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THE ONE-QUARTER CLASS
OF ORTHOGONAL POLYNOMIALS

T.S. CHIHARA

ABSTRACT. An important class of orthogonal polynomials
consists of those which satisfy a three-term recurrence relation
with unbounded coefficients which have certain convergence
properties. This paper reviews some of the known spectral
properties of this class of polynomials. In order to put the
discussion in the proper perspective, it includes an expository
survey of the current knowledge of spectral properties of
orthogonal polynomials in general as predictable on the basis
of the behavior of the coefficients in the three-term recurrence
relation.

1. Introduction. An important class of orthogonal polynomials
consists of those whose three-term recurrence relation,

P, (z) = (z — ¢y) Po—1(z) — Ay Pp—2(x),
1

1.1
(1.1) P i(z)=0, Py(z)=1, c,real, \, >0,

have coefficients which satisfy the conditions

An 1
(1.2) lim ¢, =00, lim —*L — =
n—00 n—00 CpCp1 4

Here we have assumed without loss of generality that our polynomials
are monic. The classical prototype of this class is, of course, the se-
quence of Laguerre polynomials. There are a large number of natural
questions concerning the spectral properties of the orthogonal polyno-
mials of this class. For, under the hypotheses (1.2), it is possible for
the zeros of the corresponding orthogonal polynomials to (i) form a
dense subset of the interval (0,00), (Laguerre polynomials, Wilson’s
continuous dual Hahn polynomials), (ii) have a derived set that forms
a sequence converging to co (certain Al-Salam and Carlitz polynomials,
Askey-Ismail polynomials), (iii) spread from —oo to +00. The existence
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of orthogonal polynomials with the last property is easy to establish,
but no explicit examples of such seem to be known (which should pose
an interesting challenge to the special function experts).

In this article, we plan to discuss this class of OP which, lacking a
better name, we call the “one-quarter class” of orthogonal polynomials.
In particular, we will point out criteria for each of the three cases
mentioned above to occur, for various other spectral properties to be
possessed and also give criteria for determinacy or indeterminacy of
the associated moment problems. In order to put this discussion into
the proper perspective, we will include a survey of the relation of the
behavior of the coefficients in (1.1) to the spectral properties of the
orthogonal polynomials in the general case.

2. Preliminaries and notation. We will be concerned with real,
monic orthogonal polynomial sequences (OPS). That is, we consider
sequences { P, (z)} such that (a) P,(z) is a monic polynomial of degree
n and (b) there exists a distribution function ¢ such that

(2.1) /_ P (2)Po(2) (1) = Kby Koy > 0.

Here, by distribution function we will mean a bounded, nondecreasing
function whose moments

(2.2) L :/ t"dy(t), n=0,1,2,...,

are all finite and whose spectrum (= support of di))
(2.3) S(W)={t:Y({t+¢e)—9(t—¢e)>0for all e > 0}

is an infinite set.

It is a classical result that every (monic) OPS satisfies a three
term recurrence relation of the form (1.1). Conversely, by the so-
called “theorem of Favard,” any polynomial sequence that satisfies a
recurrence of the form (1.1) is an OPS (e.g., see [14]). This result
is actually contained in the work of Stieltjes [42] and of Hamburger
[29] with continued fractions and the moment problems that bear
their names. As such, it has been at least implicitly long well known
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to mathematicians who work with continued fractions. However, the
latter were only rarely interested in orthogonal polynomials per se and,
although the result was rediscovered or rederived in other contexts,
it was the announcement of the result by Favard [26] that called the
fact to the attention of those interested in orthogonal polynomials.
This eventually led to the current activity involving investigations
into discovering properties of orthogonal polynomials hidden in the
coefficients of (1.1). In some cases, this led investigators to consider
continued fraction theory, thereby bringing us full circle. Thus, there
is some justification in continuing to associate this result with Favard’s
name. In any case, to do so should cause no greater harm than is done
by references to Schwarz’s inequality, Taylor’s series and other such
technically misnamed objects.

A further classical consequence of orthogonality is the fact that P, (z)
has only real, simple zeros ©,; : Tp1 < Tpa < +++ < Tpn. We then also
have the familiar separation theorem for the zeros of two consecutive
OPs:

Trnili < Tpi < Tnyiat1, t=1,2,...,n.

From this follows the existence of the limits (in the extended real
number system)

; = lim x,; = lim z, s
(2‘2) & T, Uh o Tn,n j+1,

—00 <8 S <SS S S 00

[€1,m1] is what Shohat called the “true” interval of orthogonality. It
is the smallest closed interval that contains all of the zeros of the
orthogonal polynomials, and there always exists a solution of the
moment problem (2.2) whose spectrum is contained in [£1,7;]; it is
therefore also referred to as the “spectral interval.” Finally, we note
the limits

(2.3) o= lim§, 7= lim pn;.

1—00 Jj—oo
When the Hamburger moment problem given by (2.2) is determined, o
and 7 are the smallest and largest limit points of the spectrum. When
the moment problem is indeterminate, either 0 = 7 = oo (or, essentially
equivalently, 0 = 7 = —o0) or 0 = —7 = —o0. In the former case, there
is a unique extremal solution of the moment problem whose spectrum
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consists of the distinct points & (7;) and thus is a denumerable set
whose only limit point is 0o (—oo) [11]. In the latter case, rather little
can be said other than that the zeros spread from —oo to 4o0.

3. The spectral interval is bounded. We first review results
known when the interval [£1,7:] is bounded. In this case, the corre-
sponding Hamburger moment problem is determined so the distribution
function 7 is unique up to an obvious equivalence class. The following
is essentially contained in Stieltjes’ work [42].

THEOREM 3.1. [&1,m1] is bounded if and only if both coefficient
sequences {cp} and {\,} are bounded.

The first spectral theorem of the type we are most concerned with is
also due to Stieltjes [42]. We denote by E’ the derived set of E.

THEOREM 3.2. Let ¢, = 0 for all n, and let A, = 0 (as n — o).
Then S(v)" = {0}.

Thus, Stieltjes gives conditions for the spectrum to be a symmetric,
denumerable set with 0 as its only accumulation point. Stieltjes proved
his result using convergence properties of the corresponding S-fraction.
Using the theory of completely continuous operators applied to the
appropriate J-matrix, Krein in 1938 proved a remarkable generalization
of Stieltjes’ theorem.

THEOREM 3.3. Let E be any finite set of real numbers. Krein
states necessary and sufficient conditions on {c,} and {\,} so that

S@) = E.

The conditions given by Krein would require the introduction of a little
too much notation to be reasonably summarized in this survey, so we
refer to [1] (see also [14]) for specifics in the general case. In the special
case, £ = {a}, Krein’s conditions become the natural generalization of
Stieltjes’ result:

lim ¢, =a, lim A, =0,
n— o0 n—oo
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while, for E = {a, b}, his conditions are
nlin;o[An + Ang1 + (en — a)(Cny1 — b)] =0,

lim Apq1(cn + cpy1 —a—0) =0,

n—oo

nll)nolo AnAn41 =0.

Somewhat more recently, Maki [32] proved the following result. Let

(3.1) L = {t:tis a subsequential limit point of {c,}}.
THEOREM 3.4. Let lim,, oo A\, =0. Then £ C S(3).

Maki also used operator methods to prove his result which, it should
be pointed out, does not require that {c,} be bounded. He also noted
that, by choosing the ¢, to be, for example, an enumeration of the
rationals, one would have an example whose spectrum is the real line.
Maki also conjectured that, still with the hypothesis lim,,_,o, A, =0, a
point is a limit point of {¢,,} if and only if it is an accumulation point
of the spectrum. I was able to verify Maki’s conjecture [12]:

THEOREM 3.5. Let lim,,_,oo A, =0. Then L = S(¢)'.

At the opposite extreme from the preceding results, there is the
following theorem due to Blumenthal [7].

THEOREM 3.6. Let

(3.2) lim ¢, =¢, lim A\, =X (both finite).
n—o0

n—oo

Then
c=c—2V\, T=c+2V],

and the zeros of the P,(z) are dense in the interval (o, 7].

The density of the zeros would suggest (but not imply) that the interval
[, 7] belongs to the spectrum. This is, however, in fact true and follows
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from an argument due to Nevai (oral communication in 1983) based on
another theorem of Nevai himself | 35, Theorem 4.2.14]:

THEOREM 3.6. Under the conditions (3.2), [o,7] C S(¢).

The conclusion in Theorem 3.6 implies Blumenthal’s conclusion that
the zeros are dense in [o,7]. With additional conditions on the rate
of convergence in (3.2), more specific properties of the distribution
function have been deduced. For example, Nevai [35] has proved

THEOREM 3.8. Let
D len — el + [An — Al) < o0

Then v is absolutely continuous on (o,7), and ' is positive and
continuous on (o, T).

For additional results along these lines, see papers by Nevai and his
collaborators (e.g., [25, 28, 33, 35, 36, 37]).

Finally, we note the following result of Geronimo and Case [27] which
has significance for applications to scattering theory in physics.

THEOREM 3.9. Let
Zn(|cn —cl+ A — A]) < 0.

Then S(1) has at most finitely many points on the complement of (o, T),
and v is continuous at o and T.

For alternate and more direct proofs of Theorem 3.9, see [21].
Relative to the important conclusions in Theorem 3.9, the conditions

en—c=0(1n"?%, A\ —A=0(n"?

describe a borderline case. For amplification of this last comment and
for related results, see [15]. For other studies of (1.1) with bounded
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coefficients directed at determining various other properties of the
polynomials (asymptotics, bounds for zeros, etc.), see, for example,
[9, 13, 35, 37, 38, 39, 44, 45].

4. The spectral interval is unbounded. We now take up the case
where (o, 7) is unbounded, which is equivalent to the condition that at
least one of the sequences {c,} and {\,} is unbounded.

Case A. 0 = 0o. The important special case where o = 0o is rep-
resented by many specific examples in the literature and include the
classic examples of the polynomials associated with the names of Char-
lier, Stieltjes-Wigert, Meixner, Hahn, as well as more recent examples
discovered by Al-Salam and Carlitz [3], Al-Salam and Chihara [4] (see
also [5]), and Askey and Ismail (see below). This case is equivalent to
the condition that

£1<£2<"'<£n7 é‘n—>00

When the Hamburger moment problem is determined, S(¢) = {& : ¢ >
1} so that S(¢)" = {00}, while if the moment problem is indeterminate,
there is always a unique (extremal) solution of the moment problem
with the above spectrum (see [11]).

The following was initially proved under the assumption that the
Hamburger moment problem is determined [9] and was then rediscov-
ered as an equivalent statement about the convergence of continued
fractions without assumptions about the moment problem [31] (see
also [14]).

THEOREM 4.1. Let

. . Ana1 1
lim ¢, = 00, limsup Lndl oo
n—00 n—oo CnCn41 4

Then o = oo.

This result is sufficiently general to cover the majority of specific
examples found in the literature, but certain special cases of the
Al-Salam and Carlitz polynomials have the property that the ratio
An+t1/(ency) converges to 1/4 (that is, we have polynomials of the one-
quarter class). The following result [17] covers the latter.
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THEOREM 4.2. Let
n )\n+1 1 ‘
— < 00, n|—————-| <oo.
2 DL el

Then o = oo.

A very important class of orthogonal polynomials has been discovered
recently by Askey and Ismail [5]. These polynomials are denoted by
vn(z;¢;a,b,¢) (lg] < 1). If we consider the equivalent monic form

Pa(z) = (—1)"q """ Y/2(g; q)pun(2),

then, in the corresponding recurrence relation (1.1), we have
— —n A — 4 2n+l1 1—g™)(b— n—1
Cnt1 =09 nt+1 =4 ( q")(b—cq" ),

with a real and b and c restricted so that A,y; > 0. Askey and
Ismail prove that the corresponding Hamburger moment problem is
determined if and only if

2
a® > 4b and |q| > \a|——a—4b‘
la| + vVa? — 4b
Thus, in particular, the moment problem is indeterminate for the
polynomials of the one-quarter class. When the moment problem is
determined, they obtain the distribution function ¢ explicitly. In
particular, they show that the spectrum consists of the points x,, where

z, = A(Bq")+ (Bq")™t, n=0,1,....

Here A and B are certain, explicitly given, positive constants. In
particular, this means that, for ¢ > 0 (and a > 0), ¢, — oo and
Ani1/(encnti1) — b/a? < 1/4 (which is consistent with Theorem
4.1). However, if ¢ < 0, then the specific interval is (—oo,00) (as
is also implied by the fact that inf, ¢, = —sup,c, = —o0). We
therefore will next look briefly at this case. However, before leaving the
present case, we mention that criteria that can predict determinacy or
indeterminacy of the moment problems in many cases can be given in
terms of the coefficients in (1.1) [20]. For example, if the conditions of
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Theorem 4.1 hold, the Hamburger moment problem will be determined
if ¢, = O(n?). On the other hand, if ¢, = f,¢ ™, where 0 < ¢ < 1 and
the f,, are bounded and bounded away from 0, let L denote the limit
superior that appears in Theorem 4.1. Then the moment problem is
determined if L < g(q + 1)~2, while it is indeterminate if the opposite
(strict) inequality holds.

Case B. The spectral interval is (—00, 00). When (&1,71) = (—00, 00),
we also have (0,7) = (—00,00) (see Sherman [38]). Sufficient condi-
tions for this case are, for example (see [9, 17]),

(i) infe, = —00, supc, = oo;
n
Mgt 1
. li _ li . f n+ ..
(e O JEen=co Mmoo T
. Cn )‘n-l—l 1 t
lim % = >, t>1
) e =% e 71 16 D

The Askey-Ismail polynomials with ¢ < 0 are examples with a discrete
spectrum satisfying (i). The Meixner polynomials of the second kind
(Meixner-Pollaczek polynomials) (see [14]) provide an example whose
spectrum is the entire real line satisfying (ii). Note that, for the latter
polynomials, the Hamburger moment problem is determined.

General spectral theorems dealing with case B are rather rare. In the
symmetric case (¢, = 0), one can consider the related polynomials on
[0,00) (see (5.3)) and translate results from theorems dealing with the
case (£1,m1) C (0,00) to obtain conclusions for the symmetric case. For
the nonsymmetric case, one theorem which predicts a discrete spectrum
is ([18])

THEOREM 4.3. Let the Hamburger moment problem be determined
and suppose

(1) limy—eo [Cn| = o005
(ii) inf, ¢, = —o0, sup, ¢, = o0;
(iii) limsup,_, o |Ant1/(cncni1)| < -

Then ¢ = —o00, T = 00 and S(¢) has no finite points of accumulation.

A second general result [18] should be compared with Theorem 3.5.
Recall (3.1) that £ denotes the set of subsequential limit points of {c,,}.
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THEOREM 4.4. Let the Hamburger moment problem be determined,
and let

. Ang1
lim L — .
n—=00 CnCni1

Then o =inf L, 7 =sup L and S(¢)' C L.

Note that this theorem applies more generally than just to cases where
(o,7) = (=00, 00). Comparing this result with Theorem 3.5, we see that
there are some natural questions raised by this theorem. In particular,
under what additional conditions, if any, will it be true that S(v)" = L?

Criteria for deciding determinacy of the Hamburger moment problem
in this case are rare. The simplest is Carleman’s criterion (see [41])
which says that the moment problem is determined if > A\, 1z -
However, this is rarely applicable when ¢ = —oco. For another which

sometimes applies, see Dennis and Wall [ 22].

5. o is finite. Before listing some specific results involving the
conclusion that |o| < co, we review the concept of “chain sequences”
which is involved in the derivation of many of the previous results as
well as those to come. In particular, this concept will help explain why
the number 1/4 seems to be so central to the determination of o.

DEFINITION. {a,}5%; is a chain sequence if there exists a sequence
{gn}5% o such that

(i) 0<go<1,0<gp<1lforn>1,;
(11) Ap = (1_gn—1)gn7 n> 1.

The spectral interval can now be related to the coefficients in (1.1)
via this concept of chain sequences (see [9, 14]). In order to relate
the coefficients in (1.1) with o (and 7), we need a modification of this
concept.

DEFINITION. {a,}2° , is an eventual chain sequence if there exists an
index N such that {ayi,}32, is a chain sequence.
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NOTATION. Let £ denote the class of all eventual chain sequences,
and let

_ )\n+1
(5.1) an(z) = P Tr—

We can then relate o to the coefficients in (1.1) by ([17])

THEOREM 5.1. Let ¢, — o0 (n — 00).
(i) If {an(z)} €&, then o > x.
(ii) If {an(z)} ¢ &, then o < x.

Theorem 5.1 can be used to arrive easily at, for example, Theorem
4.1. For the constant sequence, {1/4} is a chain sequence and, by
Wall’s comparison theorem, any sequence (weakly) dominated by a
chain sequence is itself a chain sequence [14]. Under the hypotheses
(i), for every real x, ay,(z) < 1/4 for all sufficiently large n; this says
that {a,(z)} € € for every z, hence o = co. Similarly, the criterion (4.1
ii) follows since the inequality given there implies that {a,(x)} ¢ £ for
any real z. The borderline case thus occurs when the limit is exactly
1/4. For example, let

1 1+e,
5.2 p=
(5:2) "= 1 Tontnt 1)

Then it can be shown that [17]

(i) Ife, =0(1l/n) orif > e, converges, then {a,} € £.

(ii) Ife, > 0and > e,/n = o0, then {a,} ¢ E.
Recently, Jacobson and Masson [30] have closed the gap between (i)
and (ii) above, so this will permit more precise determination of the

nature of S(¢) or calculation of o in many situations. (See, for example,
[18, p. 668] for an example where this could be useful.)

Thus, with Theorem 5.1 available to decide whether or not o is
finite, we then note the following analog [10] of Blumenthal’s theorem
(Theorem 3.6)).
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THEOREM 5.2. Let ¢,, = 00 (as n — 00), and let

A 1
lim 2L —
n—00 CnCnp41 4

If, in addition, o is finite, then the zeros of the P,(z) are dense in

(0,00).

The additional assumption that o is finite is essential. The Al-Salam
and Carlitz polynomials (with a = 1) were already mentioned in Section
4 as examples satisfying the conditions of Theorem 5.2 but having
o = oo (and Theorem 4.2 provides an extensive subclass of the one-
quarter class having 0 = 00). The Hamburger moment problem is
indeterminate for this case of the Al-Salam and Carlitz polynomials
(in fact, the distribution function given by Al-Salam and Carlitz is
an extremal solution (see [16]) which is, in itself, an interesting fact).
However, the example

1
Cp = 7’L2fn, )‘n-i—l = Z’I’LZ(TL + I)anfn+1,
where f,, — o0, 3. f1 = 0o, would provide an example with o = oo,
and the moment problem would be determined [20, Theorem 4]. One
can also construct examples with o = —c0. For example, if

Cn=2n, Agp1=n’4+n?, 1<y<2,

then ¢ = —oo [14, p. 125] and the corresponding moment problem is
determined (by Carleman’s criterion).

Some examples of systems in the one-quarter class with |o| < co are
the classical Laguerre polynomials, two classes of orthogonal polyno-
mials related to Meixner polynomials of the second kind studied by
Al-Salam [2] (see also [14, p. 180]), and various hypergeometric or-
thogonal polynomials (such as the continuous dual Hahn polynomials)
studied by Askey and Wilson [6, 7, 48].

Carleman’s criterion for determinacy of the Hamburger moment
problem is frequently applicable for the one-quarter class when |o| <
00, as is the following criterion for indeterminacy [20]: the moment
problem is indeterminate if

lim inf c}/™ > 1.
n—oo
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The obvious question that arises upon seeing Theorem 5.2 is, “where
(what) is the analog of Nevai’s ‘half’ of the Blumenthal-Nevai theorem
(Theorem 3.6)?” An analogue of Theorem 3.7 would also be highly
desirable. A step in this direction has been taken by Dombrowski [23]
who has considered the symmetric case. Let us write the recurrence
relation for a symmetric OPS as

(5.3) Sn(@) = 2Sn—1(2) — YnSn—2(z),

and denote the symmetric distribution with respect to which the S, (z)
are orthogonal as dp(z). Dombrowski assumes that the coefficients in
(5.1) satisfy:

(i) {yn} increases monotonically to ooc;

(i) S = oo,
Condition (ii) ensures that the Hamburger moment problem is deter-

mined (again by Carleman’s criterion). Dombrowski then uses operator
theory to prove

THEOREM 5.3. Let Dy, = \/Yni1 — \/Vn- If
(i) {D,} is bounded
and
(iv) either
(a) Dpy1 — D, <D, — Dy
or
(b) D2, < DnDpys

then ¢ is absolutely continuous on (—oo, 00).

In order to relate Dombrowski’s theorem to the one-quarter class, we
set

Po(x) = San (V7).

Then [14] {P,(z)} is orthogonal over [0, 00) with respect to dy(z) =
de(y/z) and satisfies (1.1) with

(5-4) CL =172, Cntl = V2n+l+V2n+2, Antl = V2nVon+1-
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The conditions (i) and (iii) above imply that {P,(z)} belongs to the
one-quarter class of OP. However, it is not immediately clear how to
state conditions in terms of {c, } and {\, 11} which will be sufficient to
guarantee that the conditions of Dombrowski’s theorem are satisfied.

For a related result dealing with (5.2) under conditions (i), (ii), see
Dombrowski [25].

We also mention here the following analogue of the Geronimo and
Case result, Theorem 3.6 (see [17]):

THEOREM 5.3. Let

Zci:oo and Zn

Then o =0, S(¢) N (—0,0) is a finite set, and ¢ is continuous at 0.

A 1
Antl _‘ < 00.
CnCnt1 4

Other conditions that lead to the type of conclusions given in Theorem
5.3 can also be found in [17].

To emphasize the point that the additional hypothesis that ¢ is finite
must be made in Theorem 5.2, we mention ([17])

THEOREM 5.4. Given any sequence {c,} with ¢, — oo, there exists a
sequence {Apy1} such that Api1/(cncni1) = 1/4 and o = co and there
exists {A\n+1} such that the above limit holds and 0 = —c.

In this connection, it may also be informative to consider the im-
portant special cases where ¢, and A, are polynomials in n (see [17]).
In this case, lim, o ¢, = 00 and limy, o0 Apy1/(cncnt1) = L always
exist (and, of course, |o| = oo if L # 1/4). In the critical case L = 1/4,
one can give conditions in terms of the coefficients ¢, and A,4; for
|o| = 0o or for o to be finite. In the latter case, one can determine o
precisely in terms of the coefficients in ¢, and A,4+1. In particular, it
can be shown that when the degree of ¢, is at least three, o is always
infinite.

We conclude by mentioning a few additional studies of (1.1) appli-
cable when the coefficient sequences are unbounded which deal with
other properties of the orthogonal polynomials: [13, 34, 39, 43, 46,
47].
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