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ABSTRACT. Continued fractions K(—an (z)/A(z)) are con-
sidered, where an(z) Z 0, n € N, and A(z) are holomorphic
functions on a region M C C such that limp— o0 an(z) = 1/4
holds uniformly in M. They converge on M\S, S := {z €
M : A\(z) € [-1,1]}, to a meromorphic function F(z). Con-
ditions on the speed of convergence of the sequence an(z),
n € N, are given which ensure that F(z) can be extended
meromorphically across S into a part of the Riemann-surface
of A(z) — (A2(z) — 1)1/2. For special classes of continued frac-
tions, explicit analytic extension results are given.

1. Introduction and main results. We first consider limit-
periodic analytic continued fractions of the type

ai az as

B wl w SRR

>| =

(1) FA) =

where a, € C, a, # 0 for all n € N and lim,, , a, = 1/4 holds.
It is well known (see [3, 4, 8]), that the right side in (1) converges
and represents a meromorphic function f(\) in D* := C\[-1,1], the
complex plane with a cut along [—1,1] C R. Let D** be a second copy
of D* and assume that D* and D** are connected along the cut [—1, 1]
by crosswise joining opposite boundaries of the cut. This generates the
Riemann surface of (\? —1)'/2 where (A2~ 1)1/2 > 0 for A > 1, A € D*.

In [5, Theorem 1] the author proved
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Theorem A. Put b, :=1— 4a, forn € N, and assume that

(2) Z |bj|R} < 0o holds for some Ry > 1.

j=1
Then f(A) = G(\)/H(\) holds, where G and H are (explicitly given
in Lemmas 2-5) holomorphic in D* and can be extended analytically
across the cut [—1,1] from both sides into a region of D** which is
bounded there by the ellipse

2 2
(2ReN/(RY + R5'%)) + (2tm A/ (R — 5 %) =1,

Their focal points 1,—1 are algebraic branch points of order 2 for f(\).
Furthermore, G and H can be extended continuously onto this ellipse. If
(2) is satisfied for all Ry > 1, then G and H can be extended analytically
onto D** (e.g., if b, = 0 holds for all n > ny).

In the present paper we will use formulas and estimates which were
derived in [5] and now are summarized in Section 2. These are taken as

the starting point in order to prove several generalizations of Theorem
A.

Together with (1) we also consider the following continued fraction

(1) Flioy= L @@ el wE@
AZ) = Az) = A2) = AMz) -

where a,(2) Z 0, n € N, and A(z) are holomorphic functions of z
on a region M C C, such that lim,_, a,(z) = 1/4 holds uniformly
on each compact subset of M (abbreviated: “uniformly in M”). Put
S:={z€ M: \z) € [-1,1]} and M* := M\S, which, in general,
is an at most countable union of disjoint regions. M* = & iff A\(z) is
a constant in [—1,1]. We always assume M* # @. By substituting
A = A(z) and a,, = a,(2) in exactly the same identities and estimates
(see Section 2) which were used in the proof of Theorem A, we now
obtain the much more general

Theorem A'. Putb,(z) := 1—4a,(z) forn € N, z € M and assume
that, for a fized Ry > 1,

(2" Z b;(2)|R) < 0o holds uniformly in M.
j=1
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Put w(2) := \(z) — (\2(2) — 1)Y/2 for z € M, where the square root is
to be chosen such that |w(z)| < 1 holds for all z € M*.

Then the following hold.

(a) The right side of (1') converges and represents a meromorphic
function F(z) on M*. More precisely, F(z) = G(z)/H(z) holds, where
G(z) and H(z) are holomorphic on M* and are obtained from G(\) and
H()) in Theorem A by substituting A = A\(z) and b, = b,(z) in their
series representations as stated in Lemmas 2-5 and where we assume
H(z) # 0 (this already follows from (2') with Ry = 1).

(b) If L C S is an arc which is bijectively mapped by A onto an open
subinterval of [—1,1] such that X' () # 0 holds for all z € L, then G(z)
and H(z) can be extended analytically across L from both sides into a

region in a second copy of M as far as A(z) remains inside the ellipse
of Theorem A.

(c) If, for some zo € S, Mz9) = 1 or = —1 and N(2¢) # 0 holds,
then zy is an algebraic branch point of order 2 for the extended function

(d) Thus, G and H can be extended analytically into a part of the
Riemann-surface of w(z) over M (obtained by extending w(z) from M*
across S into a second copy of M). If (2') holds for all Ry > 1, then G
and H can be extended analytically from M* into the whole Riemann-
surface of w(z) over M.

(e) In the special case M = C and \(z) = z, precisely the same result
holds for F(z) as is stated for f(\) in Theorem A, provided H(z) # 0.

Remark 1. Condition (2') can even be replaced by the weaker
condition: >332, [b; () (w(2))¥]| < oo uniformly on suitable subsets of
the Riemann-surface of w(z) over M.

The essential steps of the proofs of Theorems A and A’ are given in
Section 2. Another generalization of Theorem A is

Theorem B. Put b, := 1 — 4a,, for n € N and assume that there
erist R > 1 and p € N together with suitable numbers cy = 1,
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C1,C2,...,¢p € C, such that
%) ) o) ' P

(3) Z b;|°R¥ < 0o and ZRQJ Z Cnbjin| < 00
j=1 j=1 n=0

hold.

Then f(X) = G(N)/H(X) holds, where G and H (from Theorem A) can
be extended analytically from D* across the cut [—1,1] from both sides
into a region of D** which is bounded there by the ellipse

(2Re\/(R+ R 1))*+ (2Im\/(R— R Y))* = 1.

Their focal points 1, —1 are algebraic branch points of order 2 for f(\).

Remark 2. Of course, (3) holds for R = R(l)/2 if Ry satisfies (2). But
for special sequences b;, j € N, it may be possible to choose cy, ... ,cp

such that (3) holds for an R > Rl/z. If the b;, j € N, satisfy the
difference equation Y »_ c¢pbjin, = 0, j € N, then (3) holds with
R = Ry from (2).

The proof of Theorem B is given in Section 3. Its main steps, which
are rather technical, are combined in Theorem 1. Afterwards, it is

shown that from the same identities and estimates which are used in
the proof of Theorem B we also obtain the much more general

Theorem B'. Put b,(z) := 1 — 4a,(2) forn € N, z € M, and
assume that there exist fited R > 1 and p € N together with suitable

functions c1(2), ... ,cp(2) which are holomorphic on M such that, with
co(z) =1,

(3" Z (2)PR¥ < > and ZR2J ch bjn(2)| < 00

hold uniformly in M. Furthermore, assume Y b _ cq(z)w(z) 2™ £ 0,
where w(z) is defined in Theorem A’.

Then the same conclusions hold for F(z) in (1') as stated in Theorem
A’, except that now, in part (b), analytic extension across L is possible
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as far as A(z) remains inside the possibly larger ellipse of Theorem B.
In the special case where c1, ... , ¢, are constants and M = C, A\(z) = z,
precisely the same result holds for F(z) as stated for f()\) in Theorem
B, provided H(z) # 0.

Remark 8. 1If, in (1'), lim,_ o an(z) = a?(z) holds uniformly in
M, where a(z) is holomorphic and # 0 on M, then an equivalence
transformation leads to a continued fraction of type (1’) where a,
is replaced by a,(z)/4a?(z) and A by A(z)/2a(z). To this equivalent
continued fraction, Theorems A’ and B’ can be applied directly.

Further results concerning meromorphic extensions analogous to
those stated in Theorems A and B obviously are obtainable for contin-
ued fractions which are related to (1) by means of variable substitutions
and equivalence transformations (e.g., regular C-fractions as considered
in [5] and [6]).

A method of meromorphic extension which is different from the one
used in this paper is the general method of “modified” continued
fractions discussed in the work of Gill [1], Jacobsen [2], Thron and
Waadeland [6, 7]. Many general results are obtained there. But these
are not as explicit as the results obtained in the present paper.

2. Some auxiliary formulas and results. Asusual, 1/A _ a;/\ _

_ap_1/X = A, /By, holds for each n € N (with ag := 1), where
A,, B, are polynomials in A of degree n — 1, n respectively, which
satisfy, for n € N,

An+1 = )\An - anAn—h AO = 07 Al =1

4
( ) Bn+1 = AB, —a,B,_1, By=1, B;=A\

The substitution 2)A =: w +w™, w € C, w # 0 maps 0 < |w| < 1 onto
D*, |w| > 1 onto D** and |w| = 1 onto both boundaries of the cut
[-1,1] C R.

Using this substitution and b, := 1 — 4a,, n € N, we obtain, from
(4),
(1 - 0?)(20) Ansr =(1 +w?)((1 - w?)(20)" " A,)
+w?(by, — (1 — w?)(2w)"24,,_1).
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Since (1 — w?)(2w)" 1A, and, similarly, (1 — w?)(2w)"B,, are polyno-
mials in w?, we put w := w? and define C,,(w) := (1 — w)(2w)" 14,
D, (w) := (1 — w)(2w)"By,. Then (4) implies, for n € N,

(5)

Cn+1 = (1+w)C’n—wC’n_1 +b,wCp_1, Co=0, Ci;=1-w,

D1 = (1+w)D,—wD,, 1 +b,wD, 1, Dy=1-w, D;=1-w’

In [5], the following explicit representations for C, and D, were
derived from (5).

Lemma 1. For firted r = 0,1,2,..., let Cp, and D, , be defined
as the sum of all terms bj, bj, ---bj w™ (r-fold products of b;’s with
arbitrary m) which occur in C, and D, respectively. Then C, =
ZOSTS(TL—I)/Q CrnryDpn = Eogrgnﬂ D, » holds, where Crg =1 —w",
Dpo=1—w"" and, forr > 1,

n—2r+1 n—2r+3
(1-—w)"Cphyr=w" Z b, (1— w1t Z bj,(1— wi2mi )
J1=2 J2=Jj1+2
n—1
Z bj, (1 — wir=Ir=171) (1 — " ir)
Jr=jr—1+2
(n>2r+1,50:=04r=1) and
n—2r+1 n—2r+3
(1-—w)" Dypyr=w" Z bj, (1 —w') Z bj, (1 — wi2==1)
Ji=1 J2=j1+2

n—1
Z bj, (1 — wir=Ir=171) (1 — " ~ir)
Jr=jr-1+2
(n>2r,jp:= =1 ifr = 1), respectively.

Next, we want to determine the limits of C,,D,,Cy ., Dy, for
n — 0o. Assuming (2) to hold, this is possible only for |w| < 1 because
of the factors (1 — w™ Jr), which occur in the sum representations of
CnryDpnyr and which, in general, are responsible for the divergence
of (1) for A € (—1,1). After having obtained ezplicit infinite series
expressions for the above limits for |w| < 1, it will be shown that, under
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condition (2), these series even are absolutely uniformly convergent for

Lemma 2. Fork,r€Z, k> —1,r >0, put
Sk,O =1 and Sk,r = S;w(w) = Z b](l - wj_k_l)Sj,T,l
for r > 1. Assume that (2) holds and put

Pk+2 = prt+2(Ro) :=2 Z |bj|Rf;_k_1 for k> —1.
j=k+2

Then, for eachr € N, k > —1 and all |w| < Ry,

ISk, (W) < prt2pPkta - Prtar

holds. Especially, all series S, are absolutely uniformly convergent for
|w| < Ry. Hence, each Sk, is holomorphic for jw| < Ry and continuous
for lw| < Ryg.

The proof of this Lemma is obvious, and the proof of the next Lemma
also is given in [5].

Lemma 3. Assume that Y7, |bj| < oo holds. Then, for eachr >0,
Cr = limy 00 Cnyry Dy i= limp 00 Dy, and also C' := limy, o0 Ch,
D :=lim,_,o D,, ezist uniformly on every compact subset of |w| < 1.
Furthermore, C§ =1, D§ =1 and, forr > 1, |lw| < 1, C} and D} are

explicitly given by

(1 —w)" O} (w) = w" o, (w)
(6) (1= w)" D} (w) = w'S 1 ,(w),

the series Sk ,(w) being absolutely uniformly convergent for |w| <
1, k > -1, r > 1. Finally, C(w) = Y 2, CHw) and D(w) =
o2 o Di(w) hold for |w| < 1, where the series are absolutely uniformly
convergent on every compact subset of |w| <1, w # 1.
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Lemma 4. Assume that (2) holds. Then, for each v > 1, C¥(w)
and D¥(w) are holomorphic for lw| < Ry and continuous for |w| < Ryp.
Furthermore,

C7(w)| < (lwl/(Ro = 1))"p2pa---par  and
(7) D7 (w)| < (|w]/(Ro —1))"p1ps -~ p2r—1  hold for
r>1 and |w| < Ryp.
Hence, Y .2 Cx(w) and Y. D (w) are absolutely uniformly conver-
gent for |w| < Ry, and their sums C(w) and D(w) are holomorphic for
|lw] < Ry and continuous for jw| < Rg.

Proof. According to (6) and Lemma 2, C¥ and D} are holomorphic for
|w|] < Rp (with removable isolated singularity at w = 1) and continuous
for jw| < Rp. Since |1 — w| > Ry — 1 holds for |w| = Ry > 1, (6) and
Lemma 2 show that (7) holds for |w| = Ry. Applying the maximum
principle to C}(w)w™" and D}(w)w™" shows that (7) also holds for
|w] < Rp. The rest of Lemma 4 follows from limg_,o pr = 0. O

Lemma 5. Assume that (2) holds. Then f(\) in (1) satisfies
f(A) =G(\)/H(N) for A € D*, where
G()) = 2wC(w?), H()\) := D(w?),
(8) N=w+wl or w=A-(\-1)2
with (A2 =1)Y2>0 for A >1,A € D*.
The functions C(w?), D(w?) are holomorphic for |w| < Ré/2 and con-
tinuous for |w| < Ré/z.
Hence, G(\) and H(\) can be extended analytically from D* across
the cut [—1,1] into a region of D** bounded by |w| = Ré/Q or, in terms
of A\, by the ellipse stated in Theorem A.

Proof. From the definition of C,,, D,, follows
An(N)/Bn(A) = 200, (w?)/Dp(w?®) forn € N,0 < |w| < 1.

Lemma 3 shows that f(\) = limy, 00 A, (N)/Bn(X) = 2wC (w?)/D(w?)
holds for 0 < |w| < 1 or, equivalently, A € D*. The rest follows from
Lemma 4. ]



MEROMORPHIC EXTENSION 547

Lemmas 1-5, altogether, again prove Theorem A.

In order to prove Theorem A’ we substitute b, = b,(z) and w =
w?(z). Then all identities and estimates in Lemmas 1-5 remain valid if
(2) is satisfied. All infinite series are absolutely uniformly convergent
for z in compact subsets of M on which the two-valued function
w(z) satisfies |w(z)] < Ry. Starting from (8) we define G(z) :=
2w(2)C(z,w?(2)) and H(z) := 2w(z)D(z,w?(2)), where C(z,w) and
D(z,w) are obtained from C'(w) and D(w) by substituting b,, = b, (z),
n € N. Then F(z) = G(z)/H(z) has all the properties stated in
Theorem A’.

3. Proof of Theorem B. The first part of condition (3) implies
condition (2) for each Ry that satisfies 1 < Ry < R. Hence, Lemma 2
shows that, for every £ > —1 and r > 0, S, is absolutely uniformly
convergent on every compact subset of |w| < R and, therefore, is
holomorphic for |w| < R.

Now, the technical main steps of the proof of Theorem B are combined
in

Theorem 1.  Assume that (3) is satisfied and put P(w) :=
Zi:o cow™. Let Ry be a fired number with 1 < Ry < R. Then the
following statements are true.

(a) For k> —1andr >0, (P(1/w))"Sk,r(w) is uniformly convergent
for Ry < |w| < R?, and, hence, holomorphic for Ry < |w| < R? and
continuous for Ry < |w| < R2. Furthermore, there exist constants
K1, Ky > 0, such that

|(P(1/w))"Sk.| < ek holds for Ry < |w| < R?,
where we have defined for Ry < |w| < R%, ej 0 := 1,

P

Z cnbjin

n=0

?

0o 1/2 [e's)
e (w) = Kl( 3 |bj2w|ﬂ’“) £y fuph

j=k+2 j=k+2
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and, forr > 2,

ek,r(w) =

%) 1/2 oo
Kl( > bj|2w|f—’“) + 37w Rt

j=k+2 i=k+2

€k4+2,7—1

P
chbj+n
n=0
00 1/2 ) 1/2
+K2(Z |bj|2|w|f’“) (Z b12|w|l“) Chrars.

j=k+2 I=k+4

(b) With K := K1 +K2/K1,

err(w) <
oo ) 1/2 3] ) P
K(Z |bj|2|wf-’“) S b S eubyen] | enea(w)
j=k+2 j=k+2 n=0

holds for Ry < |w| < R?. Hence, if we define, for k > —1,
Prt2 = Piy2(R)

°° 1/2 5]
;:K( Z |bj|2R2(j—k)> + Z R2(j—k—1)

j=k+2 j=k+2

I

p
E Cp, bj+n
n=0

then
[(P(L/w))" Sk, (W) < pryoPria Pryor
holds for Ry < |w| < R?, k> —1,r > 1.
(c) Let Ry and Ry be chosen close to R such that 1 < Ry < R <
R? < R? and P(1/w) # 0 holds for |w| = Ry and |w| = R3. If m >0
is a lower bound of |P(1/w)| for |lw| = Ry and |w| = R2, then

Sk, (W) < M7 P o (R) P a(R) -+ pryar(R)

holds for Ry < |w| < R?, k > —1, r > 1. In particular, k = 0, —1 and
(6) yield
lw™" (1 — w)"Cr(w)| < m™"p3px -+ p3y
and
lw™" (L —w)"Dy(w)| < m™"pips - p3_y



MEROMORPHIC EXTENSION 549

for Ry < |w| < R} and r > 1. Hence, Y .o CH(w), Y02, Di(w)
are absolutely uniformly convergent on each compact subset of Ry <
|lw| < R? and their sums C(w), D(w) altogether (see Lemma 4) are
holomorphic for |w| < R? and continuous for |w| < R? with possible
exceptions only at zeros of P(1/w) on |w| = R?.

(d) Asin Lemma 5, f(A) = G(\)/H(\) holds with G(\) = 2wC (w?),
H(\) = D(w?), 2\ = wHw ! orw = A= (N2 =1)Y2 with (\2=1)1/2 >0
for A > 1, A € D*. The functions C(w?), D(w?) are holomorphic for
|w| < R and continuous for |w| < R with possible exceptions only at
zeros of P(1/w?) on |w| = R. Hence, G()\), H()\) can be extended
analytically from D* across the cut [—1,1] into a region of D** bounded
by |w| = R, or, in terms of A, by the ellipse stated in Theorem B.

Proof of Theorem 1. (a). We first assume 0 < |w| < R and r > 2.
Then S, converges absolutely for these w (Lemma 3). Therefore,

[o9) p oo
P(l/w)sk,r = P(l/w) Z bijyrfl—Z cnw_" Z bjwj_k_ISj,T,1
j=k+2 n=0 j=k+2

:P(l/w) io: bij,T,1

j=k+2
P 00
— E Cn’win E bj’wjikilsjﬂﬂ_l
n=0 j=k+24n
P k+n+1
—E cpw " E wak*lbij’T,l
n=1 j=k+2
oo
=P(1/w) 3 b;Sje
j=h+2
p [e'9)
2 : — 2 : j+n—k—1
- ChW " bj+nw]+” Sj+n77-,1
n=0 j=k+2
k+n—+1

p
- E anin E ’U}Jikilbijﬂn_l
n=1

j=k+2
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holds and, finally,

P(1/w)Sk,» = P(1/w) ZbS]T 1—2103 k= 1SJT 1<ch ]_,_n)
j=k+2 j=k+2
k+n+1

p
—E cpw™ " E wJ_k_lbjS-w,l
n=1

j=k+2

P o0
(9) +> en Y w0 (S 1 = Sjino1)-

n=1 j=k+2

From the definition of S ,_1, follows

Sj’T,1 — S]‘Jrn’rfl = Z bl(l — ’wlijil)sl,r72

I=j+2
oo
Z bi(l— w78,
I=j+n+2
j+n+1 j+n+1
= Z by Si,r—2 — Z bw' ™IS, s
I=j+2 1=j+2
oo
Z bl’wlijilslﬂﬂ_g.
l=j+n+2
Substituting this into (9) yields
Jj+n+1
ch Z wjikilijrn Z blSl,r72
n=1  j=k+2 1=j+2
j+n+1
—ch Z wi k- lbj+n Z bw! I lSlT 9
= j=k+2 I=j+2

(10)

P [ee]

+ch(w’”—1) Z wi Kb, i biw' IS, .

n=1 Jj=k+2 l=j+n+2
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In the last two sums j and —j in the exponent of w cancel and (10)
can be written as

NE

(10) = Cn(win — 1) Z bj+n Z blwl’k’ZSl,T,Q
n=1 j=k+2 l=j4+n+2
p oo
= Z en(w™™ — D™t Z bjtn
n=1 j=k+2

I—(k+24m)—1
o bttt
I=(k+2+n)+2

P
- Z cn(w™™ — D™t

n=1
[e%s) jt+n+1
l—(k+2 —1
T b > bt LS,
j=k+3 l=(k+2+n)+2

In the first sum on the right side of the last equation,

o0 o0
I—(k+24n)—1
E brw! =RF2Em=1G o = Skiognr—1t g by Sir—2
I=(k+2+n)+2 I=(k+2+n)+2

is substituted. Then

p o0
10) = -3 ea(w™ - 1>w"+1( 3 bj+n)sk+2+n,rl

n=1 j=k+2
p o] [e'e)
+ Z Cn(w™™ — D™t Z bjin Z bi1Sir—2
n=1 j=k+2 l=(k+2+4+n)+2
p e’} Jj+n+1
— Z en(w™™—1) Z bjtn Z blwlfk%Sl,,,_g.
n=1 j=k+3 I=(k+2+n)+2

After having carried out these substitutions, we multiply the final
equation obtained for P(1/w)Sy . by (P(1/w))"~! and use the abbre-
viation Ey, = Ej,(w) := (P(1/w))"Sk,»(w). Then, we obtain, for
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r>2and 0 < |w| < R,
(11)
fe’e] [ee] ) p
= P(1/w) Z bEj,1— Z kalEj,r1<ZC”bj+">
j=k+2 j=k+2 n=0
P k+n+1
—Z% > W E
= j=k+2
j+n+1
PO S 3 0t S
n=1 j=k+2 I=j+2
j+n+1
P(1/w) ch Z bitn Z bw' ™k 2Bl o
n=1 j=k+2 =542
— ch(w_" — 1)w"+1( Z bj+n> Eyiotnr—1
n=1 j=k+2

j=k+2 l=k+n+4
Jj+n+1

—].) io: bj+n Z bl’wlikizElﬂ-,z.

j=k+3 I=k-+n+4

+ P(1/w) Z co(w™™ — D™t i bjtn i biE; 2
—P(1/w))

From now on, we assume that condition (3) is satisfied and that
Ry < |w| < R? holds, where Ry is an arbitrary fixed number with
1< Ry <R.

We want to show that all sums on the right side of equation (11)
are absolutely uniformly convergent for Ry < |w| < R?. Let K, be
an upper bound of |P(1/w)| for Ry < |w| < R% Assume also that
|Ejr1(w)| < gjir1(w) = €jr1 and |Ejro(w)| < jr—2(w) = 52
holds for Ry < |w| < R?, where ¢ ,_1,¢; 2 are assumed to be already
defined such that, for s =r — 1 and r — 2,

0<¢ejs<eps<oo holdsfor j >k>—1 and that

12
(12) gjs(w) < sj,S(Rz) holds for Ry < |w| < R? and j > —1.
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Using (12) and the Cauchy-Schwarz inequality, we can estimate the
right side of (11) by

(13)
[ee] e o] ) p
|Ek,r‘§K0€k+2,r71 Z |bj|+€k+2,rfl Z ‘w|J_k_1 chijrn
j—k+2 j=k+2 n=0
+ Ekt2,r— 1Z|Cn| Z 101
j=k+2
0 ) 1/2
+K0€k+4,r2zn|cn|< Z |bj|2|wj_k>
n=1 j=k+3
) 1/2
. ( Z |bl|2|wl—k—2>
l=k+4
1/2
¥ Kohesr 2Z”|Cn|< > iotuli )
j=k+3
1/2
( Z |bl|2|wl—k—2>
I=k+4
+ Ehy3r— 1|w|2|cn|\1— w"| Z |65
j=k+2

+ Kotk 2\w|2|cn|\1f w"| Z b1 Z b

j=k+3 I=k+5

+ Koers,r—a(Jw] /2 — 1)~ Z [en[lw™™ —1

0 ] 1/2
- ( 3 |bj|2|wf’“)

j=k+4

) 1/2
X ( Z |bl|2w|lk2> .

I=k+5

This shows that all series Ey, (w) are uniformly convergent for Ry <
|w| < R?. Hence, every Ej,.(w) is holomorphic for Ry < |w| < R? and
continuous for Ry < |w| < R2.
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By applying (12) and elementary estimates to the right side of (13),
we finally obtain |Ej »(w)| < e, (w) for Ry < |w| < R%, k> —1,7 > 2,
where ¢, , is defined as stated in Theorem 1(a) and also satisfies (12)
with s = 7. The constants K;, Ko > 0 occurring in the definition of
€k, are upper bounds of two polynomials in |w| of degree < p+2 with
coefficients K¢ and |c,|, 1 <n < p, Ry < |w| < R%

Finally, we consider the case r = 1. Then

] [e'e] p
P(1/w)Ska=P(1/w) > bi— Y w ¥ cnbjin
j=k+2 j=k+2 n=0
P k+14+n
_ch Z bjwj—k—l—n
n=1 j=k+2

holds for 0 < |w| < R?. Similarly, as before, we obtain, for 1 < Ry <
|w| < R?,

|Bra(w)] < Ko Y (bl + Y w7

j=k+2 j=k+2

2 S
+ D leal D Iyl
n=1

j=k+2

p
E Cnbj+n
n=0

This immediately yields |Eg 1(w)| < eg1(w) for Ry < |w| < R?,
k > —1, where e, is defined as stated in Theorem 1(a) with the
same constant K as above (in the case r > 2). This proves part (a).

(b). The definition of e, yields, for r > 2,

5] ) 1/2
o2 K X Pl ) ez

j=k+2
Replacing k by k£ + 2 and r by r — 1 yields

oo

Eht2,r—1 = K1< Z

‘ 1/2
bj|2w|Jk2> Ek+4,r—2 for r > 2.
j=k+4
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We substitute this in the definition of ¢, and obtain

00 ] 1/2
Ekr < <K( Z |bj|2|ka>

j=k+2
(14) - .
b3 S by )
j=k+2 n=0

where K := K; + K2 /K;. This also holds for r = 1.

With p;_ ,(R), as defined in Theorem 1(b), we obtain from (a) and
(14), [Brr(w)| < piioPhya Phyo, for all & > —1, 7 > 1, and
Ry < |w| < R%

(c). We now choose Ry and R; close to R such that 1 < Ry < R <
R? < R? and P(1/w) # 0 hold for |w| = Ry and |w| = R?. Let m > 0
be a lower bound of |P(1/w)| for |w| = Ry and |w| = R?. Because of
(a), B, r(w) is holomorphic for Ry < |w| < R?. Therefore, also, S .(w)
is holomorphic for Ry < |w| < R? with removable isolated singularities
at the zeros of P(1/w). From (b) follows

|Sk,r(w)‘ < m_sz+zpz+4 : "Pz+2r for lw| =Ry and |w|= R%-

Because of the maximum principle this estimate holds for all w with
Ry < |w| < R?. The remaining part of statement (c) is a consequence
of limy_,o py = 0. Finally, (d) follows from (c) and (8) in Lemma 5.
This concludes the proof of Theorem 1. O

Theorem B now follows from Theorem 1(d).

In order to prove Theorem B’, we substitute b,, = b,(2), w = w?(2)
and ¢, = cp(2) in all identities occurring in the proof of Theorem
1 and assume now that (3’) holds. Theorem A’ implies that (11)
remains valid for all z € M for which the two-valued function w(z)
satisfies |w?(z)| < Ry, all series on the right side being absolutely
uniformly convergent on compact subsets. Therefore, it suffices to
consider (11) on ©Q = {z € M* : 1 < Ry < |w?(2)] < R%*}.
Then on each compact subset of Q the estimates of Theorem 1(a),
(b) remain valid where the constants K;, K> and K now depend
on these compact sets. Hence, also, all series on the right side of
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(11) are absolutely uniformly convergent on each compact subset of
Q. The left side of (11) is Ej,(z,w?(2)) = (Q(2))" Sk, (2,w?(2)),
where Q(z) = Y0 _ cn(2)w(2)™® # 0 and Ej,(z,w), Sk.,(z,w)
are obtained from Ej ,(w) := (P(1/w))"Sk(w) (see Lemma 2) by
substituting b, = b,(z). Since Ej,(z,w?(z)) is holomorphic on each
open Qo C Q, Sk »(z,w?(2)) is also holomorphic there with removable
isolated singularities at zeros of Q(z). To each zg € €, there exist
constants p > 0, m > 0 with {z € C : |z — 2| < p} C Q
such that |Q(z)] > m holds for |z — 29| = p. Hence, according
to Theorem 1(b), Sk ,(z,w?(2)] < Mm™"pf oPhisa- " Phior holds for
|z—2z9| = p and, because of the maximum principle, also for |z—zp| < p.
Consequently, conclusions analogous to Theorem 1(c), (d) remain valid
in this generalization. The proof of (d) uses the same reasoning as the
corresponding part in the proof of Theorem A’.
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