RIGHT AND LEFT DISCONJUGACY IN DIFFERENCE EQUATIONS

DARREL HANKERSON

1. Introduction. We are concerned with the n-th order difference equation

(1)
$$Py(t) \equiv \sum_{i=0}^{n} \alpha_i(t)y(t+i) = 0, \quad t \in [a, b],$$

where a < b are integers and $[a, b] \equiv \{a, a + 1, \dots, b\}$, $\alpha_n = 1$, and α_0 satisfies

(2)
$$(-1)^n \alpha_0(t) > 0, \quad t \in [a, b].$$

Solutions of the difference equation (1) are defined on [a, b + n].

In part, we will be concerned with a partial factorization of P if (1) is right (j, n-j)-disconjugate. In addition, we give several results relating right and left disconjugacy and disconjugacy.

As defined by Hartman, (1) is said to be disconjugate on an interval J if no nontrivial solution has n generalized zeros on J. In the classic paper [2], Hartman has shown that (1) is disconjugate on J if and only if P has a certain factorization. Further, necessary and sufficient conditions for disconjugacy in terms of the coefficients $\alpha_i(t)$ are given, and sign conditions on the Green's functions for certain boundary value problems for a disconjugate difference equation are given.

More recently, Peterson [5] defined the more general notions of right and left disconjugacy. Necessary conditions for right (j, n-j)-disconjugacy in terms of the coefficients $\alpha_i(t)$ are given in [4]. Peterson [7] also gave necessary and sufficient conditions for (j, n-j)-disconjugacy in terms of certain Wronskians. Finally, Peterson [6] gave sign conditions on the Green's functions for boundary value problems where (1) satisfies certain (j, n-j)-disconjugacy conditions.

2. Preliminaries. Define the difference operator Δ by $\Delta y(t) = y(t+1) - y(t)$, and define the operators Δ^i by $\Delta^i y(t) = \Delta(\Delta^{i-1} y(t))$ Copyright ©1990 Rocky Mountain Mathematics Consortium

for $i=1,2,\ldots$, where $\Delta^0 y(t)=y(t)$. As defined by Hartman [2], we say that a function y(t) defined on [a,b+n] has a generalized zero at t_0 in case either $y(t_0)=0$, or, if $t_0>a$, there exists an integer $1\leq j\leq t_0-a$ such that

$$(-1)^{j} y(t_{0} - j) y(t_{0}) > 0,$$

 $y(t) = 0, \quad t_{0} - j < t < t_{0}.$

The difference equation (1) is disconjugate on an interval $J \subseteq [a, b+n]$ if no nontrivial solution has n generalized zeros on J. It is easy to see that condition (2) is a necessary condition for disconjugacy.

The following definition is due to Peterson (see [5]).

DEFINITION 1. Let J be a subinterval of [a, b+n], and let $1 \leq j \leq n-1$. We say that (1) is right (j, n-j)-disconjugate on J provided there is no nontrivial solution y(t) of (1) and integers $\alpha, \beta \in J$ with $\alpha + j \leq \beta \leq \beta + n - j - 1 \in J$ such that

$$y(\alpha + i) = 0, \quad 0 \le i \le j - 1,$$

 $y(\beta + i) = 0, \quad 0 \le i \le n - j - 2,$

and y has a generalized zero at $\beta+n-j-1$. Similarly, we say that (1) is left (j,n-j)-disconjugate on J provided there is no nontrivial solution y(t) of (1) and integers $\alpha,\beta\in J$ with $\alpha+j\leq\beta\leq\beta+n-j-1\in J$ such that

$$y(\alpha + i) = 0, \quad 0 \le i \le j - 2,$$

 $y(\beta + i) = 0, \quad 0 \le i \le n - j - 1,$

and y has a generalized zero at $\alpha + j - 1$.

If (1) is disconjugate on J, then it is right (j, n-j)-disconjugate for $1 \leq j \leq n-1$. It is easy to see that right (j, n-j)-disconjugacy for some fixed $1 \leq j \leq n-1$ does not imply right (n-j, j)-disconjugacy.

EXAMPLE 1. Consider the difference equation

$$u(t+3) - u(t+2) - u(t+1) - u(t) = 0.$$

This difference equation is right (2,1)-disconjugate on [0,3], but there is a solution u(t) with u(0) = u(2) = 0 and u(1) = u(3) = 1, so that

u(t) has a generalized zero at t=3. Hence, the difference equation is not right (1,2)-disconjugate on [0,3].

EXAMPLE 2. It was shown in [1] that the difference equation

$$Ly(t) + p(t)y(t) = 0, \quad t \in J,$$

where L is disconjugate, is right (j, n-j)-disconjugate for those integer values of $j, 1 \leq j \leq n-1$, such that $(-1)^{n-j}p(t) > 0$ (we still assume (2) holds for this equation).

For functions y_1, \ldots, y_j defined on [c, d], define the Wronskian

$$W(y_1, \dots, y_j)(t) = \begin{vmatrix} y_1(t) & \dots & y_j(t) \\ \Delta y_1(t) & \dots & \Delta y_j(t) \\ \vdots & \ddots & \vdots \\ \Delta^{j-1}y_1(t) & \dots & \Delta^{j-1}y_j(t) \end{vmatrix}$$

for $t \in [c, d - j + 1]$.

3. Results on disconjugacy. To begin with, a careful examination of the proof of [7, Theorem 2] shows that this theorem has the following generalization.

THEOREM 1. For each s, let $u_j(t,s)$ be a solution of (1) satisfying the partial set of initial conditions $u_j(s+i,s)=\delta_{ij},\ 0\leq i\leq j$, for $1\leq j\leq n-1$.

- (a) The difference equation (1) is right (j, n-j)-disconjugate on [c, d] if and only if $W[u_j(t, s), \ldots, u_{n-1}(t, s)] > 0$ for $c \le s \le t-j \le d-n+1$.
- (b) The difference equation (1) is left (j, n-j)-disconjugate on [c,d] if and only if $(-1)^{j(n-j)}W[u_{n-j}(t,s),\ldots,u_{n-1}(t,s)]>0$ for $c\leq t\leq s-j\leq d-n+1$.

As a corollary to this theorem, we can prove the following partial factorization result.

COROLLARY 1. If (1) is right (j, n - j)-disconjugate on [c, d], then there exist solutions $u_j(t), \ldots, u_{n-1}(t)$ of (1) and a difference equation

 $P_1y(t) = 0$ of order j such that

$$Pu(t) = P_1 P_2 u(t), \quad t \in [c, d-n],$$

where $P_2u(t) = W(u(t), u_i(t), \dots, u_{n-1}(t)).$

PROOF. For $\epsilon > 0$ define $u_l^{\epsilon}(t)$ to be the solution of (1) satisfying

$$u_l^{\epsilon}(c+i) = \frac{\epsilon^{l-i}}{(l-i)!}, \quad 0 \le i \le l,$$

$$u_l^{\epsilon}(c+i) = 0, \quad l+1 \le i \le n-1,$$

for $j \leq l \leq n-1$. Note that $u_l^{\epsilon}(t)$ converges uniformly to the solution $u_l(t,c)$ of (1) on [c,d] satisfying

$$u_l(c+i,c) = \delta_{li}, \quad 0 \le i \le n-1.$$

It follows from Theorem 1 that there is an $\epsilon > 0$ such that

$$W(u_j^{\epsilon}(t), \dots, u_{n-1}^{\epsilon}(t)) > 0, \quad t \in [c+j, d-n+j+1].$$

It can be shown that

$$W(u_i^{\epsilon}(t), \dots, u_{n-1}^{\epsilon}(t)) > 0, \quad t \in [c, c+j-1].$$

Hence, if $u_j(t) = u_j^{\epsilon}(t), \dots, u_{n-1}(t) = u_{n-1}^{\epsilon}(t)$, then

$$W(u_i(t), \ldots, u_{n-1}(t)) > 0, \quad t \in [c, d-n+j+1].$$

The corollary then follows from [2, Proposition 4.2]. \square

REMARK 1. The form of P_1 in the above theorem is given in [2, Proposition 4.2] except that the coefficients β_{n-k} and β_0 should be given by

$$\beta_{n-k} = \frac{(-1)^k}{w_k(m+n-k)}, \quad \beta_0 = \frac{\alpha_0(m)}{w_k(m+1)}.$$

The following relationship between right disconjugacy and disconjugacy can also be considered as a corollary to Theorem 1.

COROLLARY 2. If (1) is right (j, n - j)-disconjugate on [c, d] for $j = 1, \ldots, n - 1$, then (1) is disconjugate on [c, d].

We will conclude with two theorems which give relationships between right and left disconjugacy.

THEOREM 2. Let $j \in \{1, n-1\}$. Then (1) is right (j, n-j)-disconjugate on J if and only if (1) is left (j, n-j)-disconjugate on J.

PROOF. We prove this for j=1. The case j=n-1 is similar. Assume first that (1) is right (1,n-1)-disconjugate on J. Suppose that (1) is not left (1,n-1)-disconjugate on J. Then there is a nontrivial solution u(t) and integers c,d with $c< d< d+n-2 \in J$ such that

$$u(c) \le 0$$

 $u(t) > 0, \quad t \in [c+1, d-1]$
 $u(d+i) = 0, \quad 0 < i < n-2.$

Note that u(c) < 0 since (1) is right (1, n-1)-disconjugate. Among all such solutions u(t) and integers c, d given above, assume that u(t) is such that d-c is minimal. We can assume u(d-1)=1. Since (1) is right (1, n-1)-disconjugate, there is a solution v(t) satisfying

$$v(c) = 0$$

 $v(d-1) = 1$
 $v(d+i) = 0, \quad 0 \le i \le n-3.$

Note that, by the right (1, n-1)-disconjugacy, v(t) does not have a generalized zero at d+n-2 so that $(-1)^{n-1}v(d+n-2)<0$. From the difference equation (1),

$$\alpha_1(d-2)u(d-1) + \alpha_0(d-2)u(d-2) = 0$$

so that

$$u(d-2) = \frac{-\alpha_1(d-2)}{\alpha_0(d-2)}.$$

Similarly,

$$v(d+n-2) + \alpha_1(d-2)v(d-1) + \alpha_0(d-2)v(d-2) = 0$$

so that

$$v(d-2) = \frac{-\alpha_1(d-2)}{\alpha_0(d-2)} - \frac{v(d+n-2)}{\alpha_0(d-2)}.$$

Since $(-1)^{n-1}v(d+n-2) < 0$ and (2) holds,

$$sgn \{\alpha_0(d-2)v(d+n-2)\} = (-1)^n(-1)^n = 1$$

so that u(d-2) > v(d-2). Pick $\alpha > 0$ such that $w(t) \equiv \alpha u(t) - v(t) \geq 0$ on (c,d) and there exists a $t_0 \in (c,d)$ such that $w(t_0) = 0$.

First consider the case $t_0 \in (c, d-2]$. Then

$$w(t_0) = 0$$

 $w(d-1) \ge 0$
 $w(d+i) = 0, \quad 0 \le i \le n-3,$
 $w(d+n-2) = -v(d+n-2)$

and $(-1)^{n-1}w(d-1)w(d+n-2) \ge 0$ so that w(t) has a zero at d-1 or a generalized zero at d+n-2. This contradicts the right (1, n-1)-disconjugacy.

Now consider the case $t_0 = d - 1$. Then $\alpha = 1$ and

$$w(c) < 0$$

 $w(d-2) = u(d-2) - v(d-2) > 0$
 $w(d+i-1) = 0, \quad 0 < i < n-2,$

which contradicts the minimality of d-c. Hence, (1) is left (1, n-1)-disconjugate on J.

Conversely, assume (1) is left (1, n-1)-disconjugate on J. Assume $[d, d+n-1] \subseteq J$ and v(t) is a solution such that

$$v(d) = 1$$

$$v(d+i+1) = 0, \quad 0 \le i \le n-3,$$

$$(-1)^{n-1}v(d+n-1) > 0.$$

It suffices to show that v(t) > 0 on $(-\infty, d] \cap J$. By equation (1),

$$v(d+n-1) + \alpha_1(d-1)v(d) + \alpha_0(d-1)v(d-1) = 0$$

so that

$$v(d-1) = \frac{-\alpha_1(d-1)}{\alpha_0(d-1)} - \frac{v(d+n-1)}{\alpha_0(d-1)}.$$

Let u(t) be the solution of (1) satisfying

$$u(d) = 1$$

 $u(d+i+1) = 0, \quad 0 \le i \le n-2.$

Then, using equation (1) and solving for u(d-1), we obtain

$$u(d-1) = \frac{-\alpha_1(d-1)}{\alpha_0(d-1)}.$$

Note that $\operatorname{sgn} \{v(d+n-1)\alpha_0(d-1)\} = (-1)^{n-1}(-1)^n = -1$ so that v(d-1) > u(d-1). It follows that $w(t) \equiv v(t) - u(t)$ is a solution of (1) satisfying

$$w(d-1) > 0$$

 $w(d+i) = 0, \quad 0 \le i \le n-2.$

By the left (1, n-1)-disconjugacy of (1), we have that both w(t) > 0 and u(t) > 0 for $t \in (-\infty, d-1] \cap J$. It follows that $v(t) \geq u(t) > 0$ for $t \in (-\infty, d] \cap J$. Hence, (1) is right (1, n-1)-disconjugate on J. \square

THEOREM 3. Assume $1 \leq j \leq n-2$ and that (1) is right (n-i,i)-disconjugate on J for $i=1,\ldots,j+1$. Then (1) is left (n-j,j)-disconjugate on J.

PROOF. The proof is by induction on j. Theorem 2 shows that the result holds for j=1. Assume $1 < j \le n-2$ and that the result holds if j is replaced by l < j. Suppose the result does not hold at j. Then there exists $c, d \in J$, with $c+n-j \le d < d+j-1 \in J$, and a nontrivial solution u(t) of (1), with

$$u(c+i) = 0, \quad 0 \le i \le n-j-2,$$

 $u(d+i) = 0, \quad 0 \le i \le j-1,$

and u has a generalized zero at c+n-j-1. By the right (n-j,j)-disconjugacy, we must have that $u(c+n-j-1)\neq 0$ and $c-1\in J$. Without loss of generality, assume u(c+n-j-1)=1. Note, by the induction step, (1) is left (n-i,i)-disconjugate for $1\leq i\leq j-1$. Let v(t) be the solution of (1) with

$$v(c+i-1) = 0, \quad 0 \le i \le n-j-1,$$

 $v(c+n-j-1) = 1$
 $v(d+i+1) = 0, \quad 0 \le i \le j-2.$

Then v(t) > 0 on [c+n-j-1,d] by [3, Theorem 7]. Let $\alpha > 0$ be such that $w(t) \equiv \alpha v(t) - u(t) \geq 0$ on [c,d] and there exists $t_0 \in [c+n-j-1,d-1]$ such that $w(t_0) = 0$. Note that v(c-1) = 0 so w(c-1) and u(c-1) are of opposite sign.

First consider the case $t_0 = c + n - j - 1$. Then w(t) has n - j zeros at c and w(c + n - j) > 0. Note that

$$sgn \{w(c-1)w(c+n-j)\} = -sgn \{u(c-1)\}$$

= -sgn \{u(c-1)u(c+n-j-1)\}.

Since u has a generalized zero at c+n-j-1, it follows that w has a generalized zero at c+n-j. But then w has n-j zeros at c, j-1 zeros at d+1, and a generalized zero at c+n-j, contradicting that (1) is left (n-j+1, j-1)-disconjugate on J.

Now consider the case $c+n-j \leq t_0 < d$. In this case, w has n-j-1 zeros at c, j-1 zeros at d+1, and a zero at t_0 . Since $w(t) \geq 0$ on [c+n-j-1,d], either $w(t_0-1)=0$ or w has a generalized zero at t_0+1 , contradicting that (1) is ρ_{n-j-1} -disconjugate on J (see [3, Theorem 7]).

Hence the result holds at j, and by induction the proof is complete. \square

REFERENCES

1. D. Hankerson and A. Peterson, A classification of the solutions of a difference equation according to their behavior at infinity, J. Math. Anal. Appl. ${\bf 136}$ (1988), 249–266.

- 2. P. Hartman, Difference equations: disconjugacy, principal solutions, Green's functions, complete monotonicity, Trans. Amer. Math. Soc. 246 (1978), 1–30.
- **3.** A. Peterson, Boundary value problems and Green's functions for linear difference equations, in J. L. Henderson, editor, Differential and integral equations, Proceedings of the Twelfth and Thirteenth Midwest Conferences, 1985, 79–100.
- 4. ——, Boundary value problems for an n-th order difference equation, SIAM J. Math. Anal. 15 (1984), 124–132.
- 5. ———, Existence and uniqueness theorems for nonlinear difference equations, J. Math. Anal. Appl. 125 (1987), 185–191.
- **6.** ——, Green's functions for (k,n-k)-boundary value problems for linear difference equations, J. Math. Anal. Appl. **124** (1987), 127–138.
- **7.** A. Peterson, $On\ (k,n-k)$ -disconjugacy for linear difference equations, in W. Allegretto and G. J. Butler, editors, Qualitative properties of differential equations, Proceedings of the 1984 Edmonton Conference, 1986, 329–337.

 ${\tt Algebra}, {\tt Combinatorics}$ and ${\tt Analysis}, {\tt Auburn}$ University, ${\tt Auburn}, {\tt AL}$ 36849–5307