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Dedicated to the memory of Geoffrey Butler.

Introduction. A gradostat is a laboratory device in which one can
study the growth of microorganisms in a nutrient gradient. As con-
structed by Lovitt and Wimpenny [7, 8, 16], a gradostat is a concate-
nation of several chemostats in which adjacent vessels are connected by
tubes allowing pumps to exchange the material contents of each vessel.
A mathematical model of the growth of a single species of microor-
ganism in an n-vessel gradostat based on Michaelis-Menten growth re-
sponse was studied by Tang in [15]. A model of competition between
two different species in a two-vessel gradostat was studied by Jager,
So, Tang and Waltman in [5]. A similar model was studied by the
author together with Tang in [12]. Models of competition between two
species of microorganisms in a gradostat-like device have been studied
by Stephanopoulos and Fredrickson [13] and Kung and Baltzis [6] in
the bioengineering literature.

Actually, the term gradostat does not refer to a single well-defined
apparatus, but to a whole family of configurations of interconnected,
well-stirred vessels in which one can study the growth of microorgan-
isms. We refer the reader to [16] for a general discussion of gradostat
devices. See, in particular, Figures 1 and 10 describing different possi-
ble configurations.

The aim of the present paper is to study the growth of a single
species of microorganism in the presence of one limiting substrate or two
limiting complementary substrates in a very general gradostat where
we allow essentially arbitrary connections between vessels, outside feed
reservoirs of a limiting nutrient, and receiving vessels. In addition,
we allow operating parameters, e.g., flow rates, input limiting nutrient
concentration, to be time varying in a periodic way. Allowing periodic
operating parameters is not merely a mathematical exercise. Long
period variations of operating parameters can simulate noise, inevitably
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present in the system, e.g., pump operation. Periodicities can also be
viewed as simulating the temporal inhomogeneities in nature such as
day/night and summer/winter cycles. Thus, by periodically varying the
operating parameters in a gradostat, one can simulate the full range of
spatial and temporal inhomogeneities found in natural environments.
Obviously, constant values of the operating parameters are a special
case.

Basically, we find that single species growth in all periodic gradostats
can be very simply described by a threshold criteria. If the threshold is
not exceeded, then extinction of the species from the gradostat results.
If the threshold is exceeded, then there is a unique positive periodically
varying population level which is approached regardless of nontrivial
initial nutrient and population size. This result depends essentially on
the monotonicity and concavity of the microorganism’s growth response
function. Our result generalizes earlier work of Tang [15]. The present
study is a prelude to the consideration of competition between two
microbial species for a limiting nutrient in general gradostats.

In this section we consider only the case of a single limiting substrate.
Consider a gradostat consisting of n well-stirred vessels in which mi-
crobial growth is to take place, together with as many as n separate
reservoirs containing growth medium and all nutrients necessary for
growth supplied in excess except for a single nutrient which may or
may not be present. It is assumed that this nutrient (the same one
for all reservoirs), if present in a reservoir, is present in a growth lim-
iting concentration which may vary with time in a periodic manner.
A receiving vessel which collects runoff from any subcollection of the
vessels is also present. The vessels, reservoirs and receiving vessels are
connected in a manner to be described such that material can be ex-
changed via pumps which pump the material from one vessel to another
at either a constant rate or a periodically varying rate. The manner
of connection and the pump rates are to be selected such that each
of the n vessels in which growth is to take place maintain constant
volume. Consider the i-th vessel. It can exchange material with any
subcollection of the vessels, it can receive medium and (possibly) the
essential limiting nutrient from a reservoir, and it can have a runoff
to a receiving vessel. It is required that the sum of the volume flow
rates into the vessel from other vessels or reservoirs at each instant be
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balanced by the volume flow rate out of the vessel to other vessels or
receiving vessels.

Let S;(t) be the concentration of the substrate in the i-th vessel. Let
E;;(t) be the (volumetric) flow rate at time ¢ from vessel j to vessel
i, 1 # j, and set E;(t) =0, 1 < i < n. Let V; be the volume of the
i-th vessel, D;(t) be the flow rate at time ¢ from a reservoir to vessel ¢
(put D; = 0 if there is no such reservoir) and C;(t) be the flow rate at
time ¢ from vessel ¢ to a receiving vessel (put C; = 0 if there is no such
receiving vessel). Finally, let S?(¢) be the concentration of substrate
at time t in the reservoir feeding into vessel i. Then the equation
describing the change of S = (S1,S2,...,S,) at time ¢ is given by

diag[Vi]S" = A(t)S + f(t),

in which diag[V;] is the n X n diagonal matrix with Vi,...,V,, down
the diagonal and

A(0) = (0 ~ diagley (0] - diag > B (1)

F(t) = (D1()S1(t), -+, Du(t)Sp(t)).

In order to insure that V; is constant, which is implicit in the above
system, we require that, for each 7 and all ¢,

D Ei;(t) + Di(t) =Y Eult) + Ci(t).
J l

After multiplying through the system by diag[V;™'] and renaming
variables in a, hopefully, obvious way, we obtain the system

(0.1) S'(t) = A(t)S(t) + S°(t)
in which A(#) is a continuous, T-periodic matrix satisfying
Az](t)zoa ’L#]a

Z Ai;(t) <0,
j=1
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for each ¢, and S°(¢) is a continuous, T-periodic function satisfying

Sty >0, S°#o.

We assume that, for each ¢, the matrix A(t) is irreducible (see [1] for
a definition) which means that, at each instant, the n vessels cannot
be partitioned into two disjoint proper subsets, one of which has the
property that none of it’s vessels receives input from any vessel in the
second subset.

Let u(t) = (u1(t),... ,un(t)) be the vector whose i-th component rep-
resents the concentration of microbial species U in the i-th vessel. It is
assumed that the growth rate of U at limiting nutrient concentration S
(temporarily viewed as a scalar) is given by a function f, (.S) satisfying

ful
u(
ful
fu(
The consumption rate of nutrient by the microorganism is assumed

proportional to f,. A typical f, is the Michaelis-Menten-Monod
response function
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where m,, is the maximum growth rate and a, is the nutrient concen-
tration at which f, is half its maximum.

Following a familiar scaling out of the proportionality constant be-
tween growth rate and consumption rate we obtain the system of dif-
ferential equations describing the rate of change of (S(¢), u(¢))

S = A(t)S — F(S)u+ S°(t)

(0:3) u = A(t)u+ F(S)u,

in which F(S) is the diagonal matrix with
F(S)ii = fu(S:)-

System (0.3) is the object of study in Section one.
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FIGURE 1. Selected gradostats. Flow rates are prescribed as are reservoir
concentrations of limiting nutrient. Vessels labeled R are reservoirs and those
labeled C' are receiving (collecting) vessels. The gradostat in (d) is viewed from

above.
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Figure 1 depicts several gradostat configurations, most of which are
similar to those in [16]. All vessels have identical volume. Clearly,
there are limitless possibilities. For each of these, we give A(t) and

S9(t) below:
(a)
[—2D D 0 SREEI 0 7
D -2D D .
0 D -2D

A= )
0
. . D
. 0 . . - 0 D —-2DJ
S0 = D(S°,0,0,--- ,0)
(b)
—(D+E) E 0 0 1
E —2F E
0 E —2F
A= .
0
) . E
L 0 . . - 0 FE -=-2F]
SO = D(S°,0,--- ,0)
(c)
[ —(D1 + E1) E; 0 0 ]
E; —(E1+ E2 + D2) 123
0 E> —(E2 + D3 + E3)
A=
0
En_1
L 0 : : 0 Ep_1 —(Dn+Ep_1)]

S§Y = (D18Y,D,8%,---,D,S?)
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—(D +2E) E E 0
A E —(D +2E) 0 E
- E 0 —(D +2E) E

0 E E —(D +2E)

SY=(0,DS9,0,DSY)

The coefficients above are allowed to vary T-periodically or can be
constant. They are all nonnegative.

One can modify (0.3) by the addition of a periodic forcing term,
U"(t), to the second equation which might represent an influx of species
U into some subset of the vessels from reservoirs containing these
species. Indeed, this influx might be viewed as coming from unmodeled
gradostats or chemostats. In this way, one can consider systems where
irreducibility is not assumed. We consider this modification in the next
section. It causes only minor modification of our main result.

Several authors have considered periodic variation of operating pa-
rameters for single vessel (chemostat) competition studies. We mention
the work in [3, 4, 9, 14, 17] which establishes that periodicity in sys-
tem parameters can facilitate coexistence of competing species which
could not occur for constant values of the parameters.

In the next section, we prove our main result, Theorem 1.3, which
describes the global behavior of solutions of (0.3). In Section two,
the special case depicted in Figure 1(a) is considered in more detail.
In Section three we consider the case of a pair of complementary
substrates.

It is convenient to describe, here, some notation used in the following
sections. Inequalities will play a major role. If A, B are n X n
matrices or n vectors, we write A < B(A < B) whenever each entry
of A is less than or equal to (strictly less than) the corresponding
entry of B. If a and b are two vectors in R"™ with a < b, let
[a,0] ={z e R": a <z <b}.
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1. Main Results. Consider the system of equations

§' = A(1)S — F(S)u+ 5°()
(L.1) W = Altyu-+ F(S)u
S(0)>0, wu(0)>0,

where

SOt +2m) =8°t) >0, S°%t) #0,
At +2m) = A(t)
Az](t)zoa 7’7&]7

A(t) is irreducible for each ¢, and F(S) is the diagonal matrix with

F(S)ii = fu(Si),

with f, as in (0.2). The time variable has been scaled to normalize the
period to 2.

The homogeneous linear system
(1.2) = A(t)x

is assumed to be stable. More precisely, we assume all Floquet mul-
tipliers of (1.2) lie inside the unit circle in the complex plane. This
hypothesis is necessary for (1.1) to be biologically reasonable as we will
show. One can give a sufficient condition for stability of (1.2) which
is very natural from a physical point of view. It is contained in the
following lemma, the proof of which is contained in an appendix.

LEMMA 1.0. Let A(t) be as above and, in addition, suppose that, for
each i, 1 <i<n, and all t,

If, for each t € R, there exists an i such that strict inequality holds in
the above inequality, then all Floquet multipliers of (1.2) lie inside the
unat circle.
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We observed the reasonableness of the inequality in Lemma 1.0 in
the previous section. The added condition can be viewed physically as
saying that, at each instant ¢, there is flow from a reservoir into some
vessel. The irreducibility assumption on A(t) can be weakened (see
Appendix).

Let z =u+ S. Then (1.1) is equivalent to

2= A(t)z + S°(t)

(1-3) u =Alt)u+ F(z —u)u

0 < u(0) < 2(0).

The advantage of (1.3) is that the first equation is independent of the
second and is an inhomogeneous linear system. A second important
advantage of (1.3) is that it is cooperative [10]. It is immediate from
the form of (1.1) that solutions of (1.1) with nonnegative initial values
remain nonnegative on their maximal right intervals of existence. The
following lemma establishes that all solutions of

(1.4) 2= A(t)z + S°(t)

approach a unique positive 27w-periodic solution as ¢ tends to infinity.
An immediate consequence is that solutions of (1.1) with nonnegative
initial values exist and are bounded on [0, 00).

LEMMA 1.1. There is a unique 27-periodic positive solution, z*(t), of
(1.4) which attracts all solutions of (1.4) as t tends to infinity.

PROOF. The homogeneous system (1.2) has no nontrivial 2r-periodic
solutions by our stability hypothesis. A standard result (see, e.g., [2,
p. 148]) implies that (1.4) has a unique 27-periodic solution given by

2*(t) = X (¢,0)2"(0) + /0 X(t,5)S%(s)ds

27
2*(0) = [ — X (2m,0)] ! X (27,5)8°(s)ds
0
,7), X(7,7) = I, is the principal matrix solution of (1.2).

where X (¢
t) is quasi-positive and irreducible for each ¢, it follows [10]

Since A(
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that X (¢,7) > 0 for t > 7. Moreover, since X (2m,0) has spectral
radius less than one, the series

[I - X(27,0) ! = i X(2m,0)" = i X (2nm,0) > 0
n=0 n=0

converges absolutely to a positive matrix. It follows that z*(¢) > 0 for
all ¢ since z*(0) > 0. Clearly, z*(¢) is the limit of every solution of
(1.4) as t — 0. O

In order to study the behavior of nonnegative solutions of (1.1), it
suffices to study solutions of (1.3) with 0 < u(0) < z(0). Note that the
relation 0 < u(t) < z(t) must hold for ¢ > 0. As a prelude to the study
of (1.3), consider first the system obtained by putting z = z* in the
second equation of (1.3)

(1.5)

This periodic system has the trivial solution w = 0 for which the
variational system becomes

(1.6) w' = [A(t) + F(2*(t))]w

The following result gives the global asymptotic behavior of (1.5).

PROPOSITION 1.2. If all Floquet multipliers of (1.6) lie inside or on
the unit circle in the complex plane, then all solutions of (1.5) are
asymptotic to the trivial solution. If (1.6) has a (necessarily positive)
Floquet multiplier outside the unit circle, then (1.5) has a unique
positive 2m-periodic solution u*(t) satisfying 0 < u*(t) < z*(t) for
all t, which attracts all nontrivial solutions of (1.5).

PROOF. The proposition essentially follows from Theorem 3.1 in [11].
This result does not apply immediately since the right-hand side of
(1.5) is not defined for all w € R”. Let f,(S), S € R, be any twice
continuously differentiable extensions of f,(S) on [0, o) to R satisfying
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F1(S) > 0 and f(S) < 0 for all S. Extending F(S)i = fu(S) we
obtain a system ((1.5) with F' replacing F) for which Theorem 3.1
applies directly, as we now show. The hypothesis (M) and irreducibility
of the Jacobian of the right-hand side in Theorem 3.1 have already been
noted. The concavity assumption (C') requires that, if 0 < u < v,
then D, F(t,u) > D,F(t,v) with equality not holding for each ¢ in
this inequality. F'(¢,u) denotes the right-hand side of (1.5) with the
modification as above. A calculation gives

D, F(t,u) = A(t) + diaglfu(zf — i) = fi(z — ui)ui]

where diag stands for the diagonal matrix with the i-th diagonal entry
as above. Since

d - A A A
g Wz —wi) = fu(el —wiui] = =2f4 (=] — wi) + wifu (2] —wi) <0,

the concavity assumption (C) follows.

Theorem 3.1 of [11] now implies the proposition. We note that if
0 < u(0) < 2*(0) then 0 < u(t) < 2z*(t) for t > 0, so the periodic
solution u*(t), if it exists, must satisfy 0 < u*(t) < z*(t), 0 < ¢t < 2.
O

The coefficient matrix of (1.6) is a quasi-positive, irreducible matrix
for each ¢, and so the fundamental matrix solution Y (¢,0), Y(0,0) = I,
satisfies Y (¢,0) > 0 for ¢ > 0. Perron-Frobenius theory (see, e.g., [1])
implies that the spectral radius, p, of Y (2,0) is a simple eigenvalue,
strictly larger in modulus than all other eigenvalues. Of course, the
eigenvalues of Y (27,0) are precisely the Floquet multipliers of (1.6).
Hence, p is the largest (in modulus) Floquet multiplier of (1.6). We
can then restate Proposition 1.2 as follows. If p < 1, then all solutions
of (1.5) are asymptotic to the trivial solution; if p > 1, then (1.5)
has a unique positive 2m-periodic solution u*(t) to which all nontrivial
solutions approach as t tends to infinity. Henceforth, we refer to p as
the principal Floquet multiplier of (1.6).

We can now state the main result of this paper. It asserts that all
periodic gradostats behave in essentially the same way.

THEOREM 1.3. If the principal Floquet multiplier, p, of (1.6) satisfies
p < 1, then every solution of (1.1) is attracted to the 2mw-periodic
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solution (S,u) = (2*(t),0). If p > 1, then all nontrivial solutions of
(1.1) are attracted to the unique positive 2w-periodic solution (S,u) =
(S*(t),u*(t)), where u*(t) is as in Proposition 1.2 and S*(t) + u*(t) =
z*(t) for all t.

PROOF. We let T denote the Poincaré map for (1.1): T'(S(0), u(0)) =
(S(27),u(2m)). Then T is a smooth, orientation preserving diffeomor-
phism of R3". Given (S(0),u(0)) > 0, the orbit {T7(5(0),u(0)) =
(S(2j7),u(2jm))}j>0 is bounded in R3", and, hence, the limit set

A= {(8,) (S,u) = lim (S(2jim), u(2jim)), Ji — o}

is nonempty, compact and invariant under 7.

Actually, it is more convenient to work with the Poincaré map U of
(1.3) defined for (z,u) such that 0 < u < z. Let A denote the limit
set of such a point (z,u) with u # 0. If (Z,4) € A, then, clearly,
Z = 2*(0) since all solutions of the first equation in (1.3) tend to z*(¢)
as t — o0o. Let P be the Poincare map for (1.5) defined for u with
0 < u < z*(0). Invariance of A under the action of U implies that
U(A) = A. But, if (2*(0),u) € A, then U(2*(0),a) = (2*(0), Pu).
Hence, U7(z*(0),a@) = (2*(0),P’a) € A, j = 0,+1,42,.... By
Proposition 1.2, P4 — 0 or P/a — u*(0) as j — oo.

Let’s suppose that all Floquet multipliers of (1.6) lie inside or on the
unit circle. Then P4 — 0 as j — oo for all u, 0 < u < 2*(0). Hence,
(2*(0),0) € A. We must show {(2*(0),0)} = A. Now U/A = A =
{2*(0)} x Ay where Ay C [0, 2*(0)] satisfies P7Ay = Ag, j = 1,2,....
But P7[0,2*(0)] — {0} as j — oo, so A = {(2%(0),0)}.

Now suppose (1.6) has a Floquet multiplier outside the unit circle.
Hence, P/u — u*(0) for every u with 0 < u < 2*(0), u # 0, by Propo-
sition 1.2. It follows from considerations above that (2*(0),u*(0)) € A.
We must show that A = {(2*(0),u*(0))}. If (2*(0),0) ¢ A, then
it follows that A = {(2*(0),u*(0))}. For then, since A is compact,
there exists @ > 0 such that & < u < 2*(0) for all u such that
(2*(0),u) € A. Hence, A = U/A C {2*(0)} x [P/u, P?2*(0)] and
[Pia, P72*(0)] — {u*(0)} as j — oo. We are done if we show
(2*(0),0) ¢ A. Recall that both P and U are monotone maps [10].

First, suppose that z < 2*(0), so that z(2j7) < 2*(0) for j = 1,2,...,
where (z(t),u(t)) is the solution of (1.3) with (2(0),u(0)) = (z,u).
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If (2*(0),0) € A, then we may choose j,m such that (z*(0),0) =
(z(247),u(2jm)) < (z(2mm),u(2mm)) ~ (2*(0),u*(0)). But then,
by Proposition K in [10], A is a periodic orbit of U, ie., A =
{U9(z,4)}j=01,2, 1—1, where U'(2,@) = (2,4). Since both (2*(0),0)
and (2*(0),u*(0)) belong to A and are fixed points of U, this is
impossible. Thus, if z < 2*(0), then A = {(z*(0), »*(0))}.

If (z,u) is arbitrary with 0 < u < z, u # 0, then we can choose
(2,7) with 0 < @ < z, @ # 0 such that z < 2*(0) and & < u. By the
previous case, A(zz) = {(2°(0),u*(0))}, and, by monotonicity of (1.3),
(Z(t),u(t)) < ((2(t),u(t)) for t > 0. Hence, A(; ) = {(2*(0),u*(0))}. O

REMARK 1. The second of equations (1.1) could be modified to in-
clude an “immigration” term representing influx of species u into some
subset of the vessels, perhaps from a periodically driven chemostat op-
erating at steady state [4, 9, 14]. Another reason for considering an
immigration term is that one can then apply our results for irreducible
A(t) to the reducible case by decomposing A(t) into irreducible com-
ponents [1]. These considerations lead to the second equation in (1.1),
modified as follows:

u' = A(t)u+ F(S)u+U°(1)
Ut +2m) = U°(t) > 0.

System (1.3) becomes

2 =At)z+ S°(t) + U°(t)
u' = A(t)u+ F(z — u)u + U°(t).

If U° is not identically zero, then u = 0 is no longer a solution of the
second equation, and this fact simplifies matters. Using ideas in [11],
one can show that there is a unique 2w-periodic positive solution of the
system to which all solutions approach asymptotically.

REMARK 2. Obviously, if A(t) = A and S°(t) = S° are constant, then
Theorem 1.3 yields steady states (z*,0) and (S*,u*), S*+u* = z*, and
the inequality p < 1 (p > 1) can be replaced by an inequality in terms
of the stability modulus s < 0 (s > 0), where s = s(4A + F(z*)) =
max{Re A : ) is an eigenvalue of A + F(z*)}. The stability modulus
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is a simple eigenvalue of A + F(z*) by virtue of the quasi-positive and
irreducibility assumptions.

In practice, equation (1.1) will depend on several parameters, e.g., the
frequency (period) of the time dependence, flow rates, etc. If we denote
these parameters by A1, Ag, ... , Ak, then it will be crucial to locate the
“neutral stability surface,” p(A1, Ae,...,A\x) = 1, in parameter space.
This surface separates parameter space into a region (p < 1) where
survival of the species is impossible and a region (p > 1) where survival
occurs. In the next section, we obtain estimates for the location of such
a surface.

2. An Example. As an application of Theorem 1.3, consider the
periodic gradostat depicted in Figure 1(a). The corresponding system
(0.3) is

S' = DQS + DS°(wt)e;

2.1 ,
v = DQu+ F(S)u,

in which D is the (constant) dilution rate, S°(wt) is the periodic
concentration of incoming nutrient to the first vessel:

SY(r) = S°(r+2m) >0

and w is the frequency. The vector e; = (1,0,...,0)%, and Q is given
by

r—2 1 o - - - 07
1 -2 1
0 1 -2
Q: .
0
. 1
L 0 . - - 01 -2

The change of time scale 7 = wt will convert (2.2) to the 27-periodic
system

S = Dw QS + 8%(7)ei]
= Dw 'Qu+w F(S)u

in which “” denotes d/dr.
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The global behavior of solutions of (2.1) is determined by the principal
Floquet multiplier of (1.6), according to Theorem 1.3. We will estimate
the principal Floquet multiplier of (1.6) by obtaining an estimate,

P < fulzi (7)) <q, 1<i<n, TER.

From such an estimate, we obtain constant coefficient majorizing and
minorizing comparison systems related to (1.6) by

wiDQ+w pI <w 'DQ +w F(2* (1)) <w 'DQ +w gl

in which 7 is the identity matrix. If Y'(7,0) denotes the principal matrix
solution of (1.6), Y(0,0) = I, then we have the comparison

0 < e?wwfl[DQ—',-pI} S Y(27T,0) S ewafl[DQ—i-qI]’

which follows from a well-known comparison theorem [11]. Since
DQ@ + pI is a quasi-positive irreducible matrix, the matrix exponential
is a positive matrix. Perron-Frobenius theory [1] implies that the
spectral radii of the three matrices are ordered. It is worth noting that
the spectral radius (largest Floquet multiplier) p of Y(2m,0), being a
simple eigenvalue of Y (27, 0), is, therefore, a smooth function of system
variables, e.g., D, w, etc. We have

(22) @QWW_I[DS(Q)*FP} S p S e27rw_1[Ds(Q)+q],

where
5(Q) = max{\ : X is an eigenvalue of Q}

:2<cos il —1>.
n+1

The spectral theory of the symmetric matrix @ is well known; the
formula for its stability modulus above can be found in [15].

It follows from (2.2) that

™
<1l ifg<2D(1-
P if ¢ < cosn+1>

T
n+1)/)"

(2.3)

p>1 ifp>2D<1—Cos
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In order to obtain explicit estimates p, g, we must estimate z*(t), the
solution of
2 =w'DQz +w ' DS%(1)e;.

Suppose we have bounds on S°,
0<S,<8%r)<Su, TER.
Application of a comparison argument then yields
zm < 2%(7) < zar,

where
Qzp + Smer =0
Qzm + Syer = 0.

This system can be readily solved (see, e.g., [15]) to yield

n+1—1

(2m) o

n+1l—z

=Sy

(2a) M n+1

Hence, we have
S < 22 (r) < Sy—"—, 1<i<n, rER
'm <z/(r) < , <i<mn, T .
n+1 Mn+1

Since f, is monotone, we get p and g as follows:

p=tfu (Sm#> < fu(5 (D) < (SM o ) —q

n+1

To be specific, suppose f, is the Michaelis-Menten-Monod function

myS

fulS) = ay, + S’

Then we conclude from the above estimates, together with (2.3), that

L My, T (n+1)au
lif —<2(1- 14+ ——F—
p<li D< < cosn+1>( + . )

e My T (n+1)a,
1if —>2(1- 1+ -———
p>1i D > < cosn+1>( + S >

(2.4)
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Recall that p < 1 implies that the solution (z*(¢),0) of (2.1) is globally
attracting while p > 1 implies that it is unstable and that (S*(t), u*(¢))
is globally attracting for nontrivial initial data.

3. Two Complementary Nutrients. In this brief section, we
consider the necessary modifications of the theory of Section one in
order to accommodate the possibility of two complementary nutrients
S and R supplied to the vessels. See the references [7, 8, 15, 16] for the
relevant biology. Our description follows [15]. Substrates R and S are
assumed to be essential for growth but are metabolically independent
requirements for growth. At any particular time or place, one or the
other of the substrates is growth limiting. Thus, species growth rate is
given by

g(S, R) = min(fS(S)a fR(R))

where fr and fg are two functions satisfying (0.2).

If we assume that R and S are supplied to some subset (not necessar-
ily the same subset) of vessels from various reservoirs, then we obtain
the system of equations (where we do not scale out the proportionality
constant between nutrient uptake rate and growth rate)

S = A(t)S — ys'G(S, R)u + S°(t)
R = A(t)R - y'G(S, R)u + R°(t)
u' = A(t)u+ G(S,R)u

S(0) >0

R(0) >0

u(0) >0

(3.1)

where A(t) is as in Section one, S°(¢) and R°(t) are nonnegative, 27-
periodic functions representing inflow of S and R, respectively, to the
vessels from reservoirs, ygl, ylgl are positive constants and G(S, R) is
an n x n diagonal matrix with

G(Sa R)ii = Q(Si, Ri)-

Let
z=5+ yglu

w = R—i—ylglu.
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Then (3.1) is equivalent to

A(t)z + S°(t)
A(t)yw + R°(t)
Alt)u+ G(z — yg'u,w — yp'w)u

Z’
(3.2) w'
u’

z(0) >0, w(0)>0, w«(0)>0
u(0) < ysz(0), u(0) < yrw(0).
Equation (3.2) is a cooperative system. Lemma 1.1 applies to each of

the first two equations of (3.2), provided S° # 0, R® # 0, to yield
positive, 2m-periodic solutions

z=2"(t) =2"(t+27) >0
w = w*(t) = w*(t + 27) > 0.

We may then consider the third equation of (3.2) with the above
positive periodic solutions z* and w* replacing z and w:

u' = At)u+ G(z*(t) — y5'u, w*(t) — yr'u)u

(3-3) 0<u; (0) < min{yst (0)7 wa? (0)}

Since (3.2) is majorized by the two systems obtained from (1.3) by
replacing f, by fs and fg, respectively, it follows that any 27-periodic
solutions of (3.2) must have initial conditions satisfying the inequalities
above.

Associated with (3.3) is the variational equation for the trivial solu-
tion of (3.3).

(3.4) v = [A(t) + G(*(t), w* (1))]v.

The following result is similar to proposition 1.2.

PROPOSITION 3.1. If the principal Floquet multiplier, p, of (3.4)
satisfies p < 1, then all solutions of (3.3) are asymptotic to the trivial
solution. If p > 1, then (3.3) has a unique positive 2m-periodic solution
u*(t), 0 < wf(t) < min{ysz?(t),yrw;(t)}, 1 < i < n, which attracts all
nontrivial solutions of (3.3).
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PROOF. The proof mirrors that of Proposition 1.2 except that Theo-
rem 2.3 of [11] must be used instead of Theorem 2.1 since g(.S, R) is not
necessarily a continuously differentiable function. That is, one shows
that the Poincaré map is strongly concave.

It should be remarked that (3.4) is majorized by the two systems
obtained from (1.6) by replacing f,, with fs and fgr, respectively, so
that p of Proposition 3.1 is smaller than the p which would result
from the majorizing systems. Biologically, U cannot survive in the
gradostat with complementary nutrients unless it can survive in the
gradostat where R alone is limiting and in the gradostat where S alone
is limiting.

We can now state the main result of this section which is the analog
of Theorem 1.3.

THEOREM 3.2. If the principal Floquet multiplier, p, of (3.4)
satisfies p < 1, then every solution of (3.1) is attracted to the 2m-
periodic solution (S,R,u) = (z*(t),w*(t),0). If p > 1, then all
nontrivial solutions of (3.1) are attracted to the unique positive 2m-
periodic solution (S, R,u) = (S*(t), R*(t),u*(t)), where u*(t) is as in
Proposition 3.1 and z*(t) = S*(t)+yg u*(t), w*(t) = R*(t)+yz u*(t)
for all t.

The proof is similar to that of Theorem 1.3 and is omitted.

Finally, we note that immigration terms, as in Remark 1 of Section
one, can be included.

APPENDIX
In this appendix we prove Lemma 1.0. We first observe

PROPOSITION . If A(t) satisfies the hypotheses of Lemma 1.0, then
(1.2) cannot have a 2m-periodic solution x(t) satisfying x(t) > 0 for all
t.
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PROOF. If the result were false, then we may suppose that (1.2) has
a positive, 2r-periodic solution z(t) satisfying max; max; z;(t) = 1 and
zi, (to) = 1 for some iy and ¢o. Let I = {i: z;(t9) = 1}. If i € I then
z;'(tp) = 0 so that

0= ZAij(tO) + Z Aij(to)z;(to)

jeI jEN-I

where N = {1,2,... ,n} and N — I is the complement of I in N. If
I = N, then we have

which contradicts the hypotheses of Lemma 1.0. Since 0 < z;(to) < 1
for all j € N — I, we must have A;;(to) =0 for all j € N — I, or else

0=> Aij(t)) + D Aijlto)z;(to) < iAij(tO) <0,

jerI JEN-I

which is a contradiction. Hence, A;;(tg) =0foralli € [ and j € N—1.
Since I is a proper subset of IV, this contradicts the irreducibility of
A(tp). The proof is complete. O

Observe that Lemma 1.0 holds for constant matrices A satisfying the
hypotheses. For, s(4) = max{Re A : A an eigenvalue of A} satisfies
s(A) < 0 by the well known Gerschgorin’s circle theorem. Since s(A)
is a simple eigenvalue of A with a corresponding positive eigenvector
[1], s(A) = 0 gives a contradiction to the above proposition.

Now consider the general case of the lemma. Define A =
(1/2m) 027r A(s) ds, and observe that A satisfies the hypotheses of the
lemma, as does A(t,s) = sA+ (1 —s)A(t),0< s<1,t € R. Let p(s),
0 < s <1, be the principal Floquet multiplier of 2’ = A(¢, s)x. Then
p(1) = ™A < 1. Since A(t,s) is smooth in s and p(s) is a simple
eigenvalue of the Poincaré map associated with ' = A(¢, s)z, p(s) is
smooth in s. If p(s) < 1 does not hold for all s € [0, 1], then p(sp) =1
for some sy € [0,1). But, then 2’ = A(t, sp)x has a positive 2r-periodic
solution, in violation of the proposition. O
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The example
, -1 1
xr = x
1 -1
shows the necessity of the added hypothesis in Lemma 1.0.

The irreducibility assumption of Lemma 1.0 can be weakened at the
expense of a slight strengthening of the strict inequality condition of the
lemma. We indicate very briefly this extension of Lemma 1.0. Suppose
that there exists a permutation of the standard basis vectors so that
the matrix A(t) takes the following triangular form for every t € R:

B(t) 0 0o - - - 0
B2L(t) B?(t) 0

Aty=| - ]

. . 0
Bprl (t) e BPP(t)

where the B”(t), 1 <1 < p, are square matrices of size n; X n; and, if
n; > 1, are irreducible for each ¢ € R. Observe that this assumption
is stronger than simply dropping the irreducibility assumption since it
requires that the permutation which puts A(t) in canonical reducible
form A(t), also puts A(s) in canonical reducible form, A(s) (see [1]).
As before, we assume that A;;(t) > 0, ¢ # j, and that each system
y; = B (t)y;,, 1 <1 < p, satisfies the hypotheses of Lemma 1.0. Then
the conclusion of Lemma 1.0 holds.

The proof follows almost immediately from Lemma 1.0 and the fact
that the principal matrix solution ®(t) of 2’ = A(t)r at t = 0 is a
nonnegative matrix which can be expressed in canonical reducible form
with the same structure as A(t) with diagonal matrices ®'(¢) which
are the principal matrix solutions of y] = B"(¢)y; at t = 0. By Lemma
1.0, p;, the principal Floquet multiplier of this last equation satisfies
pi < 1. But it is known (see [1]) that p = p; for some [ where p is the
spectral radius of ®(27), the largest Floquet multiplier. Hence, p < 1

as asserted.
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