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X. HE AND X. LI
Dedicated to Prof. W.J. Thron on the occasion of his 70th birthday

ABSTRACT. In this paper we determine the functions
on [—1,1] that are uniform limits of weighted polynomials
of the form (1 — z)®n (1 + z)Bnpy(z), where degpn, < n,
limp oo @n/n = 01 > 0 and lim,00 Brn/n = 62 > 0.
Estimates for the rate of convergence are also obtained. Our
results confirm a conjecture of Saff for w(z) = (1 — z)f1 (1 +
:c)02, when 0; > 0, 62 > 0, and extend previous results of
G.G. Lorentz and M. v. Golitschek, and Saff and Varga for
incomplete polynomials.

1. Introduction. The introduction of “incomplete polynomials” by
G.G. Lorentz [4] in 1976 has led to an extensive study of polynomials
with varying weights. Among the more recent results is the solution of
Freud’s conjecture [5], and strong asymptotics for a family of extremal
polynomials associated with exponential weights on R [7]. The essen-
tial question which serves as the starting point for these investigations
is the following:

Suppose w : R — R is a nonnegative weight function continuous on
its support X. An important problem is the characterization of limit
functions of sequences of weighted polynomials of the form

[w(@)]"pa(x), n=1,2,...,

where p,, € P ,, the collection of all algebraic polynomials of degree at
most n.

Mhaskar and Saff [8] proved that the sup norm of [w(z)]"p,(z) over X
actually “lives” on some (smallest) compact set S C {z € ¥ : w(z) #
0} which is independent of n and p,. The connection between this
fundamental result and our problem is that, in several important cases,
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f € C(X) and supp (f) C S is the necessary and sufficient condition for
the existence of a sequence of weighted polynomials {[w(z)]"p,(z)}2,
that converges uniformly to f(z) on ¥. We refer the reader to [4,11]
for w(z) = 2%, s > 0, ¥ = [0,1]; [9] for w(z) =€~ %, ¥ = [0,00); [6] for
w(z) =e 171" a > 1, ¥ = (o0, 00).

The purpose of the present paper is to investigate the corresponding
result for the case when w(z) is a Jacobi Weight. We shall give
an affirmative answer to Saff, Ullman and Varga’s conjecture in [10]
(cf. part (ii) of Theorem 1). More precisely, we will characterize
those functions that are uniform limits on [—1, 1] of sequences of the
form {(1 — z)* (1 + z)Prp, (z)}2,, where lim, oo an/n = 6 > 0,
lim, 0 Bn/n=02>0and p, €P,,n=12,....

For the special case when {a,}S2, are integers, 8, = 0 for all
n =1,2,..., the limit functions were found by Saff and Varga in [11]
and von Golitschek in [2] for 6; > 0 and by Lorentz in [4] for §; = 0.
It is not a trivial extension to characterize the limit functions for the
general case when #; > 0 and 0 > 0. Our method of proof was inspired
by a recent work of Lubinsky and Saff [6].

The outline of this paper is as follows. In Section 2, we introduce
notations, definitions and state our results. Section 3 contains the
proofs of the theorems stated in Section 2.

2. Statement of results. Let I := [—1,1]. For any set B and
function f defined on B, let

1f1l5 := sup{|f(2)|;x € B}.

Let {a,}52, and {8,}52 ; be two sequences of nonnegative reals with

(2.1) lim 2 = 61 and lim Bn _ 6.
n—oo n n—oo n

For 6; > 0, 63 > 0, define, as in [8,10],

a:= a(fy,02) = sin(p1 — 2),

(2.2)
b(01,02) = sin(p1 + @2),

b:
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where

01+ 6o cos g > — 0
146,465 T146,+65
and 0 < ¢ < 7/2,0< g < .

sin ¢ 1=

One of our main theorems is

Theorem 1. Let f be a function defined on I and {an}2 1, {Bn}2,
be sequences of nonnegative reals satisfying (2.1). Then there is a
sequence of weighted polynomials {(1 — )" (1 + )P p, (x)}2,, where
Pn € P, such that

(23) Jim (1 - )" (1+2)pu(@) = (@)
uniformly on I if and only if f € C(I) and

(i) when a, = 0 and B, > 0 for n large enough, f(z) = 0 for
z € [-1,qa].

(ii) when o, > 0 and B, > 0 for n large enough, f(z) = 0 for

€[-1,a]U]b,1].

(ili) when a, > 0 for infinitely many n and 6; = 0, B, > 0 for n
large enough, f(z) =0 for z € {1} U[-1,a].

(iv) when ay, > 0, B, > 0 for infinitely many n, respectively, and
61 =0-=0, f(x) =0 forz =1 and —1.

We remark that the Weierstrass theorem gives us the result when
an, = B, = 0 for n large enough, and the symmetry between «,, and
Br allows us to get the corresponding results for all the other possible
cases of a,, and 3, in (i) and (iii).

The following theorem concerning the rate of convergence generalizes
the result in [2].

Theorem 2. Let 6; > 0, 62 > 0. Let a,b be as defined in (2.2). Let
[e,d] be a subinterval of [a,b] with a < ¢ < d < b. Then there exist
constants K > 0 and 7 > 0 (only depending on c,d, 6, and 602) such
that, for any f € C|c,d|, there exists p, € P, such that

(24) 17(2) - (1= (142" pu (@) < Ko (1,1) +06™)
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forn = 1,2,..., where w(f,-) is the modulus of continuity of f on
[, d].

Furthermore, f is analytic on [c,d] if and only if there exist p, € P,
and 11 > 0 (depending on c,d, 01,02 and f) such that

(25)  [f(2) ~ (1 2)" " (1 +2)"pu(@) e, = O(e ™).

3. Proofs. We need the following lemma in our proofs.
Lemma 3.1. Let {amn}p; =1 be a doubly infinite sequence. If

lim ay,p =am, m=12,3,...,
n—r 00

and

lim a,, = a,
m—ro0

then there exists a sequence {m(n)}>2, such that

lim a,,(n),n = a-
n—oo

The proof of Lemma 3.1 is elementary and is therefore omitted.
Proof of Theorem 1. We divide the proof into several steps.

Proof of (i) when 63 = 0. Since a(0,0) = —1 the necessity is obvious.
For sufficiency, we first assume that f is of the form

for some nonnegative integer m.
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When 3, > 1 for n large enough, consider
(3.1)

E,:= inf (1 1 E_ (1 Bup,.
R (EED RIS

J

inf {H/ { D (k+ Dar(1+8)% = By (1+ 1) pa(t)

Pn€EP n
I}

|(k+1)ar(1+8)% — (1+8)P»"1p, x(t)| dt

L+ 0550 b

J

since any Z?:o Pn,k(t) with p, 1 € P, is equal to Snpn(t) + (1 +1¢)p, (¢)
for some p,, € P,. By the Cauchy-Schwarz inequality, we get
(3.2)
1
E, < fz inf {/ [(k+D)ar(1+t)" — (1+8)P1p, (£)]? dt}
-1

Pn kEP n

< inf
Pn, kE'P
=0,1,.

1/2

% 1 |k_/8n+]-|
< k+ 1)aj2k+t . ;
—,;0( T ey

here in the last inequality we used an identity of Muntz (cf. Cheney [1,
p. 196)).

Since B, /n — 0 as n — 0o, we have

|k — Bn + 1|
hm S —

=0, k=0,1,...
n—)oon+k+18n ) P 7m7

and so

lim E, =0.

n—oo
This implies that (1 + )Y 7 ,ax(l + 2)* is a limit function of a
sequence of weighted polynomials of form (1 + z)P»p,(z), p, € P n,
where 8,/n — 0 as n — oco. Since, by the Weierstrass theorem, any
function f € C(I) with f(—1) = 0 is a limit function of a sequence of
polynomials of the form (1+z) ;" ar(1+z)¥, by Lemma 3.1 we see
that (2.3) is true for 8, > 1 when n is large enough. For the remaining
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case 0 < B, <1 for infinitely many n, by the above discussion, there
exist ¢,(z) €EPp_1,n=1,2,..., such that

. Brn+1 — i Bn —
nl;ngo(l + ) gn(z) = nIL%(l + )" p, = f(x)

uniformly on I, where p, € P,.

Proof of (i) when 02 > 0. Again we need only to show the sufficiency.
(See, for example, [2]). If the $3,,’s are integers for all n large, then
Theorem 2.1 in [11] (or Theorem 1 in [2]) gives the result. So assume
that we have infinitely many noninteger 3,. Note that f(z) can be
uniformly approximated on I by functions of form

0 -1
h(ﬂ}') _ ) T e [ ,(I],
(x —a)p(z), =€ a,1],
where p(z) is a polynomial. And we can write h(z) = r(x)s(z) with

07 S [_La]a
z—a, x€]la,l],

and
0) S [71,04])
s(x) ==
Ve —ap(z), z€la,ll.
Now, from the proof of (i) when 62 = 0, we know there exists

{q8.1-1}5Z1 ([z] denotes the largest integer less than or equal to x)
with gig,)-1 € P [g,]-1 such that

lim (1+ a:)B"_w"]Hq[gn],l(x) =r(z)

n—r o0
uniformly on [—1,1].

For s(z), by Theorem 2.1 in [11] (or Theorem 1 in [2]), there exists

nf{ﬁn}‘Fl
sa@ = Y aeb, =12,
k=0

such that lim,, o (1+z)#»1=1s, () = s(z), uniformly on [ 1,1]. Hence
h(z) = r(z)s(z) = nli_{r;o(l +a)Prqp,)-1(2)sn(z),

uniformly on [—1,1].
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Note that, since P,(z) := q,]—-1(2) - sn(z) € Pp, n =1,2,..., we
have proved that h(x) and, hence, by Lemma 3.1, f(z) is a uniform
limit function of a sequence of weighted polynomials. O

Remark . The proof of (i) when 63 > 0 can be obtained by several
other methods. One of them is by slight modification of the proof of
part (ii) given below. The other possibilities are suitable modifications
of methods in [2] and [11].

Proof of (ii) when 61 > 0 and 03 > 0. The necessity follows from
Corollary 2.6 in [3]. To prove the sufficiency, we define
(3.3)
Ba, g = f{]| (1) (Lta)a"—g(2)[|1; g € (1-2)*" ()" P o1},

where P,,_1 := {0} if n = 0.

It is a consequence of Proposition 3.1 in [3] that there exists a unique
Qn(®) = Qay p,.n(3) € (1 — 2)° (1 + 2)P,, satistying

(3-4) Eamﬁmn = ||Qn||l = ||Qamﬁmn||1'

Set

(3.5) Tu g n(z) = -2 cc
Eanvﬂnyn

It follows from Theorems 2.5 and 3.5 in [3] that
(3.6) B [T, 5,0 (2)| 575777 = G261, 62),

for z ¢ [a,b], where a,b are defined as in (2.2) and
(3.7)

T1

o(2)—p(1) p(2)—p(-1) | el
G(2:01,05) ;:{W(z)ww(l)v(d—l SRS 2 €O\,

1, z € [a, 8],

with 7 := 91/(1 + 01 +62), To 1= 92/(1 + 01 +92) and

VE—a+Vz=b

(38) SO(Z) = 90(2;01762) = \/m _ m
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mapping C\[a,b] onto the exterior of the unit circle. Moreover, the
extremal points (alternation points) of Ty, g, () in (—1,1) are dense
in [a,b] and

(3.9) lim &, =qa, lim &, =20,

where 1,82, are the smallest and largest extremal points of

Ta,, gon(z) in (=1, 1), respectively (cf. [3]).

Consider

o) (PR M\ [ p(2) —p(=1) \7
9(2) = ¢(2) (1 — so(l)so(Z)) (1 - so(—l)so(Z)) '

By tedious but straightforward computation, we can get asymptotic
expansions of g(z) near z = a and z = b:

(3.10) g(2) =1+ A(z—a)? + Ay(z—a)? + -
and
(3.11) g(z) =1+ By(z — b)? + By(z — b)2 +---

with A1 7é 0, Bl 7é 0.

By conformal mapping argument and the discussion about function
G(z;01,62) in [3] and (3.10), (3.11), one can show that the level curve
{z : G(z;01,02) = 1} is of barbell shape and the ends are attached to
the bar with angle (see Figure 1)

(3.12) U, =0, =,

Our goal is to construct weighted polynomials such that

(3.13) lim (1 —z)* (14 x)’" P, (z) = f(z),

n— oo

where f € C(I) with f(z) =0 for z € [-1,a] U [b, 1].
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FIGURE 1.

To do this, we follow the method of Lubinsky and Saff [6] and first
consider

h (Z) o {p(z)(z - gl,n)(’z - £2,n)7 gl,n <z< 62,1’“
" a 0’ Z € [_]"617"] U [£2,na 1]7

where &1 ,,, &2, are as in (3.9), and p(z) is an entire function.

We construct the polynomial L,(z) € P,_; which interpolates
p(2)(z = €1.0)(z — E2.0)/(1 — 2)2"(1 + 2)Pr at the zeros of Q,(z) :=
Qn(2)/((1 — 2)%(1 + 2)Pn) in [~1,1], where Q,(z) is defined as in
(3.4). By the Hermite formula (cf. [12, p. 50]), we have

P(2)(z = &1n) (2 — &2,n)
1—2e1top

— L / p(()(( - 61,n)(§ - 52,71)@7}(2)
2mi Jr, (= 2)(1 =) (1 +{)PQu ()

(3.14)

dc.

The integral contour is chosen as follows: I'y, :=1T'1 ,, Uflm Ul'y n U3
oriented in a positive direction (see Figure 2).

We can write (3.14) as

hn(z) — (1 — 2)%(1 + 2)P" L, (2)
(3.15) _ L/ P(O)(C = €1,n) (€ = E2,0)(1 = 2)2n (1 4 2)° Quu(2)
2mi Jp (€= 2) (1 =) (14 ¢)PQn(C)

for z € [€1,n,82.0]. In fact, it is easy to see, by explicitly writing

d¢
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1,n

FIGURE 2.

L, (z) and using the residue theorem, that (3.15) remains true for all
€ [-1,1]. We now estimate the error on I:

Ihn(2) = (1 = 2)* (1 + 2)%" Lo (2) I1

(C _gl,n)(g_gln) ”Qn”l
e s i

It is easy to see from (3.16) that there exists M = M(J), where ¢
denotes the height of I'y ,, above the real axis, such that

1@nllz
|Qn(C)]

(3.16)

< Ll
_27[_101‘"

(317)  [[An(2) = (1= 2)* (1 + 2)" Lu(2)I1 < M/F |d¢]-

We claim that, for a suitable choice of § > 0,

]

By (3.6), we have, for z ¢ [a, b],

1
o [0
n—oo | |Qn(2)] G (201, 62)
By (3.12), for every § > 0, there exists p := p(d) € (0,1), such that, for

n large enough and all z € I'y,, UTy ,,, G(2;61,602) > 1/p > 1. Hence,
for n large,

Qnllz
3.19 / d¢| < 4pntanthn < pn,
(319 oot 1Qa(Q)] =20 p



UNIFORM CONVERGENCE 291

For the integral over I'; ,, we have

1Quls
/FM|<>|'<|

:/' (1= &2,0)" (1 + &2,0)0" ‘QA@@
Tan

(1= Q) (L+¢)Pr Qn(C)
First, it is easy to see that, for ( € I'y ,,

‘ (1 - €2,n)an(1 + €2,n)6n
(1= ¢)an(L+)Pr

Next, let i ,n,C2,n,-- - Cn,n be the zeros of Qn(g) Then, for ( € Ty,
¢ =&n+1iy, =6 <y <4, we have

‘52 n Cj,n|/ H |£2 n + Zy C],n|
j=1

_ exp{__ZIOg [1+ ﬁ”

j=1

< ex —lznjlo 1+y—2
=GP Ty 8 (bte—Cin)?

j=1

(3.20)

.

(3.21)

Qn(£2 n)
Qn(0)

for every £ > 0 and n sufficiently large. Choosing § = £/2, and noting
that log(1 + z) > /2 for 0 < 2 < 1/2, we have, for every ¢ > 0,

n

Qn(&,n) 1 2 1
(322) ‘ S eXp 74y ; (b+€ _ Cj,n)2 ’

@n(¢)

for ¢ € I'z,, and n large enough.
It is a consequence of Theorem 3.4 in [10] that

n

1 1
lim = - -
novoo 1 JZ (b+e—Cin)?

[ (b—)(t—a)
_/a(b+s—t)2' a—p)
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Notice that

- b 1 V-8t -a)
=0 J, (b+e—1t)? (1 —t2)

dt = o0,

and so, given o > 0, we can find € = (o) > 0 and n(o) such that

1 ,w— 1 n
3.23 B Y — {— 2—},
( ) exp 4y —1 (b+e— ijn)2 =P Y o?

J

for n > n(o).
Combining (3.20)—(3.23), we obtain

1@nll1 ’ 2 -
(3.24) /1““ \Qn(o“dd < /_6exp{—y ;} dy < mon~2,

[N

for n > n(o). Similarly, we can get

(3.25) /F &i’&'; 1dC] < ron~d - for n > n(o).

It follows from (3.19), (3.24) and (3.25) that our claim (3.18) is true.
Now consider

(3.26) h(z) = {IS(Z)(Z —a)(z —b), i Z E, g,

where p(z) is an entire function. Then it is easy to see from (3.9)
that lim,_,c0 hn(z) = h(z) uniformly on I. Hence, h(z) is the uniform
limit on I of the sequence (1 — z)** (1 + 2)#~ L, (z). Since any function
f € C(I) with f(z) = 0 for z € [-1,a] U [b,1] is a limit function of
functions having a form like h(z) defined in (3.26) in the case 6y, 85 # 0o
(this implies ¢ < b) by Lemma 3.1 we have proved (3.13).

In the case when 6; = oo and/or 82 = oo, we get a = b and
{f € CI): f(z) = 0 for z € [-1,a] U [b,1]} consists only of the
identically zero constant. Obviously, part (i) of Theorem 1 is true in
this case.
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The proof for the case when only one of #; and 65 is zero is contained
in the proof of (iii).

Proof of (ii) when 6; = 65 = 0. We only need to prove the sufficiency.
Assume f € C(I) and f(1) = f(—1) = 0; then, as usual, we can
uniformly approximate f by polynomials of the form (1—z)(1+z)p,, (),
where p,, € P, m = 1,2,.... Hence, it is enough to show that we
can uniformly approximate (1 — z)(1 + z)pm,,(z) for every p, € P,
m=12,....

Let
f(z) = (1 —2z)(1 + z)pm(x);

then, by part (i) of Theorem 1, (1+ )p,,, () can be uniformly approx-
imated by a sequence of polynomials {(1 + z)’»q, (z)}52,, where ¢, €
p(z]- On the other hand, using part (i) again, (1 — ) can be uniformly
approximated by another sequence of polynomials {(1—z)*"§,(z)}5,,
where ¢, () € pz). Therefore, (1 —z)(1+ z)p,(z) is the uniform limit
of the sequence of the form

{1 =)™ (L + ) qu(@)da(@) 1o

and ¢ndn € P . This completes the proof of part (ii).

Proof of (iii). The necessity of (iii) is an easy consequence of Theorem
2.2 in [11] or Corollary 2.6 in [3]. We now prove the sufficiency. Let
us first assume «,, > 1 for n large enough. It suffices to prove that one
can uniformly approximate a function

hz) = (1 —z)r(z),

where

andgeP,,n=12,....

oo

We claim that we can find two sequences of polynomials {p,(z)}5>,

and {gn(2)}52; with p,,qgn € P, such that

(3.27) lim (1 + z)Pr+vasmi+ip, (z) = r(z)

n—oo
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uniformly on I and

(3.28) lim (1 —2)*"qpa,j+1(z) = (1 — )

n—oo

uniformly on I. In fact, since

n 1
— fim Pr g PEWVRAR]EL

n—oo0 N n—oo n

lim Br+lyagm+1
n

n— oo

we know that (3.27) is possible by part (i) of Theorem 1.
For (3.28) we need a little more effort. First note that

Qn Cr
0< lim — < lim ——
- n—l_?;o [Vra,]+1 ~ nroo [v/na, ]+ 1 ~ n—oo \/na,

SO
lim ——n =
noveo [y/nan, | + 1

Second, since we assume a,, > 1 for n large enough, we have

lim ([/na,]+1) = co.

n—oo

0.

Similar to the proof of (ii) when 63 = 0, we can show that there exists
q|/ma, 1+1 such that (3.28) holds.

It follows from (3.27) and (3.28) that

lim (1 —2)* (1 + )" p,_( Jmay -1 (2)a) e 141(2) = h(z)

n—oo

uniformly on 1.

Now for the remaining case when 0 < «,, < 1 for infinitely many n,
by the above discussion, there exists ¢, € P,-1, n =1,2,3,..., such
that

lim (1 - )%+ (L+2)"gp(z) = lim (1-2)* (1+2)"pa(z) = f(z),

n—oo n—oo

uniformly on I, where p,(z) := (1 — 2)gn(z) € P ,.
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Proof of (iv). This is an easy consequence of (ii). We omit the
details. O

Proof of Theorem 2. First we consider the case when f is analytic on

[c,d].

For ¢, d given, we consider the extremal

inf 1— ndy 1 nbs e = Gn
mf 02 0+ ) g
pn(z)=2"+
We know that there are T,, € P, n=1,2,..., T,(z) = 2™ + - -+ such
that
1L =) (1 + 2)" " Ty e,q) = G-

Now we can employ the notation and results in [8] (particularly
Theorem 2.3). To do so, we take [c,d] as ¥ and (1 — z)% (1 + z)%
as w(x). Then it is easy to see that S = [c, d] and there exists a unique
p* € M([e,d]). (M ([e,d]) denotes the collection of all positive unit
Borel measures p with supp (1) C [c,d]) such that

d
(3.29) / log |z — t| du* () = —log (1 — 2)" (1 + 2)| + F

for z € [¢,d], where

_ d —_ p\01 02
F = log d—c N / log(1 —2)*(1+ z) .
4 c my/(z—c)(d—2x)

Moreover, we have

(3.30) lim GY/™ = exp(F),

and

(3.31) lim [(1— 2)" (1 + 2)"T),(2)|» = exp(F) exp V(2)
n—oo

locally uniformly for z € C\([¢,d] U {1, —1}), where

d
(3.32)  V(z):= / log |z — t|du*(t) +log|(1 — 2)% (1 + 2)?2| - F
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for z € C.

In order to prove our theorem, we need the following lemmas.

Lemma 3.2. For z :=xz+ 1y, € [¢,d], y > 0, V(xz + iy) is an
increasing function of y. Similarly, for y < 0, V(z+1y) is a decreasing
function of y.

Proof. Tt is obvious that

d ¢ y Oy
—V )= | —————dp* () + ————
Vet = [ 0
0
ﬁ>o, fory>0. [}

Lemma 3.3. There exist ri,ry such thata < ry <c<d<re <b
and V(ry) >0, V(ry) > 0. Furthermore, r1,79 can be chosen such that
V(z) is decreasing in [r1,c] and increasing in [d,r3].

Proof. If there is no 71 in (a, c) such that V(r1) > 0, then, since
(1= 2)"" (14 2)"%pa(2)] < (1= 2)"" (1 + 2)"2pu (2) o,
for all z € C, we have, in particular,
(1= 2 (1 + 2 ()] < (1 — )" (1+ 2)"*pn () e
for z € [a,c]. This means that, for each n =0,1,2,... ,p, € P,
11— ) (1 4+ 2) 2 (@) 1y = (1 = )" (1 + 2 (2) )
which contradicts the definition of ¢ and b. Thus, we proved the

existence of r;. Similarly, we can establish the existence of ro € (d,b)
such that V(rs) > 0.

Now choose r; satisfying V(r;) > 0 and

ry = max{r: V'(r) =0, r € [a,c]}.
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If V(x) is not decreasing in [ry,c|, there must exist #; € (r1,c) such
that

V(z) <0 forall z € (7,c).

Thus, for ¥; := [r,d] and w(z) = (1 — z)% (1 4 )%,
[w”pnlls, = [[w"Pnlle.a

for all p,, € P,. But this is impossible since we can easily prove that
the subinterval where the sup norm lives should be the whole interval
[r1,d] as we showed for [c,d] at the beginning of our proof. So V(z) is
decreasing in [rq, c].

By the same reasoning we can show that ro can be chosen such that
V(z) is increasing in (d,r2). O

Lemma 3.4. For all § > 0 small enough, the level curve I's : V(z) =
0 has a component which is a loop surrounding [c,d] but not —1 and 1;
with & — 0% this loop shrinks to [c,d].

Proof. This is a consequence of the implicit function theorem and
above lemmas. O

We now return to the proof of Theorem 2. Since f is analytic on
[c,d], by Lemma 3.4, there is a dy > 0 such that f is analytic inside
and on I's (we still use I's to denote the loop in Lemma 3.4) for 6 < do.
Now let 21, 22, ... , 2, be the n zeros of T,, in [¢,d], and let L, € P ,_y
satisfy

Ln(zj) = f(25)/(1 = Zj)nol(l +Zj)n02, i=12,...,n.

Then, by Hermite’s formula,

f() 1 T, () (4) dt
pEr e AU e Y e L e
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for z € [c,d], and so

f(x) = (1 = 2)"* (14 2)"% Lo ()|
1A= 2)" (A 2) T ()] £ (1)
=21 Jpy |1 = t)n0 (L4 8)n02 T, (¢)| |t — |
o L Gn-maxier, |£(£)] - 7(Ls)
~ 27 (ef - €9 — g)ndist (T's, [c, d])

< Kie %" max|f(t)| = O(e ™) asn — oo,
tel's

|dt|
(3.33)

where v(I'5) denotes the length of I's. So (2.5) holds.

On the other hand, if (2.5) holds, it follows from Lemma 3.4 and the
inequality [|(1— 2)"% (14 2)"2pn(2)||lr, < |- |ljc,q) - €°™ that, when § is
small enough,

1
limsup [|(1 — 2)"%1 (1 + Z)ngzpn(z)”lg& <Ll

n—oo
So, f can have an analytic continuation in Int (I's).

Next, if f is a continuous function, then there exist polynomials {p}}
such that (by Jackson’s Theorem, [1, p. 144])

" 1
I = pilea < (1.7 ).

Take § > 0 such that I's is a loop surrounding [c,d] but not —1 and 1,
and take o > 1 such that I'; is contained in the region bounded by the
ellipse E,: |z—c|+|z—d| = (d—c)o. Let A=4§/(2lno), for n > 2/A,
and let L} € P,_; such that

pan](lj) .
L (z;) = , =12,...,n,
) S T gy
where z;, j =1,2,... ,n, are the zeros of T;,. Then we have

|f(@) = (1= 2)"" (1+2)""2 L5 ()|
< (@) = Phmy (@) + [Pfany(2) = (1= 2)" (1 + )" L} ()]

SKw(fa

—on *
pv 1) + Kie " maxphy,, (2)

1
< Kow <f, E) + K3e™ o™ 2 £,y
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where we have used (3.33) and the Bernstein Lemma (cf. [12, p. 77]).
So, by the choice of A\, we have

(3.34) |f(z) — (1 —2)""(1+2)""2L; ()| < Kow <f, %) + Kae

for some 7 > 0, where K5, 7 can be chosen dependent only on ¢, d, 6;
and 6y. Taking K, large enough, we see that (2.4) holds for all n. O
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