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Dedicated to the memory of Geoffrey Butler

1. Introduction. Competition modeling is one of the more
challenging aspects of mathematical biology. Competition is clearly
important in nature yet there are so many ways for populations to
compete that the modeling problem is difficult to do in any generality.
On the other hand, the mathematical idea seems quite simple—when
any population increases, the growth rate of the others should diminish,
a concept that is quite easily expressed by partial derivatives of the
specific growth rates. If an ecosystem is modeled by a system of
differential equations, for example, by

yi = vifi(y),

where ¢ = 1,2,...,n, f; is a nonnegative, continuously differentiable
function defined on R™, and y = (y1,¥2,---,Yn), then competition is
expressed by the condition

Ofi <0
3yj

when ¢ # j. Dynamical systems with such properties have been studied
extensively, see Hirsch [20, 21] and Smith [34]. When n = 2, such
dynamical systems preserve an order (leave a cone invariant) under the
flow in forward time, a property which can yield valuable information
about potential asymptotic behavior.

Such models easily reflect the direct impact of one population upon
the other; for example, one produces metabolic products that inhibit
the growth of the other. The simplest form of competition is where
two or more populations compete for the same resource, for example,
the same food supply or the same growth limiting nutrient. One
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can view the “competitors” as “predators” on the “nutrient,” and
this produces an entirely different type of behavior for the resulting
dynamical system. Such systems have a tendency towards oscillation.
In some of the simplest cases, however, there is a “conservation law”
that enables one to reduce the system to the above competitive type.
The lectures here survey a class of problems of this type with a view of
determining when it is possible for all of the components of the model
ecosystem to “survive.” The basic model is the simple chemostat;
from it, there are a great many variations which lead to interesting
mathematical questions.

2. The simple chemostat. The chemostat is a piece of laboratory
apparatus used to culture microorganisms. It is of ecological interest
because it is a laboratory model of a very simple lake. It also is one place
where the mathematics is tractable, the parameters are measurable,
and the experiments are reasonable. The importance of the chemostat
in ecology is well documented in the survey articles of Jannash and
Mateles [27], Taylor and Williams [38], Waltman, Hsu and Hubbell [41]
and Frederickson and Stephanopoulos [13]. Important experiments on
competition in the chemostat can be found in Hansen and Hubbell [17].

The apparatus consists of three connected vessels. The first contains
all of the nutrients needed for growth of a microorganism, all in excess
except for one called the limiting nutrient. The concentration of the
limiting nutrient, hereafter simply called the nutrient, is kept constant,
and the nutrient is pumped at a constant rate into the second vessel, the
culture vessel. The volume of this vessel is kept constant by pumping
the contents out at the input rate. The culture vessel is charged with
a variety of microorganisms, so it contains a mixture of nutrient and
organisms. Its output is collected in the third vessel which represents
the “production” of the chemostat. The culture vessel is well stirred
and all other significant parameters affecting growth, for example,
temperature, are kept constant. Since the output is continuous, the
chemostat is often referred to as “continuous culture” to contrast it with
the more common “batch culture” of microorganisms. A schematic is
shown in Figure 2.1.

We seek to write differential equations for the above model. A more
complete derivation can be found elsewhere, for example, in Herbert,
Elsworth, and Telling [19]. The rate of change of the nutrient can be
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FIGURE 2.1. A schematic of a simple chemostat.

expressed as
Rate of Change = input — washout — consumption,
while that of the organism can be expressed as,

Rate of change = growth — washout.

Let S(t) and x(t) denote the concentration of nutrient and organism
at time ¢t. The decrease in the rate of change because of washout is
proportional to the concentration. If there were no organisms—hence
no consumption—the equation for the nutrient would be

S'(t) = (5 — 5(t))D,

where S is the input concentration and D is a constant of proportion-
ality (reflecting the pump speed or “washout rate”). The formulation
of the consumption term, based on experimental evidence, goes back
at least to Monod [31] and takes the form

mSx

a+ S’
where m is the maximal growth rate and a is the Michaelis-Menten
(or half saturation) constant. The form (and the terminology) of
the consumption term is that of enzyme kinetics where S would be
substrate. Both a and m can be measured experimentally. The
differential equation for S takes the form

mS x

a+ S v

)

(2.1) S = (SO - S)D -
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while that of the corresponding equation for the microorganism is
S
(2.2) o=z (m— - D) :
a

where 7 is a “yield” constant reflecting the conversion of nutrient to
organism. (We will scale it out in the simple chemostat but it is
important for multiple nutrient problems.) The corresponding initial
conditions are S(0) > 0 and z(0) > 0. The number of parameters in the
system is excessive (mathematically), so some scaling is in order. First
of all, note that S(®) and D are under the control of the experimenter
(the input concentration and the washout rate). S(°) has units of
concentration and D has units of reciprocal time. By measuring S, a,
and z/v in units of S®©) and time in units of D! one obtains the
nondimensional differential equations (note that m and a have changed
their meanings)

Sz
§=1-5-1"

a+ S

(2.3) w,_x< mS _1>
a+S

5(0) >0, =z(0)> 0.

We can regard m and a as the “natural” parameters of the organism
in this particular environment.

For system (2.3) the positive cone is positively invariant. Moreover,
if one adds the two equations, and lets ¥ = S + z, one has that

U=1-v

with ¥(0) > 0. It follows at once that lim;_, o, ¥(¢) = 1. This not only
gives the required dissipativeness but also that, on the omega limit set,
z(t) satisfies

m(l — z)
l4+a—-2

(2.4) 2(t) =z [ 1} , 0<z<l

Define
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(X is called the “break even” concentration.) (2.4) has two critical
points, = 0 and z = 1 — A, and the equation can be rewritten as

x':w(mi_l> 1—X—z]
l1+a—x

Clearly, if m < 1 or m > 1 and A > 1, then lim;, z(t) = 0. On
the other hand, if A < 1 and m > 1, then lim; o, 2(¢f) = 1 — A and
lim¢ 0 S(t) = A. If m < 1, the organism is washing out faster than
its maximal growth rate, while, if A > 1, there is insufficient nutrient
available for the organism to survive. In either case extinction is not a
surprising outcome. The case m = 1 is handled by using (2.4).

To study competition in the chemostat, introduce two different micro-
organisms into the system, labeled z; and x3, with corresponding nat-
ural parameters a; and m;,? = 1,2. We assume that the corresponding
A’s, A1 and \g, are different. The overall system becomes

: < = >
Ty =T -1
(2.5) a + S

S(0) >0, (0)>0, z3(0)>0.
In the same manner as above, one shows that

lim S(¢) + z1(¢) + z2(t) =1,

t—o0

where the convergence is exponential.

Again this yields the dissipative condition and the fact that, on the
omega limit set, trajectories satisfy

' m1—1
=N <1+ax1x2>[ 1= 71— 3

(26) meo — 1
.',Ulz = T2 (Hai—w> [l*)\g*Il*Ig]
xl(O) >0, wg(O) >0, ml(O) + IQ(O) <1
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This system is competitive, dissipative, and, since it is two-dimensional,
preserves the cone

K = {(z1,22) | ©1 > 0,22 < 0}.

The system (2.6) has three rest points,

Ey = (0,0),
E = (1 _>\170)7
E; = (0,1 — Xg).

THEOREM 2.1. Suppose that 0 < A\; < Ao < 1. Then any solution of
the system (2.5) satisfies

lim S(t) =

t—o0
A, ) =
hm za(t) =

PROOF. Let (z1(t),z2(t)) be a solution with initial conditions in
the positive cone. Its omega limit set is not empty and the trajectory
is asymptotic to it. Thus is it necessary only to analyze the system
(2.6). If there were an interior attractor, it must contain an equilibrium
point [21]. However, there are no equilibrium points in the interior
of the positive quadrant since A\; < A2, so the omega limit set is on
the boundary. (Two-dimensional competitive systems have no periodic
orbits.) A simple computation shows that E, is a repeller, E; is
asymptotically stable (locally) and E2 repels the interior of the cone.
Thus all trajectories tend to Ey. O

The experiments of Hansen and Hubbell [17] confirm the mathe-
matical result. By working with various microorganisms, Hansen and
Hubbell showed that it is the lambda value which determines the out-
come of the competition. It is worth noting that this was an example
of the mathematics preceding the biological experiment. I would like
to add some personal remarks. The biologist and the mathematicians
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collaborated from the beginning on the problem; hence, there was no
reluctance on the part of the biologist to carry out the time consum-
ing experiments. It is my experience that this sort of collaboration
is rare—biologists and mathematicians have different agendas in this
field—yet it is necessary for mathematical biology to achieve “scientific
respectability” outside the realm of interested specialists.

This theorem is an example of the principle of competitive exclu-
sion—only one competitor can survive on a single resource. Many of
the well-known models of competitive systems seem to satisfy this con-
clusion, for example, the two-dimensional Lotka-Volterra competition
model. However, in nature, many populations seem to coexist together,
ostensibly on the same resource. It becomes then an interesting prob-
lem to modify the model, taking into account some new aspect which
will produce coexistence. We will survey some of the modifications for
they lead to mathematically interesting difficulties. We can list the
following possibilities:

1. Introduce more competitors.
2. Modify the functional response.

3. Make either the nutrient concentration or the washout rate time
dependent (to introduce seasonal variations).

4. Introduce an additional trophic level.
5. Introduce delays in the conversion of nutrient to organism.
6. Introduce diffusion (remove the well-stirred hypothesis).

These possibilities are discussed in the next sections. Another possi-
bility, not discussed here, is to introduce multiple nutrients. This is a
subject of considerable scope and the interested reader might want to
consult [7, 25, 29, or 39].

3. Extensions. In this section we survey some of the literature for
the first two of the possibilities mentioned above. The modifications
will not produce (robust) coexistence but each adds an interesting
dimension to chemostat models.
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If, in the chemostat, several populations of microorganisms were in-
troduced, then the equations take the form (ignoring the yield con-
stants)
miSaci
a; +S

S .
m;:mi<m —D>, i=1,2,...,n,
a; + 8

S'=(8V-8)D->"
i=1

with S(0) > 0,2;(0) > 0. Scaling D and S® as above yields the
normalized equations

" m;Sz;
§=1-85-% ——
(3.1) =
xgzxi<mfs—1>, i=1,2,...,n.
a;

The corresponding \’s are defined by

7 m; — 17

where it is assumed that m; > 1 if )\; is to be defined. The basic
results are contained in two statements. If m; < 1, or if \; > 1,
then lim;, o, 2;(t) = 0. In this case the entire system merely tends to
a lower order dynamical system, that is, one with fewer competitors.
The statement provides necessary conditions for survivability and one
need only consider competitors which satisfy these conditions. Thus,
one can assume that all of the \;’s are defined. The second statement
is that, if

0< A <A< A3 << A,

then
lim Il(t) =1- )\1

t—o0

tliglowi(t)ZO, i=2,...,n.

A proof was given in [26] but a much neater (and more general) proof,
using a Liapunov function, appears in Hsu [23]. The proof in [23] also
allows the parameter (in the unscaled version) D to be different for each
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type of organism, that is, change D to D; in the unscaled equations.
Thus this result is (biologically) more general in that it can take into
account differing natural “death” rates. (The basic chemostat model
only allows removal through “washout.”) When there are more than
two competitors the monotonicity arguments given in the preceding
section do not work—at least directly—since a cone is not left invariant
by the flow. However, there is the preservation of “unorderedness” by
the flow (trajectories which are unordered at some time are unordered
at all future times.) It would be of interest to find a simple proof based
on this property which does not require a Liapunov function.

As noted above, the functional response in the chemostat equations
is based on experimental evidence and follows the Michaelis-Menten
dynamics of enzyme kinetics. It is one of a class of functional responses
known as Holling Type II [22]. There is also experimental evidence for
other types of functional responses, so it is of interest to consider models
of more generality. If one replaces this particular form with a general
term, the equations become (ignoring yield constants)

S8 = (S _-8)D - iwi(t)pi(s t
z, =z;(pi(S(t)) — D), i=1,2,...,n.

Introducing the same scaling as before yields the new system

(52) §'=1-85- ;xi(t)pi(S(t))

x;:xi(pi(S(t))fl), 1=1,2,...,n.

There is evidence, [42], that a particular nutrient can be inhibiting at
higher concentrations. Butler and Wolkowicz [6] consider the system
(3.2) under the following assumptions:

(i) p; : RT - RT;
(ii) p; is contlnuously differentiable;

) p

i(0) =

(iv) There exist unique, positive, extended real numbers \; and p;
such that p;(S) < 1if S & [A;, ], and p;(S) > 1if S € (g, ws);

(iii
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(v) If \; (or w;) is finite, then pf(XA;) # 0 (p}(pi) # 0);
(vi) All \;, u; (other than those which are infinite) are distinct from
each other and from 1.

In (iv) one makes the appropriate convention in case one or both of
the numbers are infinite. The number 1 which appears in (iv) reflects
the fact that the washout rate (the original D in the chemostat) has
been scaled to one while the number 1 in condition (vi) reflects the fact
that the nutrient concentration (the original S(°) in the chemostat) has
been scaled to one. (v) and (vi) make the proofs easier but [6] notes
that they can be removed. (iv) can be relaxed to a finite number of
real numbers at the expense of a more complicated proof.

It is easy to show that all solutions of the system (3.2) with positive
initial conditions are positive and that the system is dissipative. As
before, if \; > 1, then lim;_,, #;(¢) = 0. Thus, one may classify the
Ns by

0<)\1<)\2<"'<)\,,<1§)\j

where v + 1 < j < n. If v = 0, then no competitor survives. Define

174

Q = [J s, ).

i=1

If v = 0, then @ is empty. The principal result in [6] may now be
stated.

THEOREM 3.1. Let A denote the set of left endpoints of the compo-
nents of Q which are less than one together with the number 1 if 1 € Q.
With the exception of a set of initial conditions of Lebesgue measure
zero, all solutions of (3.2) satisfy lim;—, o S(t) = 7,7 € A, with the
following asymptotic behavior:

If y = \;, and j # i, then

t—o0

lim z;(t) = 0.

t—o0

Ifv=1,
lim z;(¢) =0, ¢=1,2,...,n.

t—o0
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Moreover, for each v € A, there is an open, nonempty set of initial
conditions for which the solutions of (3.2) satisfy lim; o S(t) = 7.

The exceptional set in the theorem is the stable manifold of equilib-
rium points whose S component takes on the value of one of the p;’s.
In the monotonic case, and, hence, in the basic chemostat model, Q
is connected so competitive exclusion holds (see also [1]). Of course,
when the p;’s are monotone, the u;’s are infinite and the exceptional
set does not exist.

The authors [6] conclude with an interesting theoretical water treat-
ment problem [42] to illustrate the use of the theorem. Suppose that
one contaminant is phenol and that the input concentration is high,
much higher than the acceptable level of concentration which is de-
noted by A, where A is assumed to be much less than the input con-
centration (which is scaled to one). There are two microorganisms
which feed on phenol. The first, denoted x; is growth limiting at low
concentrations but inhibited at high concentrations. In the parameters
above, A\; < A < p1 < 1 (after scaling). The other, denoted by z,
has A < A\, <1 < pp. Organism z, would limit the concentration of
phenol but at an unacceptably high level. If, however, one could find
organisms Zs, Z3,...,Z,_1 so that the (X, u) intervals overlap in such a
way as to provide a single connected component of @, then one would
have lim;—, 00 S(t) = A1, limy o0 1 (8) = 1— Ay, imy 00 z;(¢) = 0,7 > 1.
The system would equilibrate to a perfectly tolerable situation.

4. Forced oscillations. A natural modification of the chemostat
is to allow the system to be forced, that is, to remove the hypotheses
that the nutrient input concentration is constant or that the flow rate
is constant. Changing these corresponds to allowing time dependent
environmental changes in the lake being modeled (seasonal or day-
night changes are the most obvious). The most likely assumption, at
least for a first start, is to use periodic functions. Note that both of
these quantities are under the control of the experimenter, and, thus,
theoretical results on the problem suggest new experiments.

The case of an oscillating input nutrient concentration has been stud-
ied by Hsu [24], Smith [33], and Hale and Somolinas [16]. The case of
a varying washout rate has been investigated by Butler, Hsu, and Walt-



788 P. WALTMAN

man [4] and Gatto, Annaboratone, and Borghesi [15]. Stephanopoulos,
Fredrickson and Aris [37] vary both (as a step function) and present
some experimental results. The results in [4] will be described here.
The general philosophy is clear, however, and useful in the analysis of
other chemostat models. If the nutrient can be made to oscillate, then,
during part of its “cycle,” it may be in a region where one competi-
tor has the advantage, while in a different part of its cycle, the other
competitor might have the advantage. Could it not be then that both
could survive? The answer is yes, if the parameters are “right.” Right
will be defined by a bifurcation theorem. The principal tool will be
the use of the Rabinowitz bifurcation theorem, in a manner originally
suggested by the work of Cushing, for example [11].

The variable washout rate will be denoted by a function D(t) which
is assumed to be positive, continuous, and periodic with period w. It
is convenient to scale time by the mean value of D(t),

]_ w
EA D(t) dt,

and to again scale out the nutrient input concentration S(®). For a
variable washout rate, the equations take the form

Sx moST
S = (1-S)D(t) — 2271 _ 22T
( ) () a1+S CL2+S

’ mlS
= —D(t
(4.1) non <al s M ))
, maS
“b—”<@is_D@>

S(0)>0, z,(0)>0, x2(0)> 0.

Although the system is not autonomous, solutions will still be viewed
as parametric curves in the nonnegative cone R‘i. Since the system
is periodic one could also set up a discrete dynamical system and use
the monotonicity. Another possibility is to set up a mapping in an
appropriate function space as will be done below when differential-
difference equations are used. The approach in [4] is to consider the
nonautonomous system and deal with the resulting stability questions.
The positive invariance of the positive cone and the faces S — 3
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and S — zy follows much as before, and the uniform boundedness
follows from essentially the same invariance principle used in the simple
chemostat model, i.e., one again has that

(4.2) lim [S(t) + 21 () + 22(8)] = 1,

t—o0

where the convergence is exponential.

It also follows without much difficulty that liminf; ,, S(t) > n > 0.
The competitive exclusion conditions are also essentially as in the basic
chemostat model. If \; > 1, that competitor will wash out of the vessel,
and if 0 < A\; < A2 < 1 and m; > mg, then competitor number 2 must
wash out of the system. This sets the stage that coexistence is possible
only if both A;’s are less than 1 (we take A; < Ay as a matter of labeling)
and m; < mgy. (This last condition makes a; < as.) Roughly speaking,
a high m; makes a competitor do well at high concentrations by giving it
a high reproductive rate, and a low a; makes a better competitor at low
concentrations by allowing it to reach half of its maximal reproductive
rate at a lower concentration. (If this last point seems counterintuitive
at first, recall that \; < 1 is being assumed, so that the competitor is
able to survive in the system without competition. If a; were too low,
then its A would be “too high” (A > 1) for survival.) As a consequence,
coexistence can be anticipated only if the competitors have different
competitive strengths. This difference will manifest itself in the basic
hypotheses of the principal theorems given below.

The first step is to analyze the system with only one competitor, that
is, with an initial condition zero for one of the x;’s. Since the system
is nonautonomous, this is more difficult than before, and stability and
convergence rates play a much more delicate role. Suppressing the
subscripts, such a system would take the form

S'=(1-8)D(t) — ;"f‘z,
(4.3)
J;':m[ mS —D(t)} .
a+S

Rewriting the above “conservation” limit as

S(t) + z(t) = 1 + R(t),
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where R(t) = O(e **),t — oo, some a > 0. Then the z component of
(4.3) is a solution of

1-y)

4.4 oy | M=) p t

(4.4 v =v |70 - b))+ 00,

where r(t) = O(e **) as t — oo and @ > 0. In turn, (4.4) is a
perturbation of

m(l —z)

a+1—z_D@4'

(4.5) d:z{

That (4.5) has a unique asymptotically stable periodic solution was
shown in [3] using Massera’s theorem. Call the solution ¢;, where the
1 indicates the choice of m = m; and a = a;. The functions S; are
defined by S;(t) = 1 — ¢;. The following lemma sets the “foundation”
for the application of the bifurcation theorem.

LEMMA 4.1. Let 0 < A1 < Ao < 1 and let mqy > mo. There are
positive w-periodic functions Si(t), ¢1(t) such that every solution of
(4.1) with positive initial conditions satisfies lim;_, « |S(t) — S1(t)| = 0,
lim; oo |21 (t) — ¢1(t)| = 0 and limy_, o z2(t) = 0, where Sy and ¢ are
given above. The rate of convergence is exponential.

The proof of this lemma involves some careful estimates in order to
obtain uniform asymptotic stability. With this lemma, however, the
philosophy of approach is now clear. One wants to fix the parameters
for the first competitor and vary the remaining parameters in the
system to make the periodic solution in the S — z; face change stability
in the direction orthogonal to that face—that is, to make it bifurcate
into the positive cone. First one notes that there are three relevant
periodic solutions of the system (4.1). One is constant, the fixed point
(1,0,0) corresponding to the extinction of both competitors which we
label as Ey. The periodic solutions, (S1(t), ¢1(t),0) and (S2(t), 0, ¢2(¢))
are labeled E; and E5, respectively.

THEOREM 4.2. Let my and a; be given so that \y < 1. There
exists a = a(my,ay) such that, for any az > a,mq (the bifurcation
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parameter) can be chosen so that A\; < A2 and (4.1) has an w-periodic
solution (S(t),z1(t), z2(¢)), with all components positive, near Ey and
bifurcating from it.

THEOREM 4.3. Let mi,a1,as be given as above. There exists a
continuous one-parameter family of positive w-periodic solutions of
(4.1) connecting the solutions E1 and Es.

In principle, one could do the asymptotic expansion and obtain
information about stability and the direction of bifurcation. The lack
of knowledge of the solution ¢; did not seem to make this a profitable
approach. However, numerical simulation did show the bifurcating
solution to be stable.

These results, along with those of Hsu, Smith, and Hale and Somoli-
nas, do indicate that, when one observes coexistence, one might look
for a time varying environmental component as a possible explanation
of the lack of competitive exclusion. Of course, periodic functions are
the most elementary forcing functions—any input that would cause the
nutrient level to fluctuate between the regions where each competitor
has an advantage might produce a coexistence result. To the author’s
knowledge, such investigations have not been undertaken. Those inter-
ested in almost periodic solutions, for example, might find an interest-
ing problem here.

5. Three trophic levels in the chemostat. The introduction of
periodic coefficients in the previous section showed that coexistence was
possible but only in an oscillatory fashion. The nutrient had to cycle
between the regions where each of the competitors was dominant. A
natural question is whether the necessary oscillation can be produced
without resorting to outside “forcing.” This cannot happen directly
in the simple chemostat model as was shown above, but it is possible
if one introduces an additional trophic level. The chemostat will be
configured with a nutrient, a microorganism growing on the nutrient
and two competitors feeding on the microorganism. The discussion
follows [5]. See also Keener [28].

The mathematical model is quite similar to that discussed above. The
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first level is the nutrient. The second level—called the prey—grows
on the nutrient and is to be fed upon by two organisms at the third
level—called the predators. The principal result will be that, if the
parameters are right, the competing predators can coexist on the same
prey. We let S denote the nutrient, x, the prey, and y and z, the
predators. If we assume that all of the reactions are of Michaelis-
Menten type, the model, with the usual scaling, takes the form

m1Sx
S'=1-85—
ar+ S
' <m15’ may m3z>
=z —1- _
a1+ S az+z aztcw
(5'1) / moXx
= ~1
Y Y as +
z'—z< M —1>
a3+
5(0)>0, z(0)>0, y(0)>0, 2z(0)>0.

Even with only one predator, the system (5.1) is of interest as a simple
food chain. Since we need to analyze this system below, we note that
it takes the form

Sz
I: 17 o mi
S S a1 S
;L ( myS moy >
=z —1-
(5.2) ai+85 az +x
’ moX
- 1
v = (22 -1)
S(0)>0, «(0)>0, y(0)> 0.

(Food chains with more general functional response terms can be found
in [8].) In the same manner as before, one shows that solutions of (5.1)
satisfy

lim [S(¢) +z() +y(t) + 2(t)] = 1,

t—o0

and those of (5.2) satisfy
lim [S(¢) + z(t) + y(t)] =1,

t—o0
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where the convergence is exponential. Again, this yields the dissipative
condition and allows the elimination of one variable. It is convenient
to eliminate S so that, on the omega limit set, trajectories satisfy

, (ml(lmyz)_ may msz >

l14a1—2x—-—y—2 ax+zx az+c
’ moX
-1
(5.3) Y y(a2+x >

z'zz( Mt —1)
as +x

z(0) >0, y(0)>0, 2(0)>0, =z(0)+y(0)+2(0)<1.

T

T

Similarly, the omega limit set of solutions of (5.2) satisfy

dos(plosoy) )

l4+a1—2x—y ax+=x
’ moXx
= —1).

The approach to the problem is to study the food chain (5.2) first and
to find conditions under which there will be an oscillatory solution to
this system. Solutions of (5.2) correspond to solutions of (5.1) with
the initial condition z(0) = 0. Thus, one can consider one of the
parameters in the z equation as a bifurcation parameter and try to
bifurcate from the periodic solution in the food chain. Equivalently,
one seeks a periodic orbit of the planar system (5.4) and attempts
to bifurcate to a periodic orbit (5.3) which lies in the interior of the
positive cone of R3. The details are complicated and we sketch only
the basic ideas.

(5.4)

Before beginning, note that there are three values of the A-parameter

to consider, i.e.,
a; .
Ai= — T i=1,2,3.

m; —

The following assumption will be made throughout:

(H) m; >1 and A\; <1, 1=1,2,3 and Ay < g,
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(H) assures that all of the populations are viable in the current environ-
ment (m,a and D are related appropriately for survival to be possible)
and prejudices population 2 over population 3 and assures that they
are “different.”

The system (5.4) has two boundary equilibria, (0,0) and (1 — Aq, 0).
The hypothesis (H) makes the origin unstable. The remaining bound-
ary equilibrium will be asymptotically stable if \; +A2 > 1 and a saddle
point if \; + Ao < 1. It is not difficult to show that there is a unique
interior equilibrium point if A\; + A2 < 1 and no interior equilibrium if
A1+ A2 > 1. (Recall that we are assuming that 1 > \; > 0, for each i.)
The biological interpretation is that A; + Ay > 1 means the extinction
of the highest level predator (or predators).

Suppose the interior equilibrium does exist; label it (zq, yo)-

THEOREM 5.1. If

Yo miai

5.5 <
(5:5) (a2 +X2)2 ~ (L+a1— A2 —10)?

then (9, yo) is globally asymptotically stable with respect to the interior
of the first quadrant.

THEOREM 5.2. If the inequality in (5.5) is reversed, there exists a
periodic orbit for (5.4).

The periodic orbit given by Theorem 5.2 corresponds to a periodic
orbit in the plane z = 0 for the full system (5.1). It is from this
orbit that the bifurcation is to occur. One suspects that this orbit
is unique and is orbitally asymptotically stable. If there are several
periodic orbits, then the inner one must be stable from the inside (since
the above condition is a local instability condition for (z¢,yo)) and the
outer one stable from the outside (by the dissipativeness of the system).
This is strong enough to guarantee a stable periodic orbit. However,
we shall have to assume slightly more:

There exists a limit cycle for (5.4) which has a

(S)

Floquet multiplier strictly inside the unit circle.
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The following theorem summarizes the case of competitive exclusion
for the full system.

THEOREM 5.3. Let mg < mg and let (H) hold. If (S(t), z(t),y(¢), 2(t))
is a solution of (5.1) with positive initial conditions, then

lim z(t) =0.

t—o0

Thus mo < mg is necessary for coexistence. The coexistence case is
established by a bifurcation argument, and the principal result takes
the form

THEOREM 5.4. Let a;,m;, be fixred so that m; > 1,i = 1,2, and
Ai < 1. Let (S) hold. Fiz ms > ms. Then there exists a number aj
such that for az < af, and |as — a}| sufficiently small, one has g < A3
and (5.1) has a periodic orbit in the positive cone in R* arbitrarily near
the plane S +z+y =1,2=0.

6. Delays in the chemostat. Another way that oscillations
can be introduced into model ecosystems is to incorporate into the
model the delays naturally inherent in the biological system. In the
chemostat, there are two possible sources of delays, delays due to the
possibility that the organism stores the nutrient (and, consequently,
the “free” nutrient concentration does not reflect the nutrient available
for growth), and delays due to the lag between consumption and
cell division. Caperon [9] introduced delays into a model of the
chemostat to reflect the internal storage of nutrient (see Droop [12]).
The model of Caperon suffers from the fact that it leads to negative
concentrations—a certain sign of a modeling error. Constructing an
“internal stores model” of the chemostat with delays remains an open
modeling problem and one surely of interest. Bush and Cook [2]
investigate the growth of one organism in a chemostat with a delay
term to reflect the delay between consumption and growth. (As a
consequence, there is a delay in the growth equation but no delay in
the consumption term in the nutrient equation.) This was extended to
the competitive situation by Freedman, So and Waltman [14]. This is
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the model discussed below where the format of the equations is very
much like that of the equations discussed before.

The model is written for an arbitrary monotone consumption term,
but it is the simple chemostat model if one uses Michaelis-Menten
kinetics for this function. It is supposed that each competitor has a
delay 7; which affects its growth rate, that is, its specific growth rate
is a function of the nutrient level at time ¢ — 7;. The model takes the
form of a system of differential-difference equations:

S'(t) = 1= 8(t) — z1(H)pa(S(t)) — 22()p2(S(1))
(6.1) i (t) = w1 (8)[pa(S(t — 7)) —

where 71,72 > 0,5(t) = ¢(t) > 0 on [-7,0],7 = max(r,72), and

z;(0) = x50 > 0,i = 1,2. The last two equations can be written in
integral form as

25(t) = 2:(0) exp </0tpi(5(9 S —1) d0> .

Hence the “method of steps” is applicable and the proper initial value
problem is as indicated by the initial conditions given above. Using the
above integral representation and a simple inequality argument for S’,
it is not difficult to show that solutions of the system (6.1) are non-
negative for all positive time. The “conservation” argument used before
to obtain boundedness (and to reduce the complexity of the problem)
is no longer valid. The boundedness and the continuability of solutions
of the system (6.1) can be established but it is not quite as easy as with
the previous chemostat problems.

The investigation of solutions of the problem takes the following form.
First, one population growing on the nutrient is analyzed (after some
scaling) and a Hopf bifurcation (with the delay as parameter) is shown
to exist, establishing the existence of a periodic solution (S(t), Z1(t),0).
For one population of microorganisms the two-dimensional system

governing growth is

S'(t) =1-8(t) — 21 (t)p1(S(t))

(6-2) @h(t) = @1(8)[pa(S(t — 1)) — 1].
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After scaling one has

S'(t) = 7[1 = S(t) — 21 (t)p1 (S(2))]
) (t) = o1 (t)[p(S(t - 1)) — 1].

(6.2) has a unique equilibrium point E* = (S*,z*) since p; is strictly
increasing. This point bifurcates into a periodic orbit for 7 large.

THEOREM 6.1. There exists 79 > 0 such that a family of periodic
solutions of (6.2) bifurcates from the equilibrium point E* for T near
T0-

Although stability is, in principle, computable, and a procedure is
provided in [18] for a delay equation, the calculation is extremely
complicated and stability has not been proved. Numerical solutions
show the asymptotic stability quite clearly. Assuming that the solution
is asymptotically stable, a secondary bifurcation can be shown to occur.
The argument requires a form of a Poincaré map in the appropriate
function space. The Rabinowitz bifurcation theorem (in the form given
by Smoller [35, p. 173]), is applied to this mapping to yield the existence
of a periodic solution with a positive x5 component. The parameter
involves an integral of a function of the oscillating solution—a sort of
weighted “mean value.” In the case of Michaelis-Menten dynamics,
the value of this parameter can be controlled by the constant msy. In
the general case, there must be a natural parameter so that one can
write fo = p fz and keep fg fixed while varying p. Thus, coexistence of
competing predators is possible in a chemostat if there is sufficient delay
between nutrient uptake and reproduction. The principal theorem
takes the form of a bifurcation statement.

THEOREM 6.2. Suppose that (6.2) has a (linearly) asymptotically or-
bitally stable periodic solution (S(t),&(t)) with period T > 0. There
exists a branch of periodic orbits of (6.1), with positive x5 compo-
nent, bifurcating from the above orbit in a neighborhood of py =

i pa(Ss) ds] o
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Stability considerations and qualitative properties of solutions of the
system (6.1) remain open problems. A more careful biological analysis
of the possible causes of delays should lead to a more realistic model of
competition in the chemostat. One could certainly speculate that the
damped oscillations observed in the experiments reported in [17] could
be caused by delays.

Figure 6.1 shows the time course of a sample problem and Figure 6.2
shows the projection of the coexisting orbit onto each of the possible
pairs of variables.

1.0

CONCENTRATION

-10.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0

TIME
-1.0 T

FIGURE 6.1. The time course for the coexistence case. (Michaelis-Menten
dynamics, m1 = 3.1,m2 = 3.09,a1 = 1l.,a2 =1.,71 =3, 72 =4 .

7. The unstirred chemostat. In this section the “well-mixed”
hypothesis in the chemostat will be removed and the nutrient and
organisms will be allowed to diffuse through the chemostat. The work
follows [36]. Only one space variable will be considered; obviously,
three would be desirable. The model then becomes a system of partial
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1.0 —
X, ST
f f f f f f f f f f f {
€ 5 1.0
o s
1.0 T
x, S+
f f f f f f f f f f f
i 5 1.0
o s
1.0 T
x5 S5+
f f f f f f f f f f f
q 5 1.0
X1

FIGURE 6.2. Three projections onto two variables, same parameters
as Figure 6.1: (a) S —z1 (b) S — @2, (c) ©1 — z2.
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differential equations of the form

miSu moSv

St = Szm - -
! a1 +S az+S
m1Su
( ) Ut = tos + a1+ S
Vp = Vgg + —m25v
t — Uzx as + Sv
with boundary conditions
Sy(t,0) = —S©
Uz (t,0) = v, (¢,0) =0
(7.2) Sz(t,1) +~4S(t,1) =0
uz(ta 1) + PYU'(t’ ]-) =0
'Um(ta ]-) + ’Y’U(ta ]-) =0

and initial conditions

(7.3) u(0,2) = up(z) >0

(The common diffusion constant has been scaled to one, the source
placed at z = 0 and the overflow placed at z = 1.) The change from
the basic chemostat to (7.1)—(7.3) is clear except possibly for moving
the “input” and “overflow” from the equations to the boundary con-
ditions. This point is clarified below. One seeks steady states of this
problem, in particular, coexistence steady states, since the basic bio-
logical question is whether the introduction of a nutrient gradient can
result in coexistence. There is an affirmative answer but without a
stability conclusion. Moreover, in examples, the coexistence region is
quite small. The interesting mathematics is in the resulting nonlinear
boundary value problem for two coupled second order, ordinary differ-
ential equations. Although the particular form of the nonlinearity is
exploited, this type of boundary value problem would seem to be of
mathematical interest with a more general nonlinearity (and without
differentiability of the nonlinear term). The consideration of different
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diffusion coeflicients would be more realistic but this remains an open
problem.

The boundary conditions require some discussion. Consider a small
region of width h near the boundary. If S(t,z) is the nutrient con-
centration, then the total nutrient in the region at time ¢ is given by
T= foh S dz. The net flux into the region is S;|,—n + SO Since there
is no flow through the “left hand” wall and since S(°) is constant, as
h — 0, one has S,|,—0 = —S©. That u,(t,0) = v,(t,0) = 0 simply
reflects the fact that there is no flow of microorganisms through the
wall. Similar arguments apply at the right-hand end where nutrient
and microorganisms are “pumped out” of the vessel.

Some scaling is in order. As before, concentrations can be measured in
units of $(©, the input concentration, which has the effect of changing
the first boundary condition in (7.2) to S;(¢,0) = —1 and changes a;
but not the form of the nonlinearity. Let

S
i(S)=——=, =12
J ( ) a; +S ’
A conservation principle is present but it is more complicated than
before because of the partial derivatives. If w(t,z) = S(¢, z) + u(t, ) +
v(t,x), then

Wy = Wazs

with boundary conditions

wy(t,0) = —1

wy (8, 1) +yw(t, 1) =0
and initial condition w(0,z) = h(z) = So(z) + uo(z) + vo(z). To solve
this equation, subtract the steady state solution z(z) = (1 +v)/v — =
from w(t, ) to get the homogeneous problem in ¢ (¢, z) = w(t, z) —z(z),

bt = Paz

¢(t,0) =0

¢e(t,1) +7¢(t,1) =0

#(0,2) = ¢o(x).
It is easy to see that lim; o, @(¢,2) = 0 or that, for z € [0, 1],

(7.4) S(z) + u(z) + v(z) = z(x).
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Thus, any steady state solution of (7.1)—(7.3) satisfies (7.4). We use this
to eliminate S and study the boundary value problem for two ordinary,
differential equations,

u’ +myufi(z(z) —u—v) =0
v+ mavfa(z(z) —u—v) =0
(7.5) u'(0) = 2'(0)

Solutions of interest have u(x) > 0 and v(xz) > 0, since this corre-
sponds to coexistence of the competing populations.

THEOREM 7.1. Let a; > 0,2 = 1,2, and v > 0 be fized. There exists
a nonempty unbounded open set in R?l— such that, for (my,msy) € R?I—’
(7.5) has a solution (u(x),v(z)) with u(z) > 0,v(z) > 0, for z € [0,1].

It will be convenient to use the integral formulation of the boundary
value problem. Let

o) HT‘Y—JJ, 0<r<cz
z,7T) =14,
—",;7—7', r<71t<1

The equivalent system of integral equations is

u(e) =my | Gl ulr)fx(r) - ulr) = o(r)) dr
(7.6) °

v(z) = my / G, 7)o(r) fol2(7) — u(r) — v(r)) dr.

The proof follows from three lemmas. The approach is to utilize two
applications of bifurcation from a simple eigenvalue, first for nonlinear
Sturm-Liouville problems [10] and then for a mapping defined from the
integral operators in (7.6) [35].

LEMMA 7.2. Let g be the first eigenvalue of

(7.7) '+ Af(z(2))y =0,
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subject to the boundary conditions

y'(0)=0
(7.8) , _
y'(1) +yy(1) =0.
For mi1 > Xo, there exists a positive solution u(z) of
v’ +myufi(2(z) —u) =0
satisfying (7.8).
Fix any m; > Ao and let @(z) denote the solution guaranteed

by Lemma 7.2. The following technical lemma is important in the
bifurcation arguments.

LEMMA 7.3. Let 4(x) be as above. Then my is not an eigenvalue of
u’ + A f1(z(2) — 4(2)) — a(2) f'(2(2) — @(x))]u =0
with boundary conditions (7.8).

The theorem is established by the following statement about the
boundary value problem (7.5).

LEMMA 7.4. Fiz m; and @ as above. Let \ be the least eigenvalue of

" + Afa(2(z) — a(z))v =0
v'(0) =0
v'(1) + yv(1) = 0.

As mo increases past \ and sufficiently close to \, there exists a
family of solutions (u(z),v(z)) of the boundary value problem (7.5) with
u(z) > 0 and v(z) > 0.
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4.0

35—
3.0
25 - 2
2.0
1.5 - 3
1.0 -
0.5 -
0.0
-0.5 T T T T T T T T T \

+0.00 +0.20 +0.40 +0.60 +0.80 +1.00

X

u(x)

4

FIGURE 7.1. A coexistence case: u(z). (y = .3,m1 = 1.32475,
a1 = 1.5, az = 2.0, four values of m2).

4.0 -
e
3.0 -
2.5 7
2.0
3
1.5 -
v(x)
1.0 -
0.5 7 2
0.0 T T T T T T T /\/1 T \
+0.00 +0.20 +040 +0.60 +0.80 +1.00

X

FIGURE 7.2. A coexistence case: v(z). (Same parameters,
corresponding labels.)
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