete, e.g., C', C'', or L^{∞}_{μ} , then $L^r(E,F)$ is a Dedekind complete Riesz space, and $L^c(E,F)$ is a band of $L^r(E,F)$.

Let $C_{\mu} = P_{\mu}(C)$. We will depart somewhat from the above convention and use the symbol $L^{r}(C_{\mu}, C)$ to denote all differences of positive operators in $L^{c}(L_{\mu}^{\infty}, C'')$ which map C_{μ} to C.

2. The band generated by $\mathbf{L^r}(\mathbf{C}_{\mu}, \mathbf{C})$. For $T \in L^c(L_{\mu}^{\infty}, C'')$, define

$$||T||_{\mu} = \langle \mu, |T|\mathbf{1}_{\mu} \rangle.$$

The following is a corollary to 2.1 of [2]. (See also [1, Theorem 15.10].)

THEOREM 2.1. Given $T \in L^c(L_{\mu}^{\infty}, C'')$ satisfying $0 \leq T \leq S \in L^r(C_{\mu}, C)$ and $\epsilon > 0$, there is an operator $T_1 \in L^r(C_{\mu}, C)$ with $0 \leq T_1 \leq S$ and $||T_1 - T||_{\mu} < \epsilon$.

PROOF. Apply (the proof of) [2,2.1] to the operator $T \circ P_{\mu} \in L^{c}(C'',C'')$ to find $\tilde{T}_{1} \in L^{r}(C,C)$ with $0 \leq \tilde{T}_{1} \leq S \circ P_{\mu}$. Let T_{1} be the restriction of \tilde{T}_{1} to L_{μ}^{∞} . Since $P_{\mu}f = 0$ for every $f \in C''$ disjoint from L_{μ}^{∞} , it follows that $\tilde{T}_{1}(f_{\mu}) = \tilde{T}_{1}f$ for all $f \in C''$. Thus T_{1} maps C_{μ} to C.

COROLLARY 2.2. Given $0 \leq T \leq S \in L^r(C_{\mu}, C)$ and $\epsilon > 0$, there is a $T_2 \in L^c(L_{\mu}^{\infty}, C'')$ which maps $C_{\mu+}$ to usc satisfying $0 \leq T_2 \leq S, ||T_2 - T||_{\mu} < \epsilon$ and $||T_2|| \leq 2||T||$.

PROOF. Find T_1 as in 2.1. Let

$$E = \{x \in X; ||T_1^t x|| \le 2||T||\}.$$

E is closed in X, and thus determines an element $e \in \mathcal{E} \cap \text{usc } [4]$. Define $T_2 = eT_1$. T_2 maps $C_{\mu+}$ to usc, and, since $||T_2|| = \sup_X \langle |T_2^t x|, 1_{\mu} \rangle = \sup_X ||T_2^t x||$, we have $||T_2|| \le 2||T||$. Also,

$$\begin{split} \langle \mu, | T_2 - T | \mathbf{1}_{\mu} \rangle &= \langle \mu, | T_1 - T | \mathbf{1}_{\mu} \rangle \\ &= \langle \mu, | e T_1 - (e T + (1 - e) T) \mathbf{1}_{\mu} \rangle \\ &= \langle \mu, e | T_1 - T | \mathbf{1}_{\mu} \rangle + \langle \mu, (\mathbf{1} - e) T \mathbf{1}_{\mu} \rangle. \end{split}$$

Since

$$(1-e)T\mathbf{1}_{\mu} \le (\mathbf{1}-e)||T|| \le (\mathbf{1}-e)T_1\mathbf{1}_{\mu} - (\mathbf{1}-e)T\mathbf{1}_{\mu},$$

by definition of e, we conclude

$$\begin{split} \langle \mu, |T_2 - T|1_\mu \rangle &= \langle \mu, e|T_1 - T|1_\mu \rangle + \langle \mu, (1-e)T1_\mu \rangle \\ &\leq \langle \mu, e|T_1 - T|1_\mu \rangle + \langle \mu, (1-e)(T_11_\mu - T1_\mu) \rangle \\ &\leq \langle \mu, e|T_1 - T|1_\mu \rangle + \langle \mu, (1-e)|T_1 - T|1_\mu \rangle \\ &= \langle \mu, |T_1 - T|1_\mu \rangle < \epsilon. \end{split}$$

PROPOSITION 2.3. Given $T \in L^c(L_\mu^\infty, C'')$ with $0 \leq T \leq S \in L^r(C_\mu, C)$, then $T_\mu = \lim T_\mu^n$ for a sequence $\{T^n\}$ of operators in $L^c(L_\mu^\infty, C'')$ which map $C_{\mu+}$ to usc. We may choose $\{T^n\}$ satisfying $||T^n|| \leq 2||T||$.

PROOF. Apply 2.2 to find a sequence $\{T^n\}$, each of which maps $C_{\mu+}$ to usc, $0 \le T^n \le S$, and $||T^n|| \le 2||T||$, such that

$$\langle \mu, |T^n - T|1_{\mu} \rangle \le (1/2)^n.$$

The remainder of the proof is identical to the proof of 2.4 in [2].

THEOREM 2.4. If $T \in L^c(L_{\mu}^{\infty}, C'')$ is in the band generated by $L^r(C_{\mu}, C)$, there is an operator $\hat{T} \in L^c(L_{\mu}^{\infty}, C'')$ which satisfies $\hat{T}_{\mu} = T_{\mu}, ||\hat{T}|| \leq 2||T||$, and which takes values in Bo.

PROOF. First assume that $0 \le T \le S \in L^r(C_\mu, C)$. Choose a sequence $\{T^n\}$ as in 2.3, and let

$$\hat{T} = \liminf_{n} T^n = \vee_j \wedge_{k > j} T^k \le S.$$

Note that, for each $j, \ \wedge_{k\geq j} T^k$ maps C_μ to usc. Since $\wedge_{k\geq j} T^k$ is increasing in $j, \hat{T}f$ is the supremum of a sequence of elements in usc for $f\in C_\mu$. Thus $\hat{T}f\in Bo$. Since \hat{T} is order continuous and every $g\in L^\infty_\mu$ is the limit of a sequence in C_μ [4, 41.2], we conclude that $\hat{T}g\in Bo$, for Bo is σ -closed. Also,

$$|| \wedge_{k \ge j} T^k || \le 2||T||$$

implies that

$$||\hat{T}1_{\mu}|| = ||\hat{T}|| \le 2||T||.$$

The above demonstrates the theorem for T in the ideal generated by $L^r(C_{\mu}, C)$. Suppose that T is in the band generated by $L^r(C_{\mu}, C)$, and $T \geq 0$. There is an increasing net $\{T_{\alpha}\}$ such that $T_{\alpha} \uparrow T$, where each T_{α} is in the ideal generated by $L^r(C_{\mu}, C)$. We may find a subsequence of $\{T_{\alpha}\mathbf{1}_{\mu}\}$, which we denote by $\{T^n\mathbf{1}_{\mu}\}$, such that $(T^n\mathbf{1}_{\mu})_{\mu} \uparrow (T\mathbf{1}_{\mu})_{\mu}$.

It follows that $T_{\mu}^{n} \uparrow T_{\mu}$. For simplicity, we assume $T^{n} \uparrow T$, as we are concerned only with T_{μ} . Since

$$\langle \mu, (T-T^n)\mathbf{1}_{\mu} \rangle \downarrow 0,$$

we may assume, by taking a subsequence if necessary, that

$$\langle \mu, (T-T^n)\mathbf{1}_{\mu} \rangle \leq (1/2)^n.$$

The T^n are in the ideal generated by $L^r(C_\mu,C)$. Thus, there is, for each T^n , an increasing sequence $\{T^{m,n}\}$ of operators which map $C_{\mu+}$ to use such that $||T^{m,n}|| \leq 2||T^n|| \leq 2||T||$ and $T^{m,n}_\mu \uparrow T^n_\mu$. By again taking subsequences if necessary, we may assume

$$\langle \mu, | T^n - T^{m,n} | \mathbf{1}_{\mu} \rangle \le (1/2)^m.$$

We define $S^k = \wedge_{i,j \geq k} T^{i,j}$. S^k maps $C_{\mu+}$ to usc, $||S^k|| \leq 2||T||$, and $S^k_{\mu} \leq T_{\mu}$.

The above implies:

$$\begin{split} \langle \mu, | T - S^k | \mathbf{1}_{\mu} \rangle &= \langle \mu, | T_{\mu} - S^k_{\mu} | \mathbf{1}_{\mu} \rangle \\ &\leq \langle \mu, \vee_{i,j \geq k} | T_{\mu} - T^{i,j}_{\mu} | \mathbf{1}_{\mu} \rangle \\ &= \langle \mu, \vee_{j \geq k} | T_{\mu} - T^{k,j}_{\mu} | \mathbf{1}_{\mu} \rangle \\ &= \langle \mu, \vee_{q} \vee_{j=k}^{q} | T_{\mu} - T^{k,j}_{\mu} | \mathbf{1}_{\mu} \rangle \\ &= \vee_{q} \langle \mu, \vee_{j=k}^{q} | T_{\mu} - T^{k,j}_{\mu} | \mathbf{1}_{\mu} \rangle \\ &\leq \vee_{q} \sum_{j=k}^{q} \langle \mu, | T_{\mu} - T^{k,j}_{\mu} | \mathbf{1}_{\mu} \rangle \\ &= \vee_{q} \sum_{j=k}^{q} \langle \mu, | T_{\mu} - T^{j}_{\mu} | \mathbf{1}_{\mu} + | T^{j}_{\mu} - T^{k,j}_{\mu} | \mathbf{1}_{\mu} \rangle \\ &\leq 2(1/2)^{k-1} = (1/2)^{k-2}. \end{split}$$

Thus

$$\wedge_k \langle \mu, | T - S^k | \mathbf{1}_{\mu} \rangle = 0$$

and $S_{\mu}^{k} \uparrow T_{\mu}$. Since the S^{k} are increasing and $||S^{k}|| \leq 2||T||, \forall_{k}S^{k} = \hat{T}$ exists and the above implies $\hat{T}_{\mu} = T_{\mu}$. $\hat{T}f$, as in the first part of the proof, is an element of Bo for each $f \in L_{\mu}^{\infty}$.

3. Borel liftings for $\mathbf{L^c}(\mathbf{L}_{\mu}^{\infty}, \mathbf{L}_{\mu}^{\infty})$.

THEOREM 3.1. If $T \in L^c(L_{\mu}^{\infty}, C'')$ takes values in Bo, then T is in the band generated by the finite dimensional operators in $L^c(L_{\mu}^{\infty}, C'')$.

PROOF. By IV.9.7 in [6], it suffices to show that, for each $\nu \in C'$, there is a kernel K on $Y_{\mu} \times Y$ such that, for each $f \in L^{\infty}_{\mu}$,

$$\langle y, Tf \rangle = \int K(z, y) f(z) d\mu(z)$$

holds a.e. (ν) on Y.

As T is order continuous, T is determined by $T^t:C'\to L^1_\mu$. For each $x\in X, T^tx\in L^1_\mu$ may be Radon-Nikodym represented as $g_x\mu$.

The natural inclusion $I: C \to C''$ is a Riesz homomorphism determined by the mapping $I^t: Y \to X, If(y) = f(I^t y)$.

Determine $K(z, y) = g_x(z)$ where $x = I^t y$. Thus

$$\langle y, Tf \rangle = \int K(y, z) f(z) d\mu(z)$$

holds for each $y \in Y$ which may be identified with an element of X.

Let $\nu \in C'$ be a diffuse measure and $f \in L^{\infty}_{\mu}$. $Tf \in Bo$ implies that we may find $\{g_{\alpha}\} \subset \text{lsc}$ and $\{h_{\alpha}\} \subset \text{usc}$ with $g_{\alpha} \downarrow Tf$ and $h_{\alpha} \uparrow Tf$. For $\epsilon > 0$ let

$$E_{\epsilon} = \{ y \in Y; |Tf(y) - Tf(i^{t}y)| \ge \epsilon \}.$$

Since each $g_{\alpha} \in \text{usc can be represented as the infimum of a decreasing net in } C$, we conclude $g_{\alpha}(y) \leq g_{\alpha}(I^{t}y)$. Similarly, $h_{\alpha}(y) \geq h_{\alpha}(I^{t}y)$. Thus

$$g_{\alpha}(y) \geq Tf(i^t y) \geq h_{\alpha}(y)$$

and

$$0 \le \nu(E_{\epsilon}) \le (1/\epsilon) \langle \nu, g_{\alpha} - h_{\alpha} \rangle \downarrow 0.$$

We conclude that the representation holds ν almost everywhere.

We combine 3.1 and 2.4 to conclude.

THEOREM 3.2. $T \in L^c(L_{\mu}^{\infty}, L_{\mu}^{\infty})$ has an order continuous lifting $\hat{T} \in L^c(L_{\mu}^{\infty}, C'')$ taking values in Bo if and only if T is in the band generated by the finite dimensional operators in $L^c(L_{\mu}^{\infty}, L_{\mu}^{\infty})$.

PROOF. We need only show that the band generated by finite dimensional operators in $L^c(L_\mu^\infty, C'')$ is contained in $L^r(C_\mu, C)$. If T is defined by

$$Tf = \sum_{1}^{n} \langle \mu_i, f \rangle g_i,$$

choose $h_i \in C$ satisfying $h_i \ge |g_i|$ so that

$$|T| \leq \sum \langle |\mu_i|, \cdot \rangle h_i \in L^r(C_\mu, C).$$

In particular, this band includes the weakly compact operators [6, IV.9.9].

COROLLARY 3.3. Every $T \in L^c(L^\infty_\mu, L^\infty_\mu)$ which is weakly compact has an order continuous Borel lifting.

REFERENCES

- ${\bf 1.}\,$ C.D. Aliprantis and O. Burkinshaw, $Positive\ Operators,$ Academic Press, New York, 1985.
- 2. D. Carothers, Closure properties of order continuous operators, Real Anal. Exchange 11 (1986), 179–193.
- 3. A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the Theory of Lifting, Springer, Berlin-Heidelberg-New York, 1969.
- 4. S. Kaplan, The Bidual of C(X) I, Elsevier Science Publishers, Amsterdam, 1985
- 5. W.A.J. Luxemburg and A.C. Zaanen, Riesz Spaces I, North Holland, Amsterdam, 1971.
- 6. H.H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York-Heidelberg-Berlin, 1974.

Department of Mathematics, Hope College, Holland, MI 49423