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APPROXIMATION BY SEMI-FREDHOLM OPERATORS
WITH FIXED NULLITY

RICHARD BOULDIN

1. Introduction. Let H be a fixed complex separable Hilbert space.
For any (bounded linear) operator T on H, we define the nullity and
deficiency, denoted nul 7" and defT’, to be the dimensions of the kernels
of T' and T™, respectively. Of course, the index of 7', denoted ind T,
is defined to be (nulT — defT'), with oo — oo understood to be 0. We
denote the operator norm of T by ||T|| and the spectrum by o(T).

In [2] the distance from an arbitrary operator T to the set of invertible
operators (and to the Fredholm operators) was determined. This
provided a refinement of the classical result in [5] that describes the
closure of the invertible operators. Subsequently Theorem 12.2 in [1]
elaborated on [2] by showing that the formula given there was actually
the distance from an arbitrary operator 7" to each set of semi-Fredholm
operators with an index different from that of 7'. [1] went on to show
that the preceding theorem plays a significant role in similarity theory.

In [7] the original methods of [2] are used to modify Theorem 12.2 to
obtain the distance from 7" to the right invertible operators with a fixed
nullity. All of the preceding results and some new methods were used
in [3] to find the distance from 7" to the (unrestricted) set of operators
with a fixed nullity; the formula obtained in [3] is a striking contrast to
previously obtained formulas. In this note we determine the distance
from T to a natural set which contains the right invertible operators
with nullity equal to n and is contained in the set of operators with
nullity equal to n. The results have some resemblance to those in [3]
and some to those in [7].

2. Preliminaries. This section contains results that will be used
frequently in the subsequent section. These results will be used some-
times without citation.
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Recall that the minimum modulus of the operator T', denoted m(T),
is defined by
m(T) = inf{||Tf]| : [|f|| = 1}-
For the sake of completeness we state the following well-known theorem;
a proof can be found in [2].

THEOREM 1. (i) m(T) = inf{\: X € o((T*T)"/?)}.
ii) There exists an operator B such that BT = I if and only if
m(T") > 0. In that case, B can be chosen such that m(T) = 1/||B||.

(
(iii) There ezxists an operator A such that TA = I if and only if
m(T*) > 0. In that case, A can be chosen such that m(T*) = 1/||A]|.

(iv) The operator T is invertible if and only if m(T) and m(T*) are
both positive. In that case, m(T) = m(T™*).

Recall that the reduced minimum modulus of 7', denoted ~(7), is
defined by
V(1) = f{[|Tf]| - [fIl = L, f L ker T}

The next theorem is mostly well known; a nice treatment can be found
in [4, pp. 364-365].

THEOREM 2. (i) v(T") > 0 if and only if the range of T, denoted TH,
1s closed.

(i) Y(T) = ~(T").

(iii) If T and A are both operators on H and ||T — A|| < v(T), then
nul A <nulT and def A < defT.

The essential spectrum of an operator T', denoted o (T'), is the set
{#z : T — zI is not a Fredholm operator}. We define the essential
minimum modulus m.(T) by

me(T) = inf{\: X € o ((T*T)*/?)}.

The next theorem is a folklore result which is proved in [6].

THEOREM 3. Let T and A be operators such that ||T — A|| < m.(T).
Then
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(i) A has finite nullity and closed range if and only if T does,
(ii) A is Fredholm if and only if T is, and
(i) ind A = ind T

The following enumeration of the properties of m.(T) was given in
[2]. We shall use most of these.

THEOREM 4. (i) If E(-) is the spectral measure for R = (T*T)'/?,
then the smallest nonnegative number a such that E([a,a + 6))H is
infinite dimensional for every positive § is & = me(T).

(ii) The range TH is closed and nul T is finite if and only if me(T') >
0.

(iii) The range T*H 1is closed and defT is finite if and only if
me(T*) > 0.

(iv) The operator T is Fredholm if and only if m¢(T) and m.(T*) are
positive. In that case, me(T) = m(T™).

We shall also use the next theorem which is proved in [7, Theorem
3.1] for positive n. The case n = 0 is dealt with in [2].

THEOREM 5. Let n represent either a nonnegative integer or co.
inf{||T — A|| : m(A*) > 0,nul A = n}
B { max{me(T), me(T*) }if ind T # n,
0 otherwise.

3. Distance to the right semi-Fredholm operators. The
notation that we are about to define will help us to avoid burdensome
repetitions of various conditions.

DEFINITION. Let n denote some nonnegative integer or co and define
®,, ¥,, and P, by
@, ={A: m(A") > 0,nul A = n},
U, ={A:m.(A") > 0,nul A = n},
P,={A:nul A =n}.
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Define 9, (T), ¢»(T), and p,(T) as follows:

én(T) = inf{||T — A|| : A€ ®,},
Un(T) = inf{||T— A|| : A € T},
pn(T) = inf{||T — A|| : A € P,,}.

The set ®,, consists of the “right invertible” operators with nullity n
and ¥, consists of the “right semi-Fredholm” operators with nullity n.

LEMMA 6. ¢, (1) > Y (T) > pn(T).

PROOF. The inequalities follow from the containments

o, Ccv, CP,. O

The inequalities in the preceding lemma and the simplifications in
the next lemma will be used repeatedly.

LEMMA 7. (i) If nulT < oo or defT = oo, then m.(T) =
max{me(T), me(T*)}.

(ii) If nul T = oo ordef T < oo, then me(T*) = max{me(T), m.(T™*)}.

PROOF. If defT' = oo, then m.(T*) = 0 and the conclusion of (i) is
obvious from part (iii) of Theorem 4. Assume nul7 < oco. If TH is
closed, then m.(T") > 0 according to part (ii) of Theorem 4 and the
desired conclusion follows from part (iv) of Theorem 4. If TH is not
closed, then T H is not closed according to Theorem 2 and both m.(T)
and m(T*) are 0. The conclusion of (i) follows.

To prove part (ii) apply part (i) to T*. O

The next theorem is our first main result. The distance formulas
given here resemble formulas in [2] and [7].
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THEOREM 8. Assume n < nulT.

(i) If TH is not closed then ¢, (T") = 0.
(ii) If n > ind T > —oo then ¢, (T) = 0.
(iii) Ifn <ind T then ¥, (T) = m.(T*).
(iv) If indT = —oo then ¥, (T) = me(T).

PROOF. (i). Since T'H is not closed, T*H is not closed according to
Theorem 2 and
0 = max{m.(T), me(T™)}

according to parts (ii) and (iii) of Theorem 4. According to Theorem
5 we have ¢,,(T) = 0, and Lemma 6 implies that ¢,,(T) = 0 as desired.

(ii). First we handle the case that n = co and defT’ < co. In view
of part (i) we may assume that T'H is closed; thus, T*H is closed and
T € U, for n = co. Clearly 9,(T) = 0 and we are done. In the
remaining cases either n < oo or else each of the quantities n,nulT
and defT is co. In this last case max{me(T"),m.(T*)} = 0 and the
desired conclusion follows from Theorem 5 and Lemma 6. Henceforth,
we assume that n is finite and we note that def T > nulT — n. Let
{e1,e2,...} be an orthonormal basis for ker T and note that this basis
could be finite or infinite. Let {f1, f2,...} be an orthonormal basis for
ker T* and note that it is infinite if the basis for ker T is infinite. Define
Ak by

Akej :0,j:1,2,...,n, Aken+j :(1/k)fja.7:17277

Ay |(ker T)J‘ = T|(ker T)J‘.

Theorem 2 shows that AxH is closed if and only if T'H is closed. In
view of part (i), which is already proved, we may assume that TH
is closed. Thus, AiH is closed. The inequality ind T > —oo implies
that either defT is finite or else nul7 = oo = defT. In either case
our construction results in def Ay, < oo. It is routine to verify that
nul A, =n and ||T — Ag|| = 1/k. It follows that A belongs to ¥, and

YulT) < inf T — A4 = 0.

This proves (ii).
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(iii). Theorem 5 and Lemma 6 imply that
max{me (1), me(I")} > ¢u(T) > o (T).
Since ind A < nul A, part (iii) of Theorem 3 implies that
¥n(T) = max{me(T), me(17)},
and so we have
$a(T) = max{me(T), mo(T*)}.

The inequalities
0<n<indT

imply that nul7 > defT’; in particular, defT is finite. Now Lemma 7
implies that

max{me(T), me(T*)} = me(T"),
and the proof of (iii) is complete.

(iv). The equation ind T = —oco implies that nul 7" and n are finite.
By Lemma 7 we have

max{me(T), me(T*)} = m(T).

Since any operator in ¥,, is Fredholm, it has finite index. Part (iii) of
Theorem 3 implies that

IT = All > max{me(T), m.(T*)},

and so ¥, (1) > max{m.(T), m.(T™)}. Theorem 5 and Lemma 6 imply
that
max{me(T),me(T*)} = ¢n(T) = ¢n(T),

and so
U (T) = max{me(T), m(T*)} = m(T).

This completes the proof. O

The preceding theorem, which computed the distance from 7" to each
set of right semi-Fredholm operators with a fixed n, can be used to
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obtain the distance to the set of all right semi-Fredholm operators with
nullities not exceeding nul 7T'.

THEOREM 9.
inf{||T — Al : A€ ¥,,n <nulT}
{me(T), if indT = —o0,

0, otherwise.

PROOF. If TH is not closed, then v, (T) = 0 according to part
(i) of Theorem 8. Henceforth, we assume that TH is closed. Since
ind7T < nulT we can take n = nulT and

nul7T >n > indT.

According to part (ii) of Theorem 8, 1,,(T") = 0 unless ind T = —oo.
Thus, the only situation where we cannot choose n to get ¥, (T) = 0 is
when TH is closed and ind 7' = —oco. In that case part (iv) of Theorem
8 implies that ¢,,(T) = m¢(T) for all n. O

The next theorem produces a formula that resembles one in [3]. The
proof requires the elaboration of an argument found in [3] as well as
some new arguments.

THEOREM 10. Assume n > nulT.
(i) If TH is not closed then v, (T) = 0.
(ii) If def T = oo then ¥, (T) = me(T).
(iii) If defT < co and TH is closed, then
Y (T) = sup{\ : dimE ([0, \))H < n},

where E(+) is the spectral measure for (T*T)'/2.

PROOF (i). This proof is the same as the proof of part (i) of Theorem
8.
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PROOF (ii). The inequality » > nul7 implies that nul7 is finite.
Lemma 7 implies that

me(T) = max{m.(T), m.(T*)}.

Since n > nulT > ind 7T, Theorem 5 implies that ¢,(T) = m.(T)
and Lemma 6 shows that me(T") > v, (T"). If TH is not closed, then
m(T) = 0 and the proof is complete. Henceforth, we assume that TH
is closed. According to Theorem 3 the inequality ||T — A|| < m(T)
implies that AH is closed, nul A < co and ind A = indT". Thus, A € ¥,,
and ||T — A|| < me(T') imply that A is Fredholm and

indA=indT = —cc.
This contradiction proves that
”T - AH > me(T) and wn(T) > me(T)'

This completes the proof of (ii)

(iii). Since TH is closed and nulT < oo, we know that m.(T") and
~(T) are positive.

If UR is the usual polar factorization for T, then ker ' = ker R and
E(-) is the spectral measure for R. Choose A € ¥,, and A > 0 such that
dim E([0, A))H < n; let P denote the projection E([0, A)). Note that

|7 — All = |[(T" — A)| ker A
= ||T| ker A||
= ||R| ker A||
> ||( — P)R| ker A
= ||R(I — P)|ker A||
= ||R|(I — P)ker A||
> A

provided that (I—P) ker A is nontrivial since (I—P)ker A C (I-P)H =
E([A\, 00))H. Clearly

nul (I — P) =dim PH < n =nul 4,
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and thus (I — P)ker A must be nontrivial. From the first displayed
inequality it follows that

Un(T) 2 A and ¥ (T) 2 4,
where £ is sup{\ : dimE ([0, \))H < n}.
Now we prove the inequality
Pn(T) < -
From the usual properties of the spectral measure it follows that
dimE([0, x4+ 1/k))H > n > dim E([0, u)) H.

First we deal with the case that n is a nonnegative integer. Choose
G(k) = {gik),gék), . ,gl((klz)} to be an orthonormal set from E ((u, 1 +
1/k))H such that M}, = closed span (E ([0, x]) H UG(k)) has dimension
n. Let P, be the orthogonal projection onto M} and note that
IT(I — Py)f|| = |[R(I — Pg)f|| is zero if and only if f belongs to
PkH = Mk. ThU.S,

nul T(I — Py) = dim My, = n.

Let Ay be T(I — Py) and note that ||T — Ag|| = |[TFPk|| = ||RPx|| <
p+1/k. Since E ([u+ 1/k,00)) < I — Py it follows that A H is closed,
and it suffices to show that defA, < oo. Observe that defA, =
nul A} = nul (I — Py,)T™* and ker(I — Py)T™* is the set theoretic inverse
of PoH = Mj under T*. Because nul T* = def T and dim M} = n are
both finite, we see that

def Ay, = nul(I - Pk)T* < Q.
Thus, A belongs to ¥y and
Yu(T) < inf T = 44| < .
Now we consider the case n = co. Note that dimE ([0, 4 + 1/k))H =

oo > dimE ([0, p — 1/k))H for all positive integers k sufficiently large
that g — 1/k > 0. Define A;, by

Ay = (1/R)UVE ([u = 1/k, p + 1/k)) + TE ([ + 1/, 00)),
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where V' is the adjoint of a unilateral shift with infinite multiplicity
defined on E ([ — 1/k,u + 1/k))H. Since ker A;, contains ker V, we
know that nul A = oo. It is routine to verify that

T'— Ay =TE([0,n+1/k)) — (1/K)UVE ([u — 1/k, p + 1/k)),
and it follows that

|T — Ag|l < ITE ([0, p + 1/K))|| + 1/k
<u+2/k.

Now it suffices to show that defAr < oo. Note that AxH con-
tains UE([p — 1/k,pu + 1/k))H and URE([p + 1/k,00))H = UE([n +
1/k,0))H. Thus,

ArH D UE ([p — 1/k,00))H,

and, because U is isometric on RH = E((0,00))H and ker T* = ker R =
E({0})H, we see that

def Ay < dim E({0})H + dim E((0, o — 1/k))H
=dimE([0,u — 1/k))H

< o0.
We may conclude that

Yoo(T) < 0 | = A4]| < .

This completes the proof. O

Of course the preceding theorem allows us to determine the distance
from T to the set of right semi-Fredholm operators with nullities
exceeding nul 7. In [3] it was proved that

me(T) > sup{\ : dimE ([0, \))H < n} > (7).

These inequalities exhibit the least upper bound and the greatest lower
bound for the supremum appearing in part (iii) of Theorem 10 and in
the next theorem.



APPROXIMATION 49

THEOREM 11.
inf{||T— A|]|: A€ T,,n>nuT}
me(T), if defT' = o0,
= ¢ sup{A: dimE([0,\))H < 1+nulT}, if m.(T*) >0,

0, otherwise.

PROOF. If defT' = oo, then ¢, (T) = m.(T) for all n according to
part (ii) of Theorem 10. Henceforth, we assume defT < co. If TH
is closed, then part (iii) of Theorem 10 implies the second part of the
above formula. In the only remaining case T'H is not closed, and the
formula follows from part (i) of Theorem 10. O

Using Theorems 9 and 11 it is possible to describe the distance from
T to the right semi-Fredholm operators. Theorems 12 and 13 can also
be deduced from Theorem 12.2 of [1].

THEOREM 12.
inf{||T" — A|| : AH is closed,def A < 0}
{ me(T), if defT = oo,

0, otherwise.

PROOF. Note that
{A: AH is closed,def A < 00} = U{¥,, : n = 00,0,1,...}. o

4. Distance to the left semi-Fredholm operators. Each of the
theorems in the preceding section can be restated to give a conclusion
about left semi-Fredholm operators by taking adjoints throughout. We
shall only restate Theorem 12.

THEOREM 13.
inf{||T — A|| : AH is closed,nul A < oo}
{ me(T*), if nulT = oo,

0, otherwise.
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It follows from Theorems 12 and 13 that any operator 7" has 0 distance
to either the right semi-Fredholm operators or the left semi-Fredholm
operators. Thus, the closure of the union of these two sets consists of
all operators.

The author is grateful to the referee for several helpful suggestions.
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