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A MATHEMATICAL PROBLEM IN GEOCHEMISTRY:
THE REACTION-INFILTRATION INSTABILITY

J. CHADAM™ AND P. ORTOLEVA

1. Introduction. When reactive waters flow through a porous
medium they can dissolve the minerals and cause changes in porosity.
This, through Darcy’s law, can alter the flow, giving rise to a feedback
mechanism which can cause instabilities in the shape of the porosity
level surfaces. This mechanism most certainly is important in many
geochemical situations (e.g., the diagenesis and evolution of mineral,
oil and gas reservoirs, the dynamics of nuclear and chemical waste
repositories, in situ coal gasification, enhanced oil recovery, etc.).
Our own interest in the subject arose from trying to understand the
occurrence of so-called roll-front redox mineral deposits [1,3,4]. No
doubt the coupling of this reaction-infiltration instability to the more
widely studied multi-phase flow instabilities should lead to a very rich
area for further research.

Typically, the essential geochemical processes of relevance to each
of the above situations can be modelled mathematically as a system
of coupled, highly nonlinear reaction-transport equations [3,4]. In
general, however, even the simplified versions of these equations arising
from overly simplified physical models are too complicated to be studied
abstractly or analytically [5]. Our approach here (Section 2) is to
restrict attention to a physically important class of problems for which
the effective reaction zone (where the serious complications appear) is
much smaller and less interesting than the scale of the phenomenon
being studied. The resulting set of reaction-transport equations can
then be studied using matched asymptotics [5] to obtain a more
amenable moving free boundary problem for the reaction interface [4,5]
(Section 3). This will allow us to give [1,5,6] (Section 4) a mathematical
treatment of the evolution of the shape of the reaction interface in terms
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FIGURE 1. Focusing of flow to tip of porosity level curve.

of bifurcation and stability theory. We shall also present (Section 5)
the results of some preliminary numerical studies.

2. A Simple reaction-infiltration model. Consider an aquifer
consisting of an insoluble porous matrix (e.g., quartz sandstone) with
some soluble mineral (e.g., calcite) partially filling the pores. If water
is forced through this porous medium, the soluble component will be
dissolved out upstream and the water will become saturated sufficiently
far downstream.

Between these extremes there is a dissolution zone across which the
soluble mineral content—and hence the porosity—changes from its
original downstream value to the final, altered value upstream. The
question of interest is whether the shape of this dissolution zone is
stable. Notice that if a bump (in the porosity level curves) in the
reaction zone exists at some time, the flow of the undersaturated waters
tends to be focused to the tip of the bump via Darcy’s law since inside
the bump (on the upstream side) the permeability is greater than in the
neighboring regions (see Figure 1). Thus, dissolution is enhanced at the
tip causing it to advance more rapidly. This is the porosity change/flow
destabilization mechanism. On the other hand, diffusion from the sides
of the tip raises the concentration of the solute in the water which is
focusing at the tip and hence will decelerate this advancement. The
competition between these two processes can lead to decay of the bump,
restabilization to a morphologically more complicated dissolution zone
or possibly to complete destabilization.
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3. Two mathematical models. In this section we write down
without details (cf. [1,5] for derivations) the models we shall subse-
quently treat analytically and numerically.

3.1 Coupled ODE/PDE model. The rate of increase of the porosity ¢
(equivalently the rate of dissolution of the soluble mineral) is propor-
tional to the reaction rate:

(3.1) %0 = (8~ 9" (2~ 1)(= —R(,7).

Here ¢y is the final porosity after complete dissolution, v is the scaled
concentration of solute in water (with equilibrium concentration being
1) and € = ceq/p << 1 is the ratio of the original equilibrium concen-
tration to the density of the soluble mineral. The 2/3-power indicates
that we are considering surface reactions. The solute concentration per
rock volume, ¢y, satisfies a mass conservation equation:

6(;;’7) =V [¢D(¢)Vy + dX(6)yVp] + 86_(;5

(3.2) €

where D(¢), A(¢) are the porosity dependent, scaled diffusion coefficient
and permeability, respectively, and p is the pressure. Darcy’s law has
been used in the convective term of (3.2). It is also used in combination
with the continuity equation to give:

(33) V- [pA@)Ve] = 2.

In addition, we impose the asymptotic conditions:

Op /‘éfplf vy
(34) "}/—)0, (f)—)(ﬁf and %—)D—f—*D—f as r — —0o0
and
Op
(3.5) v =1, ¢ = ¢y, &—f.’ as T — +oo.

These indicate that far upstream the water is fresh (7 = 0) and the
mineral has been completely dissolved out (¢ = ¢¢). Also, the pressure
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gradient (equivalently the velocity through Darcy’s law vy = —ky p’f) is
specified as in (3.4) with the effects of the scaling appearing explicitly.
Far downstream the water is saturated (y = 1), the porosity is still
at its original, unaltered value (¢ = ¢o) and the pressure gradient
(equivalently the velocity) is to be determined. Equations (3.1-5),
along with given initial data and zero flux boundary conditions on
the transverse boundaries, form a complete problem for the unknowns
v,¢,p. Unfortunately, nothing can be calculated analytically from
these equations except the velocity of a traveling planar dissolution
zone. On the other hand, they form the basis of our numerical
simulations which will be discussed later.

3.2 Moving free boundary model. In order to obtain an analytically
tractable problem, we take the large solid density limit &€ = ceq/p — 0.
The dissolution zone, typically of width £'/2, collapses to a dissolution
interface located at © = R(y,t), with R unknown. Then, off this
interface there is no reaction and the only consistent way to satisfy
equations (3.1-3) to all orders of ¢ is as follows. Upstream of the
dissolution interface where from scaling A(¢¢) and D(¢¢) = 1, one has

(36) Ay+Vy-Vp=0

(37 ¢=o; } inz<Ryt), 0<y<L
(3.8) Ap=0

while downstream one obtains

(3.9) y=1

(3.10) o = ¢o } inz > R(y,t), 0<y<L
(3.11) Ap=0

where we have taken ¢o(x,y,0) = ¢o, constant, to show that the
morphological instabilities will even occur in this spatially homogeneous
situation. Besides the asymptotic conditions (3.4, 5), one also obtains,
via matched asymptotics, boundary conditions on the unknown moving
dissolution interface. Specifically, we shall study variations normal to
the interface on a scale of O(g'/?). If ¢ is the coordinate normal to the
interface, then (3.3) becomes

(3.12) V- (GA@)Vp) = ¢ <6¢ @>

E_uaa
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where p is the normal velocity of the front. Expanding all quantities

in powers of £1/2 we have

(3.13a) p=po+e’pi+...,
(3.13b) d=0do+e ¢ +...,
(3.130) S v S
(3.13d) p=po+eu 4. ...

For the “inner” behavior within the interface (i.e., for small o) we
consider the above to be functions of a stretched variable £ = e~1/2¢
and the tangent variables r,.. Inserting these into (3.12) and collecting

terms to various orders in £'/2, we find, to leading order, e~', the
equation
0 dpo
3.14 — A — | =0.
(3.19 5 (9070 %0

This shows that ¢gA(¢po)9po/IE is a constant throughout the interfa-
cial region. But away from the interface (|{| — 00), the pressure is a
smooth function (satisfying Ap = 0) and hence dp/9¢ — 0 as [§] — oco.
Thus the value of this constant must be zero. Since ¢o and A(¢) do not
vanish at the interface, it follows then that dpy/0¢ = 0 or py remains
continuous across the interface.

At the next order, e=1/2, we find

(3.15) a% (¢0A(¢0)%> = 0.

Matching the outer limit of the derivative of the inner solution
(|€] — o) with the inner limit of the derivative of the outer solution
(S — 0+) we have

. Opp .. VS . Opo
(3.16) EEI:EOO BE T oot Vs Vro = Jim, on’
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Combining (3.16) with the integral from { = —oo to § = +oo of
(3.15) one finds the jump condition in the pressure gradient across
the interface to be given by

. Opo [ . . . Opo
(3.17) Jm o= (Sliff}_ ¢0>\(¢0)/ng€+ ¢0)\(¢0)> Sli%gr o

In the notation of (3.6-3.11) these jump conditions at the interface
can be written as

X = R(y,t)

(3.19) Z— - 2. 2= 0<y<L,

Or oy '(')y_

(3.18) p— = p+, } on
).

Op— Op— aRir Op+ 3p++3_R
Oz Oy oy

where 0 < r = @oAo/PsAf = ¢oko/@Pskys is a measure of the porosity
change. A similar matching analysis on equation (3.2) gives the jump
conditions

(3.20) y=1 on
}XZRmﬂ

B20) 5 gy By ~ (1~ %/¢)ER, 7 0<y<L

Equation (3.21) relates the rate of advancement of the moving dis-

solution interface to the flux of the concentration and is called a

Stefan condition. A final scaling ¢’ = (r/L)z, y' = (v/L)y, t' =

(m/L)*(1 — ¢o/ds) 't with R = (7/L)R (and dropping the primes)

makes the transverse dimension 0 < y < 7, and results in the two

changes

Op vyl
3.4/ 0 Fyadi -
v — 0, o — by, 81‘_) Dy as T — —00
and
0 0y OR
3.21' 8—;—8—3'8—y:Rt on xZR(y,t),OSySW-

Problem (3.4',5,...11,18...21") with initial conditions and zero flux
transverse conditions on y = 0, 7 is the version we shall examine ana-
lytically in the next section. Notice that only two essential parameters
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s u viL/ Df

FIGURE 2. Pitchfork stability diagram indicating loss of stability of planar (6r = 0)
to nonplanar (7 # 0) solutions in terms of the bifurcation parameter vyL/Dy.

remain in the problem, the dynamical parameter vy = vyL/D; and the
measure of the porosity change I' = ¢oko/dsry.

4. Shape instabilities. In this section we describe our analyt-
ical results [5,6] in the context of the large solid density problem
(3.4',5,11,18,21"). This free boundary problem is different from but
not unrelated to those which arise by similar limiting procedures in
combustion [7], solidification [2], electrochemical forming and machin-
ing [8], etc., and is tractable by similar techniques. Here the planar,
constant velocity solution can be obtained explicitly and completely,
including the concentration and pressure profiles which were not avail-
able for the more general coupled ODE/PDE model. The linearized
stability of this solution is then described, giving a precise value of
the parameter v; (in terms of I') for which the planar solution loses
stability to another, more structured, solution. In the language of bi-
furcation theory we determine the critical parameter value for which
the spectrum of the linearized problem changes sign from negative to
positive, thus determining the location of a possible bifurcation point.
Finally we sketch the local bifurcation analysis to show that the linear
instabilities are restabilized by the nonlinearities to a morphologically
more complicated solution. More specifically, we shall obtain a Lan-
dau equation for the amplitude of the linearly unstable mode, thus
indicating a standard pitchfork bifurcation diagram as in Figure 2.
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4.1 Planar solution. Denoting the planar state quantities with a super
bar, one can easily check [5,6] that the following constant velocity
solution satisfies problem (3.4',5,...11,18,21):

(4.1) R(t) =Vt
(42) 7w, = { e et
1 x>Vt

(4.3)

B —vy(z—Vt) =<Vt
p(xat) = _ —
Doz —Vt) x>Vt

where Uy = vy/m = VyL/Dym, Uy = ¢4V (from (3.5) and (3.19)) and

the velocity of the planar interface V =7y from (3.21).

4.2 Linear shape instability. In order to examine the stability of
the above planar solutions (4.1,3) with respect to bumps we con-
sider perturbations of the type (i.e., a generic term in the Fourier
decomposition—only cosine terms appear because of the zero flux trans-
verse boundary conditions)

(4.4a) R(y,t) = Vt + dry(t) cos my
(4.4b) Y(z,y,t) = F(x,t) + §Ym(z)rm(t) cosmy
(4.4¢) p(z,y,t) =D(x,t) + dpm (z)rm () cosmy.

Considering ¢ to be small, the linearized version of equations (3.4', 5,
...11,18,...21') can be derived [5] (i.e., retain terms in first power
of 6). These can be solved explicitly for v, and p, and the Stefan
condition gives [5,6] the following condition on the amplitude 7., (t) of
the cos my bump:

(45a)  rL(t) = lifr (77 = B2 +4m) /2 1 (L= T)m]) rn(0):

This differential equation indicates that the amplitude of the bump
grows or decays depending on the sign of the coefficient. The connection
with the equivalent, more conventional viewpoint follows by expressing
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(&)
\\ = |m]|
FIGURE 3. Graph of dispersion relation (4.5b).
rm(t) = re? (™t in terms of the spectrum o (m) of the linearized problem

and obtaining from (4.5a) the dispersion relation

v

(4.5b) o(m) = 15

(vf — (7% +4m?) V2 4 (1 - r)|m|) .

The m-dependence of ¢ is shown in Figure 3 revealing clearly that the
planar solution (4.1,3) is linearly unstable to long wavelength pertur-
bations (because I' < 1) and stable to short wavelength perturbations.
The critical wave number (|Jmg| at which o(mg) = 0) is given by

21-1)
4.6 my| = —————"—7y.

(4.6) fmol (3-T)(1+I) ’

Since our channel width has been normalized to 7, the first mode which
can be carried is |mg| = 1 giving, from (4.6), the critical parameter
value (of vy = vyL/Dy)

-)(1+1D)m
(47) ve = vi(r) = O T
From this we see that the instability does indeed arise analytically and
that, as is physically realistic, larger flow speeds, larger transverse di-
mensions, larger porosity/permeability changes promote the instability
while larger diffusion coefficients inhibit the instability (i.e., diffusion is
stabilizing, as mentioned earlier). The limit of ' — 1 (i.e., no porosity
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change) suggests it is very difficult to produce instabilities. This has
been verified by a separate analysis [1]. Thus, this instability can occur
only if “significant” amounts of the soluble mineral are dissolved.

4.3 Nonlinear restabilization. We begin by scaling the independent
variables. Because the instability occurs at finite wavelength none is
required for the spatial variables while, as is common for a (anticipated)
pitchfork bifurcation,

(4.8) ty = e%t.
Additionally, we write
(4.9) VfZUC+EV1+€2V2+"-.

We find [6] at O(e?) that v; = 0 (as usual for pitchfork bifurcations)
so that the physical significance of the small parameter ¢ is

(4.10) e~ (vp — v)t/?
where we have taken, without loss of generality, o = 1. Thus,
(4.11) Vf:Vc+€2+E3I/3+-'-.

The stability calculation then proceeds by expanding all of the de-
pendent variables in terms of ¢ (suppressing the sub-2 in the new ty
variable):
R(y,t) = V(e)t
+e(r10(t) + r11(t) cosy + ria(t) cos2y + - - -)

(4.12a) + 2(roo(t) + To1 COSY + raa(t) cos2y + -+ +)
+ 53(1"30(15) + 731 co8y + To3(t) cos2y + - - -)
+0(eh),

(4.12b)

V(@ y,t) =7(x, t;¢)
+ e(v10(z,t) + v11(2, t) cosy + y12(x, ) cos2y + - -+ )
+ &%(y20(2, t) + 21 (2, ) cosy + Yoo, t) cos 2y + - - - )
+ &3(y30(z, t) + y31(z, t) cosy + yaa(x,t) cos 2y + - - - )
+0(e"),
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I5 T

FIGURE 4. Graph of the logarithm of the Landau constant versus I' = ¢oro /¢ sk,
a measure of the porosity change.

and similarly for p(z,y,t). Following the prescription outlined in stan-
dard weakly nonlinear stability analysis (except that the equations are
solved directly rather than obtaining conditions from the orthogonality
of inhomogeneous terms and solutions of the homogeneous problem)
one obtains a Landau differential equation for the amplitude of the
unstable mode, r1;(t):

(413) T/H(t) = ’w'f‘n(t) — ATH(t)S
where

_ v (2492w
14T (2442 T

(4.14) w = w(T)

and the Landau constant, A = A(T'), which is algebraically very
complicated, is given in Figure 4. The positivity of A indicates that in
the vicinity of the critical point the linearized instabilities (from w > 0)
are restabilized by the nonlinearities at the next highest order and from
(4.13) that the bifurcation diagram is the symmetric pitchfork. The
asymptotic amplitude of the bump can be obtained from (3.13) to be
(w/A)M2.

5. Numerical simulations. The actual shape of the stabilized
bump, especially far from the critical point (to which the analysis
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0 8

FIGURE 5A. vy << v.. Evolution of porosity level curve for times
0.0,1.8,3.6,5.4.

L\
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FIGURE 5B. vy ~ wv.. Evolution of porosity level curve for times
0.0,1.5,3.0,3.75.

0 12

FIGURE 5C. vy >> v.. Evolution of porosity level curves for times
0.0,.24, .48, .72, .96.
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of the last section does not apply) must be obtained from numerical
simulations. Because interface tracking is a difficult problem we return
to the coupled ODE/PDE model with ¢ = coq/p small (= 0.05) but
not zero. Using parameter values suggested by the analytical results
of the previous section and standard numerical methods [5] for solving
equations (3.1-5), we investigated the three cases vy << v., vy ~ 1,
and vy >> v.. Figures 5a, b, ¢ depict these cases, respectively,
indicating stability of the planar front, restabilization to a new shape
and a highly unstable dissolution zone, respectively.
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