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CLOSED SUBALGEBRAS OF THE BANACH
ALGEBRA OF CONTINUOUSLY DIFFERENTIABLE
FUNCTIONS ON AN INTERVAL

PHILIP DOWNUM AND JOHN A. LINDBERG, JR.

ABSTRACT. Several classes of closed subalgebras of D1(I)
are studied in this paper. A number of results on singly-
generated subalgebras are given, including the result that such
subalgebras are regular (in the sense of Shilov) if and only if
the range of the generator does not separate the plane. Other
conditions sufficient for closed subalgebras to be regular are
also given. For instance, closed separating subalgebras are
shown to be regular and singly-generated. The paper closes
with a characterization of those closed separating subalgebras
over which D!(I) is integral.

Introduction. In this paper, we are concerned with closed sub-
algebras of the Banach algebra D'(I) of continuously differentiable
complex-valued functions on a closed interval I = [a, b] of real numbers.
The norm ||-[|y on D*(I) is defined by || £l[1 = || flloo +I1f'lloc, f € D*(1),
where || - || is the sup norm on I. We shall always assume that our
subalgebras contain the constant functions.

Sections one and two are concerned primarily with the singly-
generated closed subalgebras of D!(I). For f € D(I) we use Ay
to denote the closed subalgebra generated by f and let Sy be its set of
critical points. Section 1 is preliminary in nature, and contains defini-
tions and technical results used later in the paper. In Section 2, we are
interested in identifying the functions g € D'(I) which must belong
to Ay. Obviously, any characterization of such functions must involve
the derivative of g. For the case where the range f(I) of f does not
separate the plane, we show (Theorem 2.1) that g € Ay if and only
if f(z) = f(y) implies g(z) = g(y) and ¢'(x)f'(y) = g'(y)f'(2), and
f'(z) = 0 implies ¢'(z) = 0. Also in Section 2, we refine our results for
the case where f is real-valued.
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Sections 3 and 4 are concerned with conditions on a closed subalgebra
B of D*(I) sufficient for B to be regular (in the sense of Shilov). Our
main result (Theorem 3.4) states that B is regular if and only if B is
inverse-closed on I. It follows from this theorem that Ay is regular if
and only if f(I) does not separate the plane and that any B which is
conjugate-closed is also regular. In Section 4, our attention is focused
on closed subalgebras B which are separating on I. Such algebras are
shown to be conjugate-closed, regular, and to have the form Ay for
some real-valued f € D'(I).

In Section 5, we consider conditions on a closed subalgebra B over
which D'(I) is integral. For the case where B is separating on I, we
give a necessary and sufficient condition for D! (I) to be integral over B.
The condition is topological and is stated in terms of the n*® derived
set of the set of common critical points of the functions in B. The
appendix contains two examples.

We should point out that some of our results are analogous to certain
results concerning C(I), the uniform algebra of continuous complex-
valued functions on I. We cite two instances. It follows from a theorem
of J. Walsh (see [10, p. 444)) that if f € C(I) is one-to-one on I, then
f is a generator for C(I). In our context, if f € D*(I) is one-to-one,
then the analogous statement would be that f is a generator for the
closed subalgebra of functions g € D!(I) such that g'(xz) = 0 whenever
f'(x) = 0. That this is true is shown in Proposition 1.3. The other
instance is a theorem of G. Stolzenberg (see [9, p. 186]) which states
that if a set A C D'(I) separates the points of I, then C(I) is the
smallest uniformly closed subalgebra containing A. For the closure B
in D'(I) of the subalgebra generated by A, the analogous result would
be that B coincides with the closed subalgebra of D!(I) of functions g
such that S C Sy, where S = NfecpSy. This is shown in Section 4.

Finally, it is appropriate for the authors to express their thanks to
several colleagues at Syracuse University: Professors P. Church and
E. Hemmingsen for many helpful conversations on certain aspects of
the research contained herein and Professor L. Lardy, Chairman of the
Mathematics Department, for arranging support for the first named
author during the Summer of 1984, when research for the paper began.
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1. Preliminaries. If A is a commutative Banach algebra, then
> 4 will denote the carrier space of A, that is, the space of non-zero
complex homomorphisms on A to C with the usual Gelfand topology.
C(X) will denote the set of all continuous, complex-valued functions
on X, a compact metric space. For B C C(I ),Foo will denote the
uniform closure of B in C(I). If B C D!(I), then the set of derivatives
of the functions in B will be denoted by B’. When B is a closed
subalgebra, B’ will be a closed linear subspace of C'(I) since subalgebras
are assumed to contain the constant functions. Furthermore, since the
spectral radius of any g € D'(I) is ||g||eo, the uniform norm over I, we
have that ) ; = > 5. (In general, if B; is a subalgebra of Bo and if
the restriction mapping ng 2B, — 2p, 18 1 —1 and onto, then we
will write 5 = > p .) An algebra A of complex-valued functions on
a non-empty set X is called inverse-closed on X if 1/f € A whenever
feAand f(z) #0 for all z € X.

There are two natural subalgebras associated with each f € D'(I).
Ay is the closed subalgebra of D*(I) generated by f, that is, the closure
in D'(I) of the set of polynomials in f. @ is the closure in D*(I) of the
set of functions of the form g/h, where g, h € Ay and h is non-vanishing
on I. Clearly, Ay C Qs and Qs is inverse-closed on I. Z;o and @;o

can be viewed as subalgebras of C(f(I)) as follows. Let g € Q;o Since
f(z) = f(y) implies that g(z) = g(y),9(f(z)) = g(z),z € I, defines
a function on f(I) which is easily shown to be continuous. If we set
¥(g) = g, then ¢ is an isometric isomorphism of @;o into C(f(1)).
Let R(f(I)) and P (f(I)) denote respectively the uniform closures in
C(f(I)) of the set of rational functions with poles off f(I) and the set
of polynomials in z. Then ¢(@;o) =R (f(I)) and w(Z;o) =P (f(I)).

It follows that >, = Zé? =fI),24, = Zz;" = f(I), where f(I)
denotes the polynomial convex hull of f(I), and the Shilov boundary
0Ayf of Af is bdy (f(I)) (see [3; Theorems 1.3 and 1.4, p. 27]). Note
that if g € Q, then the function g = 9(g) is the Gelfand transform of
g (when ) is identified with f(I)). If g € Ay, then g denotes either

—

the Gelfand transform (on f(I)) of g or ¢(g). The context will make
it clear which we mean.

As an immediate consequence of the above, we have that Ay is
inverse-closed on I if and only if P (f(I)) is inverse-closed on f(I).
Now, it is easily seen that P (f(I)) is inverse-closed on f(I) if and only
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o~

if f(I) = f(I), that is, f(I) does not separate the plane. Moreover,
since the planar Lebesgue measure of f(I) is zero by Sard’s Lemma
(see [8, Theorem 3.14, p. 72]), it follows from Lavrentiev’s Theorem

(see [3, p. 48]) that f(I) = f(I) if and only if P (f(I)) = C(f(1)).
Thus, we have

Lemma 1.1. Let f € DY(I). Then the following are equivalent:
(i) Ay is inverse-closed on I.

(ii) f(I) does not separate the plane.
(iii) ¥ (A7) = C(f(1)).

The next proposition is the key to our description of A¢. For subsets
Ay and A of C(I), Ay - Ay will denote the set of functions of the form
flfg, where fl S AZ,Z = 1,2

Proposition 1.2. Let f € D*(I). Then Z;o - A’ = A%, Moreover,
if f(I) does not separate the plane, then ¢(f)f' € A% for each ¢ €
C(f(1)).

Proof. Since 1 € Ay, we immediately have A’f C Z;o . A’f. To
establish the reverse inclusion, let g € Z;o and h € A’f. Pick sequences
{pn(£)}52, and {g,(f)}2; of polynomials in f such that p,(f) = g
and gn(f)f" — h uniformly on I. Consequently, p,(f)g.(f)f" € A%
for each n > 1 and p,(f)gn(f)f’ — gh uniformly on I. By our earlier
remarks, A’f is uniformly closed so that gh € A’;, and it follows that
Z;o . A’f = A'f. The second assertion of the proposition now follows
from the above and Lemma 1.1. O

Recall that the set of zeros of f', f € D'(I), is denoted by Sy. If
B is a closed subalgebra of D!(I), then set S(B) = NsepSy. For
a closed subset S of I, let As = {g € D'(I) : S C S,} and
ki (S)={g € Z;o :g(xz) =0 for x € S}. Note that Ag is a conjugate-
closed, closed subalgebra of D'(I).
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Proposition 1.3. If f € D(I) is either one-to-one on I or real-
valued and monotone on I, then Ay = As,. If, in addition, Sy is
empty, then Ay = D'(I). Conversely, if S is a closed subset of I,
then Ag is singly-generated by a non-negative function g € DY(I) and
As = As,.

Proof. If f is one-to-one on I, then Z;o = C(f(I)) by a Theorem
of Walsh (see [10, p. 444]). On the other hand, if f is real-valued on
1, then it follows from the Stone-Weierstrass Theorem that z/)(Z;o) =
C(f(1)) so that AF" = {g € C(I) : f(z) = f(y) implies g(z) = g(y)}.
If, in addition to being real-valued, f is monotone on I, then f(z) =
f(y),z < y, implies that f is constant on [z,y], so that A’ C Z;o.
Thus, under either hypothesis on f, A’f C Z;o and Z;o is a conjugate-
closed, closed subalgebra of C'(I). It follows from Proposition 1.2 that
A’ is an ideal in Z;O. Hence, A’ = ky(Sy) since A’ is uniformly closed
in Z;o. Thus, Ay = Ag, since A = ky(Sy) and both subalgebras
contain the constant functions. It now follows that if Sy = &, then
Ay = D(I).

Conversely, if S is a closed subset of I, then let f € D'(I) be defined
by f(z) = [ 6(t)dt, where & € I = [a,b] and, for ¢t € I,5(t) is the
distance from ¢ to S. Then f is real-valued and monotone (increasing)
on I, and Sy = S. By the first part of the proof, Ay = As, = As. O

For a given equivalence relation R on I, we set A% = {f € D'(I) :
zRy implies f(z) = f(y)}. Clearly A% is a conjugate-closed, closed
subalgebra of D(I) which is also inverse-closed on I. If B is a closed
subalgebra of D!(I), then R(B) denotes the equivalence relation on I
induced by the functions in B, that is, zR(B)y if and only if g(z) = g(y)
holds for all g € B. When B = Ay, we simply write Ry for R(B). By
will denote the set of functions in A®rNAg ; which satisfy the additional

condition that ¢'(x)f'(y) = ¢'(y)f'(z) whenever f(z) = f(y).

Proposition 1.4. Let f € D'(I). Then the following hold:
(i) By is a closed subalgebra of D*(I) containing As; and

(ii) By is inverse-closed on I.
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Proof. The verification of (i) is straightforward and hence omitted. To
show (ii), let g € By, g(z) # 0 for all z € I. Then 1/g € A®s since AR
is inverse-closed on I. From the formula (1/g)'(z) = —¢'(z)/g(x)? z €
I, we see that 1/g € As,. Thus, 1/g € ARs 0 As;. Now suppose
that f() = f(y). Then g(z) = g(y) and ¢'(2)f'(4) = ¢'(4)f (@)
both hold so that (—g'(z)/9(z)*)f'(y) = (—g'(¥)/9(v)*)f (90)- Thus,
(1/9)'(x)f'(y) = (1/9)'(y)f' () holds whenever f(z) = f(y). Hence,

1/g € By and therefore, By is inverse-closed on I. O

[ V)

2. Singly-generated subalgebras. In this section, we continue
our study of singly-generated closed subalgebras. From Section 1, we
know that Ay C Bf C A%s N Ag,. The subalgebras By and A% N Ag,
are somewhat easier to describe than Ay since their definition does not
involve the norm on D'(I). Thus, it is of interest to know the exact
relationship between A, By and Afr N Ag ;- We begin with Theorem
2.1, which can be viewed as an approximation theorem.

Theorem 2.1. Let f € D'(I). Then Af = By if and only if f(I)
does not separate the plane.

Proof. Suppose that Ay = By. By Proposition 1.4, By is inverse-
closed on I so that Ay is inverse-closed on I. That f(I) does not
separate the plane now follows from Lemma 1.1.

Conversely, suppose f(I) does not separate the plane. From Section
1, we know that Ay C By so we need only show the reverse inclusion.
Let ¢ € By and let z € f( ). We first show that there exists
h, € Ay such that b, = ¢’ on f~'(z). If f~%(z) C Sy, then we
take h, = 0. Then h!, = ¢’ on f 1(2) since g € By implies g’ is zero
whenever f’ is zero. If f71(z) ¢ Sf, then let z € f~!(z)\Sy. Then
f(z) ;é 0. Define h, by b, = (¢'(z)/f'(z))f’. Clearly h, € Af. If
y € f71(2), then f(z) = (( so that g'(z)f'(y) = ¢'(y)f'(x). Since

f'(@) # 0,9'(y) = (9'(2)/ f'(2)) f'(y) = h.(y)- Thus, for all z € f(I),
there exists h, € Ay such that A, = ¢’ on f=(z). Let ¢ > 0 be

given and let W, be the open set (in I) where |¢’ — h,| < e. Then
f1(2) C W, and hence there exists an open neighborhood V, (in f(I))
of z such that f=1(V,) C W,. Since f(I) is compact, there are points
215+ y2n € f(I) such that U™, V,, = f(I). Let uy,... ,u, € C(f(I))

2
)
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be a partition of unity such that > " ; u; =1,0 <u; <1and u; =0 on
F(D\V,,i = 1,2,...,n, and let h be defined by A’ = Y7 | u;(f)h,.
By Proposition 1.2, b’ € A%. On the other hand, if z € I, then

7' (z) - ¢'(2)] =

Z wi(f(@)[R%, (z) — g'(z)]

< Z[ui(f(w))lh;i (z) — g'()l]

< [éui(f(x»} e=e

since |h,, — ¢'| < e on f~! (supp w;), i = 1,2,...,n, implies that
0 < ui(f)Ih,, — 9'| < ui(f) - e It follows that g’ € A’ since A} is
uniformly closed. But this means that g € Ay and, hence, Ay = By. O

Next we give two consequences of the theorem. The first gives a
necessary and suflicient condition for Ay to be conjugate-closed, while
the second gives the somewhat surprising result that when A%7 N Ag ;
is singly-generated, then it is also generated by f.

Corollary 2.2. Ay is conjugate-closed if and only if f(I) does not
separate the plane and f(z) = f(y) implies u'(z)v'(y) = u/'(y)v'(z),
where u = Re(f),v = Im(f).

Proof. First note that u'(z)v'(y) = u/(y)v'(z) holds if and only if
u'(z)f'(y) = ¥ (y)f'(z) holds. Now, suppose that Ay is conjugate-
closed. Then Z;o is conjugate-closed so that P (f(I)) is also conjugate-
closed. Thus, P (f(I)) = C(f(I)) by the Stone-Weierstrass Theorem,
and it follows from Lemma 1.1 that f(I) does not separate the plane.
Since u € Ay, we have by the above observation that f(z) = f(y)
implies u'(z)v'(y) = v/ (y)v'(z).

Conversely, suppose that f(I) does not separate the plane and that
f(z) = f(y) implies u'(z)v'(y) = u'(y)v'(x). Then Ay = By and
f(z) = f(y) implies that «'(z)f'(y) = «'(y)f'(z). Thus, v € By and
hence u € Ay. But then v is also in Ay. If A, , is the closed subalgebra
generated by v and v, then Ay C A4, , C Ay so that Ay = A, ,. But
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since u, v are real-valued, A, , is conjugate-closed, and we can conclude
that Ay is conjugate-closed. O

It is not difficult to give an example where f(I) does not separate
the plane and Ay is not conjugate closed. On the other hand, if f is
real-valued, then A; is conjugate-closed. Moreover, there are examples
where Ay is conjugate-closed and f(I) cannot be embedded in the real
line. Thus, such an Ay can not be generated by a real-valued function.

Corollary 2.3. If A% n As, is singly-generated, then Ay =
AFRs ﬂASf.

Proof. Suppose that A, = AFs 0 Ags,. Then Ry = Ry and S, = Sy
since Ay C ARs N As, = Ay C AR N As,. Now, R, = Ry implies
that f(I) and g(I) are homeomorphic. Since A, = ARr N Ag,, A, is
conjugate-closed. By the previous corollary, g(I) does not separate
the plane. Thus, it follows that f(I) does not separate the plane
(see [4; Corollary 1, p. 101]). Hence, by the theorem, Ay = Bjy.
Since f € Ay, g(z) = g(y) implies that f'(z)g'(y) = f'(y)g'(z). But
f(z) = f(y) is equivalent to g(z) = g(y) so that f(z) = f(y) implies
that ¢'(z) f'(y) = ¢'(y) f'(z). Since g € A®fNAg,, we have that g € By,
and, hence, g € Ay. Thus, Af = Ay, that is Ay = AR N As,. O

As we will see later in this section, when f is real-valued and
AR n As, is not singly-generated, then it is doubly-generated by f
and |f — f(a)|, where I = [a, b].

Unless stated to the contrary, in the remainder of this section we will
assume that f is real-valued and with no loss of generality that I =
[0,1]. Therefore, f(I) does not separate the plane and, consequently,
Ay = Bj. The next two lemmas are technical in nature and will be used
later in this section. For a subset S C R, let S° denote the interior of

S.
Lemma 2.4. Let f € DY(I) be real-valued and f(z1) = f(x2),

zy,22 €I. Ifxy € I and x5 € I° or if I = [z1, 2] and f'(x1) f'(x2) <
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0, then the equation

(%) g'(@1) f'(z2) = g'(22) (1)
holds for all g € ARs N As,.

Proof. First observe that if either f/(z1) or f'(z2) is zero (without
any further restrictions on x; or ), then (x) follows from the inclusion
Sy C Sy forallg e AR7NAg,. Thus, assume that f'(z1) and f'(z;) are
both non-zero. Consequently, under either hypothesis of the lemma,
there are closed intervals N; and No such that x; is an endpoint of
N; and f’ is non-vanishing on N;,i = 1,2, and f(Ny) = f(Na). Set
N = f(Ny1) and f; = f|N;,i = 1,2. Then each f; has a differentiable
inverse ;' : N — N;. Let ¢(z) = f5'(fi(z)),z € Ny Then ¢ is
differentiable on Ny, ¥ (z1) = z2,¢'(z1) # 0, and f(¢(z)) = f(x) for
z € N1. Now, suppose g € A% N Ag,. Then g(¢(z)) = g(z) must hold
for x € N;. Consequently, f'(z1) = f'(¥(x1))¢' (z1) = f'(z2)9¥ (z1)
and ¢'(z1) = ¢'(¢(21))¢'(x1) = g'(22)Y'(21). Since ¢'(z1) # 0, we
have that ¢’(z1) = 0 if and only if ¢’(z2) = 0, in which case (x) holds.
If ¢’ (z1) and ¢'(z2) are non-zero, then combining f'(z1) = f'(z2)v'(z1)

and g'(z1) = g'(22)¢'(z1) gives (). O

If f(0) = f(1) and g € AR N Ag,, f real-valued, then g'(0)f(1) is
not necessarily equal to ¢'(1)f'(0). Thus such a g is not in By. On
the other hand, if we assume in addition that ¢’(0) = ¢’(1) = 0, then
g (0)f'(1) = ¢'(1)f'(0) must hold. Combining this observation with
Lemma 2.4 we have

Lemma 2.5. If f € D(I) is real-valued, then ARfﬂASfU{OJ} C By.

Theorem 2.6. Let f € D*(I) be real-valued. Then Ay = AR7NAg,
if any one of the following conditions hold:

(i) f(0) # f(1);

i) f(0) = f(1) and f'(0)f'(1) < 0;

(111) f(0) = f(1), f(0)f'(1) > 0 and there exists zo € I° such that
) = f(0) and f'(wo) # 0.
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Conversely, if f does not satisfy any of the above three conditions,

then Ay & AR 0 As,.

Proof. Since f is real-valued, to show Ay = Af7 N Ag, it suffices to
show that A% N As; C By. Therefore, suppose f(z) = f(y),z,y € I,
and g € ARs NAs;. We need only show that the condition ¢'(z) f'(y) =
g (y)f'(z) holds when f(z) = f(y). If z € I,y € I°, the condition
holds by Lemma 2.4. Thus if (i) holds, we immediately have g € By.
It remains only to verify the condition with z = 0 and y = 1 when
either (ii) or (iii) holds. By Lemma 2.4 this is the case when (ii) holds.
Suppose, finally, that (iii) holds and that zq € I, f'(z9) # 0 and
f(zo) = f(0). By applying Lemma 2.4 to the pairs {0, 2z} and {zo, 1}
we have ¢'(0)/f'(0) = g¢'(z0)/f'(z0) and g'(z0)/f'(z0) = ¢'(1)/f'(1)
so that ¢'(0)f'(1) = ¢’(1)f'(0). Thus, in all cases, g € By. Therefore
Af = AR n Asf.

Now, suppose that none of the above conditions on f hold, that
is, £(0) = f(1),f'(0)f'(1) > 0 and if f(zo) = f(0),z0 € I°, then
f'(zo) = 0. Without loss of generality, we assume that f'(0) and f'(1)
are both positive. We will show that g = |f — f(0)] is in A% N Ag,
but not in Ay. Let V be an open set in I. If f(¢) > f(0) holds for
allt € V, then g = f — f(0) on V so that ¢’ = f’ on V. Similarly, if
f(#) < f(0) holds for all t € V, then ¢' = —f' on V. In either case, g is
continuously differentiable on V. Moreover, since f'(0) and f'(1) are
both positive, we have that g is continuously differentiable on an open
set containing the endpoints of I and ¢'(0) = f'(0),¢'(1) = —f'(1). To
show that g is differentiable at zo € I°, where f(zp) = f(0) and hence
f'(zo) = 0 by hypothesis, consider

g(wo + h) — g(zo)
h

as h — 0. Thus, ¢'(z¢) exists and is equal to zero. Consequently,
g is differentiable and |¢'| = |f’| on I. It remains to show that ¢’
is continuous at zg. Since |¢'| = |f’'| on I, we have that |¢'(z)| =
If'(z)] = |f'(=0)] = 0 = |¢'(x0)|]. Thus, ¢’ is continuous at xy and
hence g € D'(I).

To complete the proof, note that f(z) = f(y) implies g(z) = g(y)
and |¢g'| = |f'| implies S, = S;. Thus, g € A% N Ag,. Since
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g'(0) = f'(0),¢'(1) = —f'(1) and f'(0), f'(1) are both positive, it
follows that ¢’(0)f'(1) > 0 > ¢'(1)f'(0). Thus, g ¢ By and, hence,
g ¢ Af. O

Corollary 2.7. If f € D*(I) is real-valued and if Af S AR As,,
then ARfNAg, = Ay®C:|f—f(0)|. Moreover, there exists a continuous
point derivation d on AR N Ag, such that d=*(0) = Ay.

Proof. Without loss of generality, assume that f(0) = 0, and
that f/(0) and f/(1) are both positive. We already know that |f| €
AR Ag, \Ay so that Ay +C|f] is actually a (topological) direct sum.
Now, set hg = f+ |f| and hy = f — |f|. Then ho,h; € Ay ® C|f|.
Moreover, hy(0) = 2f(0), hy(1) = 0,R1(0) = 0 and h{(1) = 2f'(1). If
g € A" N As,, then set h = g — (¢'(0)/2f'(0))ho — (¢'(1)/2f'(1))h1
It is easily seen that h'(0) = A/(1) = 0. Thus, h € Afr N As;u10,13-
By Lemma 2.5, h € Ay. Therefore g € Ay ® C|f| and it follows that
ARrNAg, = Ap @ CIf].

To prove the second assertion of the corollary, let d(g) = f'(0)g'(1) —
f'(1)g'(0) for g € AR7NAg,. Then d is a continuous point derivation on
AR N Ag, at the complex homomorphism ¢o, where ¢o(g) = g(0),g €
AR N Ag,. Moreover, d(f) = 0 and d(|f]) = —2f'(0)f(1) so that
Ay C d7'(0) and d is not identically zero on A%/ N Ag,. By the first
part of the proof, we know that A; has codimension 1 in AR N Ag .
so it follows that d=1(0) = Ay. O

In closing this section, we give applications of Theorems 2.1 and
2.6. Let I = [—1,1] for convenience. Suppose that f € D'(I) is
real-valued and even, and that Sy = {0}. Then Ay is the set of
even functions in D(I). To see this, let g € D'(I) be even. Thus,
f(z) = f(y) implies g(z) = g(y), and ¢'(0) = 0. Since f'(z) = 0
only for z = 0,9 € AR N As,. This shows that Al 0 Ags, is the
set of even functions on I. On the other hand, f'(—1) = —f'(1) so
that f/(—1)f’(1) < 0 and hence, Ay = A7 N Ag,. Since A% N Ag,
is the set of even functions, as shown above, the conclusion follows.
If we replace the hypothesis that f is real-valued with the hypothesis
that f is one-to-one on [—1,0] and retain the hypotheses that f is even
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and that Sy = {0}, then Ay is still the subalgebra of even functions in
DY(I). This follows from Theorem 2.1.

3. Regular closed subalgebras. Let us recall that a commutative
Banach algebra A is called regular (in the sense of Shilov) if every set
F C Y, which is closed in the Gelfand topology is a hull, that is,
closed in the hull-kernel topology on > ,. It is well-known that D!(I)
is regular. The main theorem (3.3) of this section gives a necessary
and sufficient condition that a closed subalgebra of D'(I) be regular.
It is convenient to first prove two propositions that are of interest in
themselves.

Proposition 3.1. Suppose that A is commutative Banach algebra
with identity and that J is a closed, totally-disconnected subset of 3 ,.
If J is a hull and if k(J) = {a € A:a =0 on J} is reqular, then A is

regular.

Proof. Since J is a hull, 37, ;) = >_ 4 \J. Note that if F' is closed,
then F'U J is a hull since k(J) is regular. Now, suppose ¢ € >, \F.
If ¢ ¢ J, then there is an a € A such that a(¢) # 0 and @ is
identically zero on J U F, and hence, identically zero on F. Now,
suppose that ¢ € J,¢ € >, \F. Since J is totally-disconnected and
closed, there exists an open set V in ), such that ¢ € V,F C V¢,
and V N J is compact and (relatively) open in J. Set F} =V N J and
F, =VeN(JUF). Then Fy and F» are compact, Fi NFy, = &, F C F
and J C Fy U F5. Hence, Fi U Fs is a hull. Since Fi N Fy = @ and
Fy, F5 are compact, F; and F5 are hulls (see [6; Corollary 3.64, p. 169]).
Thus, there exists an a € A such that a(¢) # 0 and a|F» = 0. Thus,
a|F =0, and we can conclude that A is regular. O

For the next proposition, we need the following discussion. Let
f € DYI). If z € f(I)\f(Sy U {a,b}), where I = [a,b], then we
say that z is a regular point if there is a neighborhood V (in f(I)) of z
such that V' is an arc. Since we are assuming that z ¢ f(Sy U {a,b}),
there are closed intervals I1, I, ... , I, in the interior I° of I such that
[ is one-to-one and f’ is nonvanishing on each I;, f(I;) = f(I1) for
1 <j < nfH(f(lh)) = Ui, I; and f(I) is a neighborhood of =.
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Clearly f(I;) is also an arc and f(I)) is open in f(I). If J denotes
{z € f(D\f(Sf U{a,b}) : z non-regular} U f(Sy U {a,b}), then J is a
closed totally-disconnected subset of f(I) (see [1; Lemma 6, p. 132]).

Proposition 3.2. Let f € D*(I). Then Qy is regular.

Proof. Let J C f(I) be the set of non-regular points. We will
show that J is a hull and that k(J) is regular. To this end, let
zo € f(I)\J, and let Vy C f(I)\J be an arbitrary open neighborhood
in f(I) of z9. Let I,...,I, be the closed intervals in the preceding
discussion. It can easily be arranged that f(I;) C V. Let [s1,s2] = I1
and let ¢ty be the point in (s1,s2) such that f(ty) = 29. Define
d(t+1is) = f(t) + s\, A € C. Since f'(ty) # 0, we can choose A in
such a way that the Jacobian of § is positive at ty. By the Inverse
Function Theorem (see [8, p. 35]), there exists an open disk A(tg)
in C such that the Jacobian of ¢ is positive and § is one-to-one on
A(tg), W = 6(A(to)) is open in C and § ! is continuously differentiable
on W. By suitably contracting the radius of A(tp), we can assume that
W C V and A(tg) "R C (s1,s2) = I?, where V is open in C and
VN f(I) = f(17). Thus, W f(I) C F(1D).

Let I be a circle in A(tg), centered at tg, let h(t+is) be a continuously
differentiable function on A(ty) whose closed support is interior to T,
and let t1,to = ' N R. We further require that h satisfy

(%) / TR f(H)dt =0 and / "Rt f (H)dt # 0.

t1 t1

Define h(z) = k(6 1(2)) for z € W and h(z) = 0 for z € C\W. Then
the closed support of A is interior to v = 6(I'), and hence h is
continuously differentiable on C. Now, set X = f(I) U~v. Then X
is a compact set in C and has zero planar measure by Sard’s Lemma.
We will show that i can be uniformly approximated on X by a rational
function whose poles lie off X but interior to 7. (To do this, we use
the outline in [2] for a constructive proof of the Hartog’s-Rosenthal
Theorem—see page 161.) For each k € Z™, let G} be an open set
containing X with smooth orientable boundary Bdy(Gy) such that

- 1 h(¢) _
‘h(z) - %/de(ak) C_ng‘ < (2k)7!



842 P. DOWNUM AND J.A. LINDBERG, JR.

for all z € X (see loc. cit., pages 151 and 162). Since X is compact
and X C Gy, we can find a set {C(()k), {k),... ,CI(\I,?} C Bdy(Gj) such

that ) hO)
— 25 g -
2mi /dewk) SRy

for all z € X, where

< (2k)7H,

1 Qs MGG - ¢t
Ok (Z) = 2— *) .
™3 G —z
Since the closed support of A is interior to 7, oy, (z) is a rational function
whose only poles are interior to v and off X, that is, lie in the bounded
components of C\(y U f([t1,t2])). Furthermore, o, — h uniformly on
X.

Since C\(T" U [t1, t2]) has exactly two bounded components, C\(y U
f([t1,t2]) also has exactly two bounded components. Call them €2; and
Q5. Then the poles of oy, lie in 27 UQs. Let o; € Q;,7 = 1,2. Since Q;
and Qs are both connected, we can replace each o (if necessary) with
a rational function 7 such that the poles of 7 lie in the set {a1, a2}
and 7, — h uniformly on X.

Now, let Iy = {2z €T :Imz >0} and 'y = {z € T : Imz < 0}.
If v; = 6(T;) U f([t1,t2]), then ~; is a simple closed curve (with the

a¢
(—a; 1

usual positive orientation) and has winding number - f,y_
J
for j =1,2 and ﬁfw C—fga—l =0 for j # . Thus,
1

21 v

7(¢)d¢ = Res(y, o),  j=1,2.
It follows from condition (x) that

/ h(C)d¢ =0, j=1,2.
y

j
To see this, first recall that 2 = 0 on §(T';) and that v; = §(T;) U
f([t1,t2]). If we parameterize f([t1,ts]) by ((t) = f(¢), then the above
integral is equal to

[ rorwa

t1
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which is zero by hypothesis. Now, recall that 7, — h uniformly on
X = f(I)ud(]]) so that 7, — h uniformly on v;,j = 1,2. Hence,

/Tk(g)dgﬁo, =12,
7.

J

so that Res (m%,a;) — 0,5 = 1,2, as k — +oo. Thus, if we let
e (2) = 1(2) — Z?Zl(Res(Tk, a;))/(z — a;), thenn; — h uniformly on
X and has zero residue at each pole (if any) which must lie in {a1, a2}
It now follows that nx(z) is the derivative of a rational function wy(z)
whose only poles are in the set {a1,a2}. Thus, wi(f) € Qf and
wr(f) = nk(f)f'. Since n, — h uniformly and since Q' is uniformly
closed, we have that h(f)f’ € Q). Let H € Qy satisfy H(a) = 0
and H' = h(f)f’. We next show that fI(zO) # 0 and fI(z) = 0 for
z € f(L).

Let I; = [sgj),sgj)],j =1,2,...,n. Note that s = Sm,m = 1,2.

Without loss of generality, we will assume that s; < sgj ) for j =

2,3,...,n. For z € I\ U}_, I;, we have

@) = [T hgeroa= 3 [ i) o
a séj)< N
= > (HEP) - Hs)),

séj)<z

since h(f) is zero off U711

Since f(I;) = f(Iy) and f is one-to-one on each I?-, either f(sgj)) =
f(s1) and f(s5'') = f(s2) or f(s{”’) = f(s3) and f(s§”) = f(s1) . Thus,

the same pair of equations hold for H. Furthermore, since A(f) = 0 on
[Sl,tl] U [tz, 82], we have that

H(s2) ~ Hiss) = [ SR £ (1)t = [ itsnswa=o.

t1

Thus, H(sgj)) - H(sgj)) = +(H(s2) — H(s1)) = 0 and we can conclude
that H(z) = 0 for all z € I\ U}_, I, that is, H(z) = 0if z ¢ f([1).
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We next show that H(tg) # 0. First H(s1) = 0 since H(z) = 0 for all
z € [a,s1). Thus,

to _ to
H(t) = [ RS (Wt = [ R70)S @)
s t
= h(t)f'(t)dt

t1
since h(f) =0 on [s1,#1]. It follows from condition (%) that H(ty) # 0.
Thus H(zg) # 0, where zo = f(to), and H(z) = 0 for all z ¢ f(I1).
This means that H(z) = 0 off V and, in particular, H(z) = 0 for all
z € J. This shows that J is a hull and that k(J) is regular. It now
follows from Proposition 3.1 that Q) is regular. O

For the next theorem, which is the main result of this section, and
one of its corollaries, we need the following easily proved lemma. (For
similar results and their proofs, see [5; Theorem 4.1, p. 234] or [11;
Theorem 9.28, p. 9-16].)

Lemma 3.3. Let B be a commutative Banach algebra with identity
and let A be a set of generators of B. If each a € A is contained in a
reqular, closed subalgebra of B, then B is regular.

Theorem 3.4. Let B be a closed subalgebra of DY(I). Then B is
regular if and only if B is inverse-closed on I.

Proof. Suppose that B is regular. Since any subalgebra of a semi-
simple Banach algebra is also semi-simple, it follows that every complex
homomorphism on B extends to D'(I) (see [6, p. 175]). If g € B and
g(z) # 0 for all # € I, then g is non-vanishing on > ;, so that g~! € B.
Hence, B is inverse-closed on I.

Conversely, suppose that B is inverse-closed on I. Then @y C B for
any f € B. Since @y is regular for any f € B, it follows from the above
lemma that B is regular. O

Corollary 3.5. Let f € D'(I). Then Ay is regular if and only if
f(I) does not separate the plane.
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The corollary follows immediately from the Theorem since Ay is
inverse-closed on [ if and only if f(I) does not separate the plane.

COROLLARY 3.6. Suppose B is a closed subalgebra of D'(I). If B is
conjugate-closed, then B is reqular. In particular, AR, Ag and A®NAg
are regular for any relation R on I and closed set S C I.

Proof. Since B is conjugate-closed, the real-valued functions f € B
generate B. By Corollary 3.5, Ay is regular. That B is regular now
follows from Lemma 3.3. Since AT, Ag and A" N Ag are conjugate-
closed, they are regular by the first part of the proof. O

It is not true in general that a regular, closed subalgebra of D'(I)
is necessarily conjugate-closed (see Corollary 2.2 and the remarks
following it, and Corollary 3.5). On the other hand, closed separating
subalgebras are both regular and conjugate-closed as will be shown in
next section.

The final result of this section is an extension of Proposition 3.2. Let
A be a closed subalgebra of DY(I) and let Ha = {f € A: f(z) #0
for all z € I}. Then each f € H4 has an inverse in D!(I) so that f is
not a topological divisor of zero in D! (I), and, hence, not a topological
divisor of zero in A. (Note: The set of non-topological divisors of zero
in A can be larger than H4. We give an example in the Appendix.) Let
[A, H 4] denote the set of functions of the form fh~! where f € A and
h € Hy, and let Q4 denote the closure of [A, H] in D*(I). Clearly,
Q4 is a subalgebra of D*(I), and Qy = Qa, for each f € D*(I). For

a closed subalgebra A, let m4 = ﬂ'fl(l).

Proposition 3.7. Let A be a closed subalgebra of D*(I). Then Qa
is reqular and Y, = ma(I). Furthermore, if B is a regular, closed

subalgebra of DY(I) containing A, then Q4 C B.

Proof. In view of Theorem 3.4, it suffices to show that @ 4 is inverse-
closed on I. Let f € Hg,. We will show f~! € Q4. There exists
fngnl € [A, Hy] such that ||f,g;t — flli1 — 0 as n — oo. Since f
is non-vanishing on I, there exists N € Z 1 such that f, € Hy for
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n > N. Thus, n > N implies that (f,g,%) ' = f,'h, € [A, Hal,
that is, n > N implies (f,g,,')"* € Q4. It follows that either f is a
topological divisor of zero in Q4 or f~! € Q4 (see [6; Theorem 1.5.4,
p- 22]). But the former is impossible by our earlier comments since
f € Hg, so that Q4 is inverse-closed on I. By Theorem 3.4, Q4 is
regular.

Now, suppose that ¢ € m4(I). Then ¢ extends to a complex homo-
morphism ¢, on D'(I), where z € I, and ¢.(g9) = g(z),g € D'(I).
Clearly, ¢,(fg™') = f(z)/g(z), fg~! € [A, Hy], defines a continuous

extension ¢ of ¢ to @4. Thus, the range of the restriction mapping

794 of >0, into >, must contain m4(I). Furthermore, the extension

é of ¢ is easily seen to be unique so that ﬂ'gA is also one-to-one. Now,

let q~5 € ZQA' Since @4 is regular and semi-simple, q; extends to a

complex homomorphism @, on DY (I) (see loc. cit., Theorem 3.7.5, p.
175). Then ¢ = §|A = $4|A = ma(z) so that 734(3,) = ma(l).
Thus, >, is (identifiable with) w4 (I).

Suppose, finally, that B is a regular, closed subalgebra of D!(I)
containing A. To show Q4 C B, it suffices to show that if f € Hg4,
then f~! € B. For such an f, we have f(z) # 0 for all z € I. Since
B is regular, it is inverse-closed on I by Theorem 3.4. Hence, f~! € B
for any f € Hy. Thus, it follows that Q4 C B. O

In closing this section, we note that there can be many regular, closed
subalgebras B of D*(I) which contain A and for which >, = 74 (1)
(identification being made by the restriction mapping 7%). If R =
R(A), the relation induced on I by A, then clearly such an algebra B
must be contained in A™. We next show that Y ,r = w4 (I). It suffices
to show >°,r =D ,. By Corollary 3.6, we know that AR is regular.

Since @ 4 is regular and contained in AR,WSj(EAR) =2 g, Tosee

that 74" is 1—1, let ¢; = mar(x;),i = 1,2, satisfy ¢1]A = ¢5|A. Then
f(z1) = f(z2) holds for all f € A so that x1Rxzy. Hence, ¢1 = ¢o
and thus the mapping ’/TSj is one-to-one and Y 4z = ma(I). Thus, AR
is the largest regular, closed subalgebra with carrier space m4(I) and
containing A. Of course, by the last proposition, Q4 is the smallest
regular closed subalgebra containing A and having carrier space w4 (I).
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4. Closed separating subalgebras. Suppose that S is a closed
subset of I. It is easily seen that Ag will separate the points of I if
and only if S, the interior of S, is empty. The principal result of this
section is that if B is a separating, closed subalgebra of D'(I), then B
must have the form Ag, S = S(B). It then follows from Proposition
1.3 that B is singly-generated with a real-valued generator. We begin
with a needed lemma. For a closed set S C I, let J(S) be the ideal
formed by taking the closure of the set of functions in D'(I) which
vanish on a neighborhood of S, the neighborhood depending on the
function. It is well-known that J(S) = {g € D*(I) : g|S = ¢'|S = 0}
(see [6, p. 301-2]). From this characterization of J(.5), it easily follows
that J(S) C Ag and that Ag/J(S) is semi-simple.

Lemma 4.1. Let S C I be closed. Then Ags/J(S) is generated by
its idempotents.

Proof. Let g € As. Then ¢ = 0 on S so there exists a sequence
{hn}52, C C(I) such that h, — ¢’ (uniformly on I) and h, =0 on a
neighborhood V;, of S. For each n > 1, set gn(z) = [; ha(t)dt + g(0).
Then g,, € As and g,, — g (in norm on D*(I)). Moreover, g, is locally
constant on V,, so that (g, + J/(S))" assumes only a finite number
of distinct values on S =37, ;5. Thus, (g + J(S))" is a (finite)
linear combination of idempotents in Ag/J(S)". Since Ag/J(S) is
semi-simple, g, + J(S) is a linear combination of idempotents, and
since g, + J(S) — g + J(S) (in the quotient norm), the conclusion of
the lemma follows. O

Theorem 4.2. If B is a closed separating subalgebra of D(I), then
B is regular and, moreover, B = Ag(p).

Proof. Since B is separating, B-. = C(I) (see [9, p. 186]). Hence,
> 5 = I so that B is inverse-closed on I and we can conclude that B is
regular. We next show that J(S(B)) C B. Since B is closed, it suffices
to show that if g € D*(I) and g = 0 on a neighborhood of S(B), then
g € B. Let g be such a function and let € I\S(B). Then there is an
f € B such that f'(x) # 0. Let N be a closed interval such that N is a
closed neighborhood (in I) of 2, NN Sy = &, and fis 1—1 on N. Then,
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by Proposition 1.3, fy = f|N is a generator for D'(N) since fy is 1—1
and has a non-vanishing derivative on N. Since fy € B|N, we have
that B|N is dense in D'(NN). Thus, there exists a sequence {g, }$° in
B such that g,|N — g|N (in the norm on D'(N)), that is g,,|N — g|N
and g,|N — ¢'|N uniformly on N. Since B is regular and ), = I,
there exists u € B such that u =1 on a neighborhood V in I of z and
u =0 off N. Then v’ = 0 off N so that we can conclude that ug, — ug
and (ug,)" — (ug)’ uniformly on I, that is, ug, — ug (in the norm on
DY(I)). But B closed means that ug € B. Thus, g belongs locally to
B at x since u = 1 in some neighborhood of z, so that g belongs locally
to B at each « € I\S(B). Since g = 0 on a neighborhood of S(B), we
have that g belongs locally to B at each point of S(B). Combining the
above assertions, we have that g belongs locally to B at all points of I.
Since B is regular and ) 5 = I,g € B. By the definition of J(S(B))
we conclude that J(S(B)) C B.

To show that B = Agp), first note that B C Agp). Since
J(S(B)) C B, B/J(S(B)) C As(s)/J(S(B)); in fact, B/J(S(B)) is a
closed subalgebra of Ag(py/J(S(B)) with respect to the quotient norm
on the latter. Furthermore, } 5, ;5(p)) = S(B) = EAS(B)/J(S(B))
because both B and Ag(p) are regular. This implies that every
idempotent in Ag(py/J(S(B)) is automatically in B/J(S(B)), so that
B/J(S(B)) is dense in Ag(gy/J(S(B)) by Lemma 4.1. Recalling our
earlier observation that B/J(S(B)) is closed in Ag(p)/J(S(B)), we can
conclude that B/J(S(B)) = Ag)/J(S(B)). Thus, B = Ag(p) since
J(5(B)) C B C Asp). 0

From the above theorem, we can conclude that a closed separating
subalgebra of D'(I) is always conjugate-closed.

Combining Proposition 1.3 and the theorem, we have

Corollary 4.3. If B is a closed separating subalgebra of D(I),
then B is singly-generated (with a real generator). Furthermore, if

S(B) = @, then B = D(I).

The next corollary extends the part of Proposition 1.3 which states
that if f is one-to-one on I, then Ay = Ag,. For fi,..., f, € D'(I),
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let Ay, ¢, 7, denote the closed subalgebra of D'(I) generated by
f17 LR fn

Corollary 4.4. If f1,..., f, € DY(I) separate the points of I, then
Af g = As, S = N2 Sy, Thus, if f{,..., [, have no common
zeros, then Ay, ;. = D(I).

We next give a characterization of D'(I) amongst the closed separat-
ing subalgebras of D1(I).

Corollary 4.5. Suppose B is a closed separating subalgebra of
DY(I). Then B = D(I) if and only if, at each © € I, there is a
non-trivial continuous point derivation.

Proof. The necessity of the condition is obvious. Thus, suppose that,
for each z € I, there exists a non-trivial continuous point derivation
¢z : B — C. Let Jp(x) be the minimal closed ideal in B with hull
{z}. If g € Jp(z) then (.(g) = 0, since Jg(z) € M2 C ¢ Y(0),
where M, is the maximal ideal in B at ¢ € I. Thus, for_any
x € S(B),J(S(B)) C Jp(z) C ¢, '(0), so that (;(9+J(S(B))) = C(9)
is a well-defined, continuous point derivation on B/J(S(B)). Since
B = Agpy, B/J(S(B)) is generated by its idempotents. But Co(u) =0
for all idempotents v € B/J(S(B)) so that ¢, = 0. Hence, {, = 0
for each = € Sp, a contradiction. Thus, S(B) must be empty and, by
Corollary 4.3, B = DY(I). o

5. Integral dependence over closed subalgebras. In this
section, we are concerned with closed subalgebras B over which D! (1)
is integral; that is, every f € D'(I) satisfies a monic polynomial with
coefficients in B. For example, if B has finite codimension in D*(I),
then it is easily seen that D'(I) is integral over B. However, as
Corollary 5.3 shows, this is not a necessary condition; indeed, there
are closed countable subsets S of I such that D(I) is integral over Ag.
In this case, Ag has infinite codimension in D*(I) and Ag is separating
on I. On the other hand, as the corollary also shows, D!(I) need not
be integral over Ag even if the latter is separating. In general, for
D'(I) to be integral over B it is necessary for B to be regular (see
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[5; Theorem 4.3, p. 236]). The above remarks show that this is not a
sufficient condition. A necessary and sufficient condition is given in the
final result of this section. Let S C I be a closed subset of I. We will
denote the set of limit points of S by S’. For a non-negative integer n,
the n't derived set S, of S is defined to be S!,_; for n > 2,5, = &'
and SO =S.

Lemma 5.1. Let S be a closed subset of I = [a,b] and n > 0. If
g € As,, .., then there exists f € Ag such that f =g on S,.

Proof. We first prove the lemma for n = 0. If S = {sy,..., sk}, then
S" = @ and Ag: = D(I). Let g € DY(I). Since S finite implies Ag is
separating, there exists f; € Ag such that f;(s;) = 6;,%,5 = 1,2,... ,k.
Then f = Zle 9(si)fiisin Ag and f =gon S.

Suppose next that S is infinite, or, equivalently, that S’ is not empty.
Let g € Ag/. It suffices to assume that g is real-valued since Ag: is
conjugate-closed. Let I\S = UI,,, where I,, are the components of I\S.
It is easily seen that the I,,’s are mutually disjoint and are either open
intervals or half-open intervals. Let I,, = [an,b,],n > 1, and let E
denote the union U(I,\I,). Then E C S and, hence, E' C §'. It is
easily seen that there are functions h,, € C(I) such that for each n > 1,

(a) hyp, =0 on I\I,;

(b) Ju7 hn(®)dt = g(bn) = g(an); and

(©) [[Bnlloo < 2[lg"ll7,, where [lg'll7, = max, 7 |g'(z)].

We will show that Y h,, converges uniformly on I. (Of course, if I\S

has only finitely many components, then there is nothing to prove.)
Let m > n > 1. Then

m
. — . < =
13" hulloo = masx il <2 max 1]z,

i=n

Now, let € > 0 be given. Since ¢’ is uniformly continuous on I, there
exists § > 0 such that ¢,s € I, |t — s| < § imply that |¢'(t) — ¢'(s)| < e.
Since >°°7 , (bp — an) < b — a, there exists N such that n > N implies
bp —a, < 6. Thus, forn > N, [|g'l; < |g'(an)|+¢, and it follows that,
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for m >n > N,

| Zh lloo <2 max (Ig (@i)] +¢).

i=n

Now, ¢'(a;) — 0 as i — 4oo. If not, then there is a subsequence
{a;,} of {a;} and a A\ > 0 such that |¢'(a;,)| > A for k& > 1. Without
loss of generality, assume that a;, — c¢. Since all the a;’s are distinct,
¢ € E'. Since E' C §',c € S’ and therefore ¢'(a;,) — ¢'(c) =0, a
contradiction. Thus, |¢'(a;)| — 0 as i — oco. It now follows that there
exists N1 > N such that m > n > Ny implies || Y% hil|oo < 4€. Thus,
> hy, converges uniformly, say to h € C'(I). Now, let f be defined by
f(z) = g(a) + [T h(t)dt,z € I. Clearly f € As.

To conclude the proof, we show that f(s) = g(s) for s € S. If
s = a, then f(a) = g(a) certainly holds. For s > a, let J = [a,s],
and Ey = J N (S\S’). Then J = (JNS') U Ey U (Up,<5sI2). Let u be
Lebesgue measure on I. Then p(Ey) = 0 since Ey is at most countable.
Since h|S' = ¢'|S" =0,

o)~ 9@) = [ g0t = [ o= Z/ Jd

bp<s
- /hdu /hdu /h £(5) — gla).

Thus, g(s) = f(s) for all s € S. The general statement now follows
from the above by mathematical induction. O

If f € D'(I) is integral over the subalgebra B, then Z(f, B) will
denote the smallest positive integer n for which there is a monic
polynomial 3(z) of degree n with coefficients in B such that 3(f) = 0.
Let Z(B) = SUp e p1 (1) Z(f, B) when D'(I) is integral over B.

Theorem 5.2. Suppose that S is a non-empty closed subset of I.
Then the following hold:

(a) If S, = @ for some n > 1, then D(I) is integral over As and
I(As) <n+1; and
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(b) If f € D*(I) is integral over As and Sf NS = &, then S, = &,
where n = I(f,As) — 1. Moreover, D'(I) is integral over As and
I(As) =n+1.

Proof. (a). Let f € D(I). By Lemma 5.1, there exists ap € Ag such
that go = (n + 1)!f + nlag is identically zero on S,_; since S, = &.
Set ho = ((n+1)!1/2!) f2+nlagf. Then hy = gof' +n!fay is identically
zero on S,_1 since go = 0 on S,,_; and a9 € As C Ag, ,. Hence,
ho € A5n71

Now, assume that there are functions «y, ... ,ar € As such that
(n+1)! iy .
= + — n—k)la
I = 1! i f agf* 4+ ( ),

is identically zero on S, _r_1. It follows that

hk: _ (TL+ ) fk+2

(k+2) aoff 4+ (n—k)larf

(k+1)!
belongs to Ag, , , since gy = 0 on S, ;1 and ap,...,a; € Ag C
Ag, _,_, together imply that

|fk+1

EL1) ag+ -+ (n—k)! fap,

ki = grf' +

is identically zero on S, ;. By Lemma 5.1, there exists oy € Ag
such that gxr1 = hr + (n — k — 1)!ag41 is identically zero on S, 2.

Hence, by mathematical induction, there are functions ag,... ,a, 1 €
Ag such that g,—1 = (n+ 1)f" + napf"* + - -+ + a1 is identically
zero on S,,_(,—1)—1 = So = S. Consequently, a,, = —f" ™! — agf™ —

-+ — a1 f belongs to Ag since o), = —gn_1f —agf" = —al,_1f.

Thus, D(I) is integral over As and Z(As) <n+ 1.

(b). Suppose that 3(x) = 2" +8,2"+ - -+Bo, 3 € As,i =0,...,n,
and that f € D'(I) satisfies 8(f) = 0 and Sy NS = @. Assume that
n+1=1I(f,As). Let 39 (z) denote the formal j*" derivative of 3(x).
Since B(f) = 0 on I, we have that 8(f)" = B'(f)f + X Bif" is
identically zero on I. Then 8'(f) = 0 on S since Sy NS = @ and
B; € Ag,i = 1,2,... ,n. Now, suppose B*)(f) = 0 on S 1. Then

BE(f) = BEED(f)f + X0y, = k),,é’ fi* is identically zero on Sy
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since Sy = (Sk_1)’, and it follows that 3**D(f) = 0 on S;. Thus, by
induction, 3™tV (f) = 0 on S,,. But S"*tV(f) = (n + 1)! so we can
conclude that S,, = @. From part (a), we have that D'(I) is integral
over Ag and that Z(Ag) < n+1. But n+1 =Z(f, As) < Z(4s) < n+1
so that Z(As) =n+1. O

Corollary 5.3. Let S be a non-empty closed subset of I. Then the
following are equivalent:

(a) S, = @ for somen > 1,
(b) DY(I) is integral over Ag; and

(c) there are functions f1,... , fm € DY(I) which are integral over Ag
and SN (N, Sy,) = .

Proof. That (a) implies (b) follows from part (a) of the theorem. Now,
suppose (b) holds. Then f(t) = t,t € I, satisfies condition (c). Finally,
suppose that (c) holds. For s € S, there is a neighborhood N of s and
an f; such that f/ is non-vanishing on N;. Without loss of generality, we
can assume that N; is closed. Then f; integral over Ag implies that f;
is integral over An, g since Ay,ns D Ag. Hence, by the theorem, there
exists a positive integer n(s) such that (N, N S),) = I. Now, since
S is compact, there are points si,... ,s; € S such that U¥_ N, D S.
Let n = max;<i<k n(s;). Then S, = UX_(N;, N S), = @. Thus, (c)
implies (a). O

It follows from the corollary that if S is a closed subset of I such that
S, # @ for allm > 1, then D'(I) is not integral over Ag. If, in addition,
S% = @, then Ag is also separating on I. Thus, Ag separating on I
is not sufficient for D'(I) to be integral over Ag. On the other hand,
D(I) can be integral over Ag without Ag having finite codimension in
DY(I). For example, if S has a unique limit point, then Ag has infinite
codimension in D!(I). Since Sz = &, D(I) is integral over Ag and Ag
is separating on I.

We conclude this section with a necessary and sufficient condition
that D(I) be integral over a closed subalgebra. Proposition 5.4.

Let B be a closed subalgebra of D*(I). Then D(I) is integral over B
if and only if S(B), = @ for some n > 0 and Ag(p) is integral over B.
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Proof. If D'(I) is integral over B, then D'(I) is integral over Ag (g
and Agp) is integral over B. By Theorem 5.2, S(B), = @ for some
n > 0. Conversely, if S(B), = @, then D'(I) is integral over Agp),
and if Ag(p) is integral over B, then D'(I) is integral over B (see [12;
Theorem 2, p. 256]). O

The hypothesis that Ag(p) be integral over B is satisfied if B has
finite codimension in Ag(py. But this condition is not necessary. For
example, if B is the subalgebra of even functions in D'([—1,1]), then
DY(I) is integral over B but B does not have finite codimension in
As(s) = Aqo}-

APPENDIX

We begin with an example of a function f such that f is not a
topological divisor of zero in Ay and is not contained in Hj,,; that
is, there is an € I such that f(z) = 0. The function f is defined by
f(z) = e?™* x € [0,1], and f(x) = 1/2 + 1/2e*™® x € [1,3/2]. Set
I =10,3/2]. The range of f consists of two circles which are tangent
at z = 1: f(I) = {|z]| = 1} U{|z — 1/2] = 1/2}. The carrier space
ZAf of Ay is precisely A = {|z| < 1} and 0A = {|z| = 1}. Now, note
that f(5/4) = 0 so that 0 € f(I). Thus f is not in Ha,. On the other
hand, f is not a topological divisor of zero in Af. Suppose g, € Ay
and g/l = lg8f oo + l95f + 90l — 0. Then [lgeflloc — 0.
But ||gkflleo = l9kflla = ||gkflloa- Since |f| = 1 on OA, we have
that ||gklloa = |lgklle — 0. Thus, since ||gif + grf'lloc — 0, we
have that ||gj,fllcc — 0. Now, without loss of generality, assume
g = pr(f), a polynomial in f. Then ||p,.(f)f fll — 0. Since
f'(x) # 0 for all x € I, we have ||p,.(f)fllc — 0. Repeating the
argument which showed ||gx||cc — 0, one can show that ||p},(f)|lcc — O.
Thus, ||gk|[1 — 0 and, hence, f is not a topological divisor of zero in
Ay. It is one, however, in D*(I). We conclude this appendix with an
example of a regular closed subalgebra of D!(I) which is not finitely-
generated. In view of Corollary 4.4 and of Corollary 2.5 combined with
Corollary 3.6, we might be tempted to conclude that regular closed
subalgebras of D!(I) are necessarily finitely-generated. That this is not
the case is shown by the following example. Let R be the equivalence
relation on I = [0,1] defined as follows: zRy if and only if z = y
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or z,y € {1/2" : n > 1} U {0}. Then A® is regular by Corollary
3.6. To show that AT is not finitely-generated, we use a result of D.
Sherbert (see [7; Proposition 8.3, p. 261]) which states that if A is a
semi-simple commutative Banach algebra with n generators, then the
linear space of continuous point derivations at any ¢ € > , must have
dimension at most n. For our example, let d,(f) = f(1/2"),n > 1.
Then d,, : A® — C is a continuous point derivation at ¢ € Y &,
where ¥(f) = f(0),f € AR. It is easily shown that the D,’s are
linearly independent (over C) so that, by Sherbert’s result, A% cannot
be finitely-generated.
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