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RIGHT AND LEFT DISCONJUGACY
IN DIFFERENCE EQUATIONS

DARREL HANKERSON

1. Introduction. We are concerned with the n-th order difference
equation

(1) Py(t) =) ai(t)y(t+i) =0, t€[a,b],
i=0
where a < b are integers and [a,b] = {a,a + 1,... ,b}, a, = 1, and «p
satisfies
(2) (—1)"ag(t) >0, tE€]la,b].

Solutions of the difference equation (1) are defined on [a, b+ n].

In part, we will be concerned with a partial factorization of P if (1) is
right (j, n—j)-disconjugate. In addition, we give several results relating
right and left disconjugacy and disconjugacy.

As defined by Hartman, (1) is said to be disconjugate on an interval
J if no nontrivial solution has n generalized zeros on J. In the classic
paper [2], Hartman has shown that (1) is disconjugate on J if and
only if P has a certain factorization. Further, necessary and sufficient
conditions for disconjugacy in terms of the coefficients «;(t) are given,
and sign conditions on the Green’s functions for certain boundary value
problems for a disconjugate difference equation are given.

More recently, Peterson [5] defined the more general notions of
right and left disconjugacy. Necessary conditions for right (j,n —
Jj)-disconjugacy in terms of the coefficients «;(t) are given in [4].
Peterson [7] also gave necessary and sufficient conditions for (j,n — j)-
disconjugacy in terms of certain Wronskians. Finally, Peterson [6] gave
sign conditions on the Green’s functions for boundary value problems
where (1) satisfies certain (j,n — j)-disconjugacy conditions.

2. Preliminaries. Define the difference operator A by Ay(t) =
y(t +1) — y(t), and define the operators A’ by Afy(t) = A(A*"1y(t))
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for i = 1,2,..., where Ay(t) = y(t). As defined by Hartman [2],
we say that a function y(t) defined on [a,b + n] has a generalized zero
at to in case either y(ty) = 0, or, if ¢y > a, there exists an integer
1 < 5 <ty — asuch that

(=1)7y(to — j)y(to) > 0,
y(t) =0, tog—j<t<tp.
The difference equation (1) is disconjugate on an interval J C [a, b+ n]

if no nontrivial solution has n generalized zeros on J. It is easy to see
that condition (2) is a necessary condition for disconjugacy.

The following definition is due to Peterson (see [5]).

DEFINITION 1. Let J be a subinterval of [a,b + n], and let 1 < j <
n — 1. We say that (1) is right (j,n — j)-disconjugate on J provided
there is no nontrivial solution y(¢) of (1) and integers «, 8 € J with
a+j<B<B+n—j—1€ J such that

yla+19) =0, 0<i<j-—1,

y(B+1i) =0, 0<i<n-—j-2
and y has a generalized zero at 84+ n—j—1. Similarly, we say that (1) is
left (4, n — j)-disconjugate on J provided there is no nontrivial solution
y(t) of (1) and integers o, € J witha+j < B <fB4+n—j—-1€J

such that
yla+i)=0, 0<i<j-—2,

y(B+1i)=0, 0<i<n—j-—1,

and y has a generalized zero at a + j — 1.

If (1) is disconjugate on J, then it is right (j,n — j)-disconjugate for
1<j<n-—1. Itis easy to see that right (j,n — j)-disconjugacy for
some fixed 1 < j < n — 1 does not imply right (n — j, j)-disconjugacy.

EXAMPLE 1. Consider the difference equation

u(t+3) —u(t+2) —u(t +1) —u(t) = 0.

This difference equation is right (2, 1)-disconjugate on [0, 3], but there
is a solution u(t) with u(0) = u(2) = 0 and u(1) = «(3) = 1, so that
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u(t) has a generalized zero at ¢ = 3. Hence, the difference equation is
not right (1, 2)-disconjugate on [0, 3].

EXAMPLE 2. It was shown in [1] that the difference equation
Ly(t) + p(t)y(t) =0, teJ,

where L is disconjugate, is right (j,n — j)-disconjugate for those integer
values of j, 1 < j <n —1, such that (—1)" Ip(t) > 0 (we still assume
(2) holds for this equation).

For functions yi, ... ,y; defined on [c, d], define the Wronskian
@) -y

Ayq(t A i(t
W(ys,...,y;)(t) = yﬁ) ) %U
Ay (8) - AT y()
for t € [e,d — j + 1].

3. Results on disconjugacy. To begin with, a careful examination
of the proof of [7, Theorem 2] shows that this theorem has the following
generalization.

THEOREM 1. For each s, let u;j(t,s) be a solution of (1) satisfying
the partial set of initial conditions u;(s +i,s) = 6;5, 0 < ¢ < j, for
1<j<n-—1.

(a) The difference equation (1) is right (j,n— j)-disconjugate on [c, d]
if and only if Wu;(t,s),... ,un—1(t,s)] > 0 forc <s <t—j <d—n+1.

(b) The difference equation (1) is left (j,n — j)-disconjugate on
[e,d] if and only if (=1)7"=DWlu, ;(t,s),... ,un_1(t,s)] > 0 for
c<t<s—j<d—-n+1.

As a corollary to this theorem, we can prove the following partial
factorization result.

COROLLARY 1. If (1) is right (j,n — j)-disconjugate on [c,d], then
there exist solutions u;(t),... ,un—1(t) of (1) and a difference equation
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Pyy(t) = 0 of order j such that
Pu(t) = PiPyu(t), te€[c,d—n],

where Pyu(t) = W(u(t), u;j(t),... , un—1(t)).

PROOF. For € > 0 define uf(¢) to be the solution of (1) satisfying

6l—i

i)

uf(c+i)=(
0, I+1<i<n-1,

0<i<l,

uj(c+1)

for j <1 <n —1. Note that uf(t) converges uniformly to the solution
w(t,c) of (1) on [c, d] satisfying

w(c+i,¢) =6, 0<i<n-1.
It follows from Theorem 1 that there is an € > 0 such that
W(uj(t), ... ,up_1(t)) >0, telc+jd—n+j+1]
It can be shown that
W(uS(t),...,us,_1(t)) >0, tec,e+j—1].
Hence, if u;(t) = u§(t),... ,un—1(t) = uy,_4(t), then

W(u;(t), ... un1()) >0, teled—n+j+1]

The corollary then follows from [2, Proposition 4.2]. O

REMARK 1. The form of P; in the above theorem is given in [2,
Proposition 4.2] except that the coefficients 8, and By should be

given by
(=1

wg(m+n—k)’

ag(m)

6n—k = m

Bo =

The following relationship between right disconjugacy and disconju-
gacy can also be considered as a corollary to Theorem 1.
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COROLLARY 2. If (1) is right (j,n — j)-disconjugate on [c,d] for
j=1,...,n—1, then (1) is disconjugate on [c,d].

We will conclude with two theorems which give relationships between
right and left disconjugacy.

THEOREM 2. Let j € {1,n — 1}. Then (1) is right (j,n — j)-
disconjugate on J if and only if (1) is left (j,n — j)-disconjugate on
J.

PROOF. We prove this for j = 1. The case j = n—1 is similar. Assume
first that (1) is right (1,n — 1)-disconjugate on J. Suppose that (1) is
not left (1,n —1)-disconjugate on J. Then there is a nontrivial solution
u(t) and integers ¢, d with ¢ < d < d+n — 2 € J such that

u(t) >0, tee+1,d-1]
u(d+i) =0, 0<i<n-—2.

Note that u(c) < 0 since (1) is right (1,n — 1)-disconjugate. Among
all such solutions u(t) and integers c, d given above, assume that wu(t)
is such that d — ¢ is minimal. We can assume u(d — 1) = 1. Since (1)
is right (1,n — 1)-disconjugate, there is a solution v(t) satisfying

v(e) =0
vid-1)=1
v(d+i) =0, 0<i<n-—3.

Note that, by the right (1,n — 1)-disconjugacy, v(t) does not have a
generalized zero at d + n — 2 so that (—1)""'v(d + n — 2) < 0. From
the difference equation (1),

a1(d—2)u(d — 1)+ ap(d —2)u(d —2) =0

so that
—Oél(d — 2)

u(d —2) = cold=2)
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Similarly,
v d+n—2)+a1(d—2)v(d—1) + ap(d —2)v(d—2) =0

so that Cen(d—2) (d+n—2)
vd=2)= =) a@d—2)

Since (—1)" 1v(d +n —2) < 0 and (2) holds,

sgn{ao(d —2)v(d+n—-2)} =(-1)"(-1)" =1

so that u(d—2) > v(d—2). Pick a > 0such that w(t) = au(t)—v(t) >0
on (¢,d) and there exists a tg € (¢, d) such that w(¢y) = 0.

First consider the case ty € (¢,d — 2]. Then

w(tg) =0
w(d—1)>0
w(d+1i) =0, 0<i<n-3,
w(d+n—2)=—v(d+n-—2)

and (—1)"tw(d — 1)w(d +n —2) > 0 so that w(t) has a zero at d — 1
or a generalized zero at d +n — 2. This contradicts the right (1,n — 1)-
disconjugacy.

Now consider the case tg =d — 1. Then o« = 1 and

w(c) <0
wd—2)=u(d—-2)—v(d—2)>0
wd+i—-1)=0, 0<i<n-2,
which contradicts the minimality of d — ¢. Hence, (1) is left (1,n — 1)-
disconjugate on J.

Conversely, assume (1) is left (1,n — 1)-disconjugate on J. Assume
[d,d+n—1] C J and v(t) is a solution such that
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It suffices to show that v(t) > 0 on (—oo,d] N J. By equation (1),
vd+n—-1)+ai(d—1v(d) + ap(d—1v(d—-1)=0

so that

—ai(d—1) wv(d+n-1)

Oéo(d— 1) O[o(d— 1)

Let u(t) be the solution of (1) satisfying

v(d—1) =

u(d) =1
ud+i+1)=0, 0<i<n-—2.

Then, using equation (1) and solving for u(d — 1), we obtain

—Oél(d — 1)

u(d—1) = cold—1)

Note that sgn{v(d +n — 1)ap(d — 1)} = (=1)""}(=1)" = —1 so that
v(d — 1) > u(d — 1). It follows that w(t) = v(t) — u(t) is a solution of
(1) satisfying

w(d—1)>0

w(d+i)=0, 0<i<n-—2.

By the left (1,n — 1)-disconjugacy of (1), we have that both w(t) > 0
and u(t) > 0 for t € (—oo,d—1]NJ. It follows that v(t) > wu(t) > 0 for
t € (—oo,d] N J. Hence, (1) is right (1,n — 1)-disconjugate on J. O

THEOREM 3. Assume 1 < j < n — 2 and that (1) is right (n — i,1)-
disconjugate on J for i = 1,...,5+ 1. Then (1) is left (n — j,7)-
disconjugate on J.

PROOF. The proof is by induction on j. Theorem 2 shows that the
result holds for j = 1. Assume 1 < j < n — 2 and that the result holds
if j is replaced by [ < j. Suppose the result does not hold at j. Then
there exists ¢,d € J, withc+n—j5 < d <d+j—1 € J, and a nontrivial
solution u(t) of (1), with

) nggnf.]*za
’ OSZSJ_L
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and u has a generalized zero at ¢ +n — j — 1. By the right (n — j, j)-
disconjugacy, we must have that u(c+n—j—1)#0and c—1 € J.
Without loss of generality, assume u(c+n — j — 1) = 1. Note, by the
induction step, (1) is left (n — 4,7)-disconjugate for 1 < < j — 1. Let
v(t) be the solution of (1) with

viec+i—1)=0, 0<i<n—j-—1,
vie+n—j—-1)=1
vd+i+1)=0, 0<i<j—2

Then v(t) > 0 on [c+n —j —1,d] by [3, Theorem 7]. Let @ > 0
be such that w(t) = av(t) — u(t) > 0 on [c,d] and there exists
to € [c+n—j—1,d— 1] such that w(tg) = 0. Note that v(c—1) =0
so w(c— 1) and u(c — 1) are of opposite sign.

First consider the case tgo = c+n — j — 1. Then w(t) has n — j zeros
at ¢ and w(c+n — j) > 0. Note that

sgn{w(c—Dw(c+n —j)} = —sgn{u(c— 1)}
= —sgn{u(c— Du(c+n—j—1)}.

Since u has a generalized zero at ¢ + n — j — 1, it follows that w has a
generalized zero at ¢ +n — j. But then w has n — j zeros at ¢, j — 1
zeros at d + 1, and a generalized zero at ¢ + n — j, contradicting that
(1) is left (n — j + 1,7 — 1)-disconjugate on J.

Now consider the case c+n—j <ty < d. In this case, w hasn—j—1
zeros at ¢, j — 1 zeros at d + 1, and a zero at to. Since w(t) > 0 on
[c+n—j—1,d], either w(tp —1) = 0 or w has a generalized zero
at tp + 1, contradicting that (1) is p,—;_1-disconjugate on J (see [3,
Theorem 7]).

Hence the result holds at j, and by induction the proof is complete.
O
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